Multiple features and isolation forest-based fast anomaly detector for hyperspectral imagery
IEEE Transactions on Geoscience and Remote Sensing, 2020•ieeexplore.ieee.org
Hyperspectral anomaly detection (HAD) has drawn a significant attention of late due to its
importance in many military and civilian applications. In this article, a fast hyperspectral
anomaly detector that combines multiple features and isolation forest is proposed. This
approach, which is based on the assumption that the anomalous pixels are more
susceptible to isolation than the background pixels, consists of two main parts. First, the
spectral, Gabor, extended morphological profile (EMP) and extended multiattribute profile …
importance in many military and civilian applications. In this article, a fast hyperspectral
anomaly detector that combines multiple features and isolation forest is proposed. This
approach, which is based on the assumption that the anomalous pixels are more
susceptible to isolation than the background pixels, consists of two main parts. First, the
spectral, Gabor, extended morphological profile (EMP) and extended multiattribute profile …
Hyperspectral anomaly detection (HAD) has drawn a significant attention of late due to its importance in many military and civilian applications. In this article, a fast hyperspectral anomaly detector that combines multiple features and isolation forest is proposed. This approach, which is based on the assumption that the anomalous pixels are more susceptible to isolation than the background pixels, consists of two main parts. First, the spectral, Gabor, extended morphological profile (EMP) and extended multiattribute profile (EMAP) features are extracted from the hyperspectral image (HSI). Next, the isolation forest of each feature is constructed using the subsampling strategy. This combination of multiple features can exploit both the spectral and spatial information of the HSI, thereby improving the anomaly detection performance significantly. Compared with eight state-of-the-art HAD methods, the experimental results on four real hyperspectral data sets demonstrate that the performance of our proposed approach is quite competitive in terms of detection accuracy and running time.
ieeexplore.ieee.org
Showing the best result for this search. See all results