Nonparametric Bayesian sparse graph linear dynamical systems

R Kalantari, J Ghosh, M Zhou - International Conference on …, 2018 - proceedings.mlr.press
R Kalantari, J Ghosh, M Zhou
International Conference on Artificial Intelligence and Statistics, 2018proceedings.mlr.press
A nonparametric Bayesian sparse graph linear dynamical system (SGLDS) is proposed to
model sequentially observed multivariate data. SGLDS uses the Bernoulli-Poisson link
together with a gamma process to generate an infinite dimensional sparse random graph to
model state transitions. Depending on the sparsity pattern of the corresponding row and
column of the graph affinity matrix, a latent state of SGLDS can be categorized as either a
non-dynamic state or a dynamic one. A normal-gamma construction is used to shrink the …
Abstract
A nonparametric Bayesian sparse graph linear dynamical system (SGLDS) is proposed to model sequentially observed multivariate data. SGLDS uses the Bernoulli-Poisson link together with a gamma process to generate an infinite dimensional sparse random graph to model state transitions. Depending on the sparsity pattern of the corresponding row and column of the graph affinity matrix, a latent state of SGLDS can be categorized as either a non-dynamic state or a dynamic one. A normal-gamma construction is used to shrink the energy captured by the non-dynamic states, while the dynamic states can be further categorized into live, absorbing, or noise-injection states, which capture different types of dynamical components of the underlying time series. The state-of-the-art performance of SGLDS is demonstrated with experiments on both synthetic and real data.
proceedings.mlr.press
Showing the best result for this search. See all results