On the pagenumber of complete bipartite graphs

H Enomoto, T Nakamigawa, K Ota - journal of combinatorial theory, Series …, 1997 - Elsevier
H Enomoto, T Nakamigawa, K Ota
journal of combinatorial theory, Series B, 1997Elsevier
The pagenumberp (G) of a graphGis defined as the smallestnsuch thatGcan be embedded
in a book withnpages. We give an upper bound for the page-number of the complete
bipartite graphKm, n. Among other things, we provep (Kn, n)⩽⌊ 2n/3⌋+ 1 andp (K⌊ n2/4⌋,
n)⩽ n− 1. We also give an asymptotic result: min {m: p (Km, n)= n}= n2/4+ O (n7/4).
The pagenumberp(G) of a graphGis defined as the smallestnsuch thatGcan be embedded in a book withnpages. We give an upper bound for the page-number of the complete bipartite graphKm,n. Among other things, we provep(Kn,n)⩽⌊2n/3⌋+1 andp(K⌊n2/4⌋,n)⩽n−1. We also give an asymptotic result: min{m:p(Km,n)=n}=n2/4+O(n7/4).
Elsevier
Showing the best result for this search. See all results