Physics and machine learning: Emerging paradigms

J Martín Guerrero, PJG Lisboa… - … on Artificial Neural …, 2016 - upcommons.upc.edu
ESANN 2016 proceedings: European Symposium on Artificial Neural …, 2016upcommons.upc.edu
Current research in Machine Learning (ML) combines the study of variations on well-
established methods with cutting-edge breakthroughs based on completely new
approaches. Among the latter, emerging paradigms from Physics have taken special
relevance in recent years. Although still in its initial stages, Quantum Machine Learning
(QML) shows promising ways to speed up some of the costly ML calculations with a similar
or even better performance than existing approaches. Two additional advantages are …
Current research in Machine Learning (ML) combines the study of variations on well-established methods with cutting-edge breakthroughs based on completely new approaches. Among the latter, emerging paradigms from Physics have taken special relevance in recent years. Although still in its initial stages, Quantum Machine Learning (QML) shows promising ways to speed up some of the costly ML calculations with a similar or even better performance than existing approaches. Two additional advantages are related to the intrinsic probabilistic approach of QML, since quantum states are genuinely probabilistic, and to the capability of finding the global optimum of a given cost function by means of adiabatic quantum optimization, thus circumventing the usual problem of local minima. Another Physics approach for ML comes from Statistical Physics and is linked to Information theory in supervised and semi-supervised learning frameworks. On the other hand, and from the perspective of Physics, ML can provide solutions by extracting knowledge from huge amounts of data, as it is common in many experiments in the field, such as those related to High Energy Physics for elementary-particle research and Observational Astronomy.
upcommons.upc.edu
Showing the best result for this search. See all results