Skin lesion recognition with class-hierarchy regularized hyperbolic embeddings
International conference on medical image computing and computer-assisted …, 2022•Springer
In practice, many medical datasets have an underlying taxonomy defined over the disease
label space. However, existing classification algorithms for medical diagnoses often assume
semantically independent labels. In this study, we aim to leverage class hierarchy with deep
learning algorithms for more accurate and reliable skin lesion recognition. We propose a
hyperbolic network to jointly learn image embeddings and class prototypes. The hyperbola
provably provides a space for modeling hierarchical relations better than Euclidean …
label space. However, existing classification algorithms for medical diagnoses often assume
semantically independent labels. In this study, we aim to leverage class hierarchy with deep
learning algorithms for more accurate and reliable skin lesion recognition. We propose a
hyperbolic network to jointly learn image embeddings and class prototypes. The hyperbola
provably provides a space for modeling hierarchical relations better than Euclidean …
Abstract
In practice, many medical datasets have an underlying taxonomy defined over the disease label space. However, existing classification algorithms for medical diagnoses often assume semantically independent labels. In this study, we aim to leverage class hierarchy with deep learning algorithms for more accurate and reliable skin lesion recognition. We propose a hyperbolic network to jointly learn image embeddings and class prototypes. The hyperbola provably provides a space for modeling hierarchical relations better than Euclidean geometry. Meanwhile, we restrict the distribution of hyperbolic prototypes with a distance matrix which is encoded from the class hierarchy. Accordingly, the learned prototypes preserve the semantic class relations in the embedding space and we can predict label of an image by assigning its feature to the nearest hyperbolic class prototype. We use an in-house skin lesion dataset which consists of 230k dermoscopic images on 65 skin diseases to verify our method. Extensive experiments provide evidence that our model can achieve higher accuracy with less severe classification errors compared to that of models without considering class relations.
Springer
Showing the best result for this search. See all results