Using postordering and static symbolic factorization for parallel sparse LU
In this paper we present several improvements of widely used parallel LU factorization
methods on sparse matrices. First we introduce the LU elimination forest and then we
characterize the L, U factors in terms of their corresponding LU elimination forest. This
characterization can be used as a compact storage scheme of the matrix as well as of the
task dependence graph. To improve the use of BLAS in the numerical factorization, we
perform a postorder traversal of the LU elimination forest, thus obtaining larger supernodes …
methods on sparse matrices. First we introduce the LU elimination forest and then we
characterize the L, U factors in terms of their corresponding LU elimination forest. This
characterization can be used as a compact storage scheme of the matrix as well as of the
task dependence graph. To improve the use of BLAS in the numerical factorization, we
perform a postorder traversal of the LU elimination forest, thus obtaining larger supernodes …
[PDF][PDF] Using Postordering and Static Symbolic Factorization for Parallel Sparse LU
MCL Grigori - 1999 - inria.hal.science
A tn Y|| hpt {rbp hi D%{pit bhd t| npdf Q {pmrY| t 2 t hm wr|¡ q H¢ njei¢{dfpdf n Q£¤¤¥¡¦ d|}¦ h
rbp § tdfh r|¦ hm rk¢ rb 4 {d| pm HdYhmp}¦ in© ª¤ p lhB D i} d| pmdb}«hm npm§ t B hm£ B
b¤¬¡¦ db}«h rbpm q hm npm B rf¡ hn pv}¦ rbp pm t {gr|¢ k£ Q¤ n dYhm rb¡ r| pm t ht©! H} d|
pmdb}«h tp § tdfh r|} nd| A g E ei¢# db! d (} nr|{d|}¦ hD h rbpmd|| m} t 2 d rf¡ Q h EdYhmp gA d|
DD n db D rf¡® hm d hmd| 4¢ kt {t¢ kn}¦ bpmd|{®© q Qr2 2 {p rY bi hm E e E r|¡¤!£ Qz uA A
hm xe npm} tdf g¡¦ d|}¦ hr| pm § tdYhm rb® v E {g np¡ r| pm±d%{grb h rbpm¢ k tpD h pdy| np …
rbp § tdfh r|¦ hm rk¢ rb 4 {d| pm HdYhmp}¦ in© ª¤ p lhB D i} d| pmdb}«hm npm§ t B hm£ B
b¤¬¡¦ db}«h rbpm q hm npm B rf¡ hn pv}¦ rbp pm t {gr|¢ k£ Q¤ n dYhm rb¡ r| pm t ht©! H} d|
pmdb}«h tp § tdfh r|} nd| A g E ei¢# db! d (} nr|{d|}¦ hD h rbpmd|| m} t 2 d rf¡ Q h EdYhmp gA d|
DD n db D rf¡® hm d hmd| 4¢ kt {t¢ kn}¦ bpmd|{®© q Qr2 2 {p rY bi hm E e E r|¡¤!£ Qz uA A
hm xe npm} tdf g¡¦ d|}¦ hr| pm § tdYhm rb® v E {g np¡ r| pm±d%{grb h rbpm¢ k tpD h pdy| np …
Showing the best results for this search. See all results