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ABSTRACT

Academic networks are derived from scholarly data. They are heterogeneous in
the sense that different types of nodes are involved, such as papers and authors.
This dissertation studies such heterogeneous networks for measuring the academic
influence and learning vector representations of authors.

Academic influence has been traditionally measured by the citation count and
metrics derived from it. PageRank based algorithms have been used to give higher
weight to citations from more influential papers. A better metric is to add authors
into the citation network so that the importance of authors and papers are evaluated
recursively within the same framework. Based on such heterogeneous academic net-
works, we propose a new algorithm for ranking authors. Tested on two large networks,
we find that our method outperforms the other 10 methods in terms of the number of
award winners among top-ranked authors. We further improve the method by finding
and dealing with the long reference issue. Moreover, we find the mutual citation in
paper networks and the self citation issue in author networks. Our new method can
reduce the impact of the above three issues and identify more rising stars.

To learn efficient author representations from heterogeneous academic networks,
we propose a new embedding method called Stratified Embedding for Heterogeneous
Networks (SEHN) based on Skip-Gram Negative Sampling (SGNS). We conduct Ran-
dom Walks to generate the traces that represent the structure of the network, then
separate the traces into different layers so that each layer contains the nodes of one
type only. Such stratification improves embeddings that are derived from the mixed
traces by a large margin. SEHN improves the state-of-the-art Metapath2vec by up
to 24% at a certain point. The efficacy of stratification is also demonstrated on
two classic network embedding algorithms DeepWalk and Node2vec. The results are
validated in two heterogeneous networks. We also demonstrate that SEHN outper-
forms the embedding of homogeneous author networks that are induced from their

corresponding heterogeneous networks.
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CHAPTER 1

Introduction

1.1 Introduction

A network is a structure made up of a set of nodes and edges. It exists everywhere in
our daily life. For example, people follow others on Twitter, which forms an online
social network. In scholarly data, papers refer to each other, forming into a citation
network where each node represents a paper and each edge represents a citation link.
Similarly, we can have co-author networks that describe the co-authorship relations
between authors. Traditionally, these networks are studied in a homogeneous way —
there is only one type of node and one type of edge in the network. However, most
of the real-world networks are heterogeneous, which contains multiple types of nodes
and edges. Heterogeneous networks are more complex than homogeneous networks,
but they also contain more information. Therefore, more and more researchers are
switching their focus from homogeneous networks to heterogeneous networks.

The popularity of open access such as arXiv has attracted attention to both
academia and industry in the past few years. There are around 1.76 million scholarly
articles archived on arXiv at the time of writing this dissertation. The massive volume
of data has great potentials. Heterogeneous academic networks are heterogeneous net-
works derived from this kind of academic data. Figure 1.1 shows an example. Panel
(a) is a screenshot of an academic paper. There are multiple types of entities such

as paper title, authors, institutions, venue, and publication year as shown in Panel
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KDD 2017 Research Paper KDD'17, August 13-17, 2017, Halifax, NS, Canada

metapath2vec: Scalable Representation Learning for
Heterogeneous Networks

Yuxiao Dong” Nitesh V. Chawla Ananthram Swami
Microsoft Research University of Notre Dame Army Research Laboratoryl
Redmond, WA 98052 Notre Dame, IN 46556 Adelphi, MD 20783
yuxdong@microsoft.com nchawla@nd.edu ananthram.swami.civ@mail mil

(a) The information of a paper.

Entity Description -e-P2...
Paper dong_metapath2vec_2017 @ @
Year 2017

Venue KDD

Authorl Y Dong _
Author2 N Chawla

Author3 A Swami @{ l

Institutionl Microsoft Research @ @
Institution2 University of Notre Dame ...P3...

Institution3 | Army Research Laboratory

(b) List of entities

(¢) The induced network.

FIGURE 1.1: An example of an academic paper and the induced heterogeneous
network.

(b). These entities link together and form into a complex heterogeneous academic
network, which is illustrated in Panel (¢). Node p represents the paper, which refers
to other papers and also receives citation links. The links between three authors
ai,as,az and p represent authorship relations. From these three authorship relations,
we can also infer the co-authorship relation between ay, as, asz. Similarly, year y, venue
v and institution ¢ are present in this heterogeneous academic network.

This dissertation studies the heterogeneous academic networks from two aspects.
The first problem is to measure the academic influence. The widely used metrics eval-
uate the contribution of a scholar by the quality and/or quantity based on academic
outputs. The quality is measured by citation count and the quantity is measured
by the number of academic publications. And most importantly, these metrics are
obtained from homogeneous networks which only consider a certain type of entity. In
our work, we exam and design the heterogeneous academic network from raw data
and propose a PageRank-based method to measure the academic influence of scholars.

Our proposed method outperforms the other 10 methods in terms of the number of
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award winners among top-ranked authors. We further improve the method by finding
and dealing with the long reference issue. Moreover, we find the mutual citation in
the paper network and self citation issue in the author network. Our new method
can address the above three issues and can identify more rising stars. To the best of
our knowledge, this is the first work that discusses the three issues in the academic
ranking problem.

The second problem we study in this dissertation is to learn embeddings from het-
erogeneous academic networks. Embeddings are short dense vector representations of
nodes or edges in a network. With the learned embeddings, we can easily apply various
machine learning / deep learning algorithms for different tasks, such as classification,
link prediction, and recommendation. However, most existing works only focusing on
learning embeddings from homogeneous networks. In our work, we introduce a new
embedding method called Stratified Embedding for Heterogeneous Networks (SEHN)
based on Skip-Gram Negative Sampling (SGNS) [Mikolov et al., 2013]. To learn the
heterogeneous network embeddings, most works use MetaPath [Sun and Han, 2012,
which restricts Random Walk patterns, to produce traces of mixed node types. We
argue that different types of nodes should be projected into different spaces. In this
scenario, we separate the traces into different layers, where each layer contains only
one type of node. SEHN improves the state-of-the-art Metapath2vec [Dong et al.,
2017] by up to 24% at a certain point. The efficacy of stratification is also demon-
strated on two classic network embedding algorithms DeepWalk [Perozzi et al., 2014]
and Node2vec [Grover and Leskovec, 2016]. We also demonstrated that SEHN out-
performs the embedding of homogeneous author networks that are induced from their

corresponding heterogeneous networks.

1.2 Challenges

Similar to most of the real-world networks, academic networks are heterogeneous.
There are various entities in the academic network, such as papers, authors, venues,

institutions, etc. The heterogeneity of the network makes it difficult to study and
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understand. In our work, we focus on one of the most important entities to study — au-
thors. More specifically, this dissertation contains two major components: measuring
the academic influence of authors and representing authors using network embedding
methods.

Measuring the academic influence of authors is a challenging task. Traditional
metrics such as citation count[Gross and Gross, 1927], H-index[Hirsch, 2005] and G-
index[Egghe, 2006 treat every paper and citation equally. However, citations, papers,
and authors are not independent and acting alone. Instead, they form a complex het-
erogeneous network in which papers and authors interact with each other. The success
of PageRank [Brin and Page, 1998] has inspired lots of works to address the ranking
problem on academic networks since 2007 [Chen et al., 2007]. Most of these works
only apply PageRank on homogeneous author networks [West et al., 2013, Radicchi
et al., 2009] or derive the author influence from homogeneous paper citation net-
works [Fragkiadaki and Evangelidis, 2016]. Converting heterogeneous networks into
homogeneous networks could cause information loss, and increase the computation
cost unnecessarily. Yet, how to use the heterogeneous network to efficiently rank au-
thors is still an open problem. The other challenge is lack of datasets. Most existing
datasets are relevantly small. For example, there are only 108 authors in [Ding et al.,
2009], 1,567 authors in [Liu et al., 2005], and 7,488 authors in [Zhou et al., 2007].
Moreover, evaluating author ranking is also challenging due to the ground truth is
not available. Developing a standard benchmark for author ranking is a curial and
difficult task. While studying the above problems, we encounter three special cases
when ranking authors using academic networks. These special cases will accidentally
boost the rank of some authors. These problems need to be addressed for a fair result.
In this dissertation, we address these problems and challenges using a heterogeneous
author paper network. The details will be discussed in Chapter 3 and 4.

Learning the representation of academic networks has been studied for many years.
When studying scholarly data, most works focus on papers instead of authors. The
first challenge is that there are limited datasets, especially labels. The scholar data

evolves rapidly so that the research interest for an author may shift from time to
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time. When learning the representation from scholarly data, most works mainly learn
the node representations from homogeneous networks induced from heterogeneous
networks. However, it is challenging to learn the structure of heterogeneous networks.
Most existing works ignore the heterogeneity property and use Random Walk based
method to capture the structure of heterogeneous networks and the embeddings of
different entities lay in the same vector space. In this dissertation, we try to tackle
these challenges and propose a new method to learn author representations from

heterogeneous academic networks.

1.3 Contributions

We summarize our contributions from the following aspects:

e APR: We propose the APR (Author PageRank) method to efficiently identify
influential authors using our proposed heterogeneous network, which contains
various relations, including citation relation and authorship relation. Our net-
work contains more information than the widely used homogeneous author cita-
tion network and is in a smaller size in terms of the edge count. Compare with
existing works, our APR method outperforms the other 10 methods in terms
of the number of award winners identified in top-ranked authors. For example,

we can identify 8 Turing Award winners among top 20 ranked authors.

e APN: When analyzing the correlation between APR and other methods, we
discover three social cases: mutual citation issue in the paper network, self ci-
tation issue in the author network, and long reference issue. In our work, we
propose a new weighted heterogeneous author paper network (APN) to im-
prove our APR method. By specifying the authorship directions and properly
controlling the transfer weight, our APN network can avoid the long reference,
mutual citation and self citation problems. To the best of our knowledge, we
are the first to identify and deal with the three issues. Our method can identify
5 Turing Award winners in top 10 and 16 ACM Fellows in top 20 on the CS
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dataset. We also comprehensively analyze the difference of different ranking
methods by calculating their Spearman’s Correlation and applying the Hierar-

chical Agglomerative Clustering (HAC).

Author Embeddings on Heterogeneous networks: This dissertation pro-
poses Stratified Embedding for Heterogeneous Networks (SEHN) to learn effi-
cient author representations from heterogeneous networks. It trains embeddings
from a single type of traces that are obtained from MetaPath. We also show that
stratification not only works for Metapath2vec, but also is a generic strategy
that can be used to improve other embedding algorithms. Experiments show
that our stratified versions outperform the unstratified ones significantly. On
the multi-class author classification task, SEHN improves the state-of-the-art
method by 6.32 % improvement on DBLP dataset and 8.03 % on CS dataset.
We further apply DeepWalk on homogeneous networks and apply our SEHN
on heterogeneous networks to make some comparisons. SEHN also outperforms
Random Walk on homogeneous networks with the improvement of 37.7 % on

DBLP dataset.

Datasets: We collect and publish two large real-world datasets for Computer
Science and Health domains. CS dataset contains 13 million edges and 2 million
nodes. The Health dataset has 28 million nodes and 590 million edges. To the
best of our knowledge, our Health dataset is the largest dataset in a specific
domain. To better evaluate the ranking methods, we propose to use the number
of famous researchers among top-ranked authors to evaluate the performance
of ranking methods. We also collect 9 labels for 784 ACM Fellows on CS
dataset, which can be used for the author classification. These datasets are
publicly available on our webpage http://zhaolbm.myweb.cs.uwindsor.ca/

datasets/.
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1.4 The Structure of the Dissertation

The rest part of this dissertation is structured as follows:

e In Chapter 2, we give a comprehensive overview of existing works that are
related to our research. The author ranking section includes some widely used
methods such as H-index and G-index. It also covers the PageRank algorithm,
PageRank-based ranking methods, and the analysis between different ranking
methods. In the network embedding section, we first explain a traditional vector
representation method and reveal the limitation. Then the neural network based

network embedding methods are discussed.

e In Chapter 3, we measure the academic influence using our proposed APR
method. We propose to use the number of famous researchers among top-
ranked authors to evaluate the ranking performance. Experiments that are
conducted on two large datasets show that our method is superior to other
widely used ranking methods. We also analyze the difference of our method
compared with others. Besides, we introduce two datasets that will be used in
this dissertation. We start with the raw data, then present the induced data
for both author ranking and author embeddings. We also make some analysis

to give readers a deep understanding of these two datasets.

e In Chapter 4, we first identify several issues when ranking the author influence
in existing works, including long reference issue in APR framework, mutual
citation on the paper network and self citation on the author network. We
propose a new weighted heterogeneous author paper network, which can address
the above issues. Our method is different from others in terms of Spearman’s

Correlation and can achieve better performance.

e In Chapter 5, we propose a new method to learn the author representations from
heterogeneous networks. Our stratified methods outperform the unstratified
versions significantly. We also experiment that our SEHN method generates

better embeddings than the induced homogeneous author network.
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e The conclusion of this dissertation along with some potential future directions

are introduced in Chapter 6.



CHAPTER 2

Background and Related Works

In this chapter, we introduce some background knowledge and works that are related
to this dissertation. The focus for this dissertation divides into two parts: academic
ranking on heterogeneous networks and learning vector representations of the het-
erogeneous networks. We start with some traditional ranking metrics for measuring
academic influence. These metrics are widely used in both academia and indus-
try. PageRank is also a popular algorithm for measuring the importance of nodes
in networks. Thus, it is natural to see people applying PageRank-based algorithms
on academic networks, which will also be discussed in detail. We also review the
effectiveness of these methods in ranking academic data.

Representing an academic network is one of the crucial tasks when applying aca-
demic networks to solve real-world problems. Section 2.2 introduces the background
about the network embedding methods. It starts from the adjacency matrix and
ends with neural network-based approaches, such as DeepWalk, node2vec, and Meta-

path2vec. Some applications are also discussed.

2.1 Ranking on Academic Networks

Measuring academic influence for papers, journals, authors et al. has been studied
for decades. The most straightforward method is citation count [Gross and Gross,

1927], which is still widely used recently. An entity with more citations would be
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TABLE 2.1: An example of H-index. Two authors a; and as both have 6 publications
and 10 citations.

aq as
# PADEr |y Ciiation b | # Citation b
1 10 1 4 1
p 0 p 3 p
3 0 3 3 3
4 0 4 0 4
5 0 5 0 5
6 0 6 0 6

ranked higher. H-index [Hirsch, 2005] and G-index [Egghe, 2006] are introduced
to treat papers differently according to citation count. Not every citation is equal.
Thus PageRank [Brin and Page, 1998] algorithm is applied to address the academic
ranking problem. In this section, we will start by introducing H-index and G-index,
then explain the PageRank algorithm. We also list some related works that apply
PageRank to the author ranking problem.

2.1.1 Count-based Ranking Methods

The influence of an author is traditionally measured by his/her productivity, thus
the simplest method is to use the number of publications to rank authors. However,
the quality of papers should also be considered. Researchers usually identify the
importance of a paper by counting its citations. Similar to authors, we can use the
total citation count of an author’s papers as his/her influence. Ranking authors by
papers’ citation count has been used since 1927 [Gross and Gross, 1927]. However,
simply using citation count may be aggressive. For example, author a; has 2 papers
and each paper has 5 citations. Author a, has only 1 paper with 10 citations. It
is hard to say which author is more influential. To solve this issue, Hirsch [2005]
combines the paper number and citation count together and disregards papers that
are less cited. This method is known as H-index.

H-index is easy to calculate and widely used until now. An author has an H-index

of h if he/she has published at least h papers and each paper has at least h citations.

10
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Algorithm 1 H-index

1: function H-INDEX(a list of n papers and the corresponding citation counts.)
2: citation[0...n — 1] <= Sort papers by citation count in descending order.

3 Initialize h < 0

4 fori=0ton—1do

5 if i + 1 < citation[i] then
6: h=h+1

T end if
8

9

10:

end for
return h
end function

Table 2.1 gives an example. a; and a, both have 6 papers and 10 citations in total.
ay’s 10 citations are all from the first paper, while ay has three less cited papers. By
applying Algorithm 1 on a; and as, the H-index of a; is 1 and ay is 3. Although these
two authors have the same number of publications and citations, H-index treats as
more influential based on the citation generation. Thus the limitation of the H-index
is that it is not sensitive to one or several extremely highly cited papers. Another
issue is that if one paper is selected in the top h highly cited group, the citation count
of this paper will not be considered at all, even if the number doubles or triples.
Besides the original H-index, it has inspired lots of variants [Jin, 2006, Jin et al.,
2007, Burrell, 2007, Sidiropoulos et al., 2007, Tol, 2009] and extensions [Egghe and
Rousseau, 2008, Schreiber, 2008, Batista et al., 20006]

G-index [Egghe, 2006], a variant of H-index, overcomes the above limitations.
Similar to H-index, G-index also ignores papers with no citations. Egghe [2006]
defines G-index as “ If a set of papers are ranked in decreasing order of the number of
citations that they received, the G-index is the (unique) largest number such that the
top g articles received (together) at least g* citations”. He also proves that for any
set of papers, we have G-index > H-index. Table 2.2 shows an example of G-index.
In this example, an author has published 6 papers, with three of them have citations.
We compare g*> with the accumulated citation count until the accumulated citation
count is less than ¢2. By using Algorithm 2, we can calculate the G-index value of

an author.

11
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TABLE 2.2: An example of G-index. This author has published 6 papers. By
comparing the accumulated citation count and g2, this author has G-index of 5.

# Paper (g) | # Citation Y # Citation g¢?
1 20 20 1
2 10 30 4
3 5 35 9
4 0 35 16
) 0 35 25
6 0 35 36

Algorithm 2 G-index

1: function G-INDEX(a list of n papers and the corresponding citation counts.)

2: citation|0...n — 1] < Sort papers by citation count in descending order.
3: Initialize g < 0

4: sum =0

St fort=0ton—1do

6: sum = sum + citation][i]

7 if (i +1)? < sum then

8: g=g+1

9: end if

10: end for

11: return g

12: end function

2.1.2 PageRank Algorithm

PageRank algorithm is proposed by Brin and Page [1998] to calculate the importance
of webpages. The basic idea of PageRank is to simulate a surfer, who first randomly
opens a webpage, then jumps to another page that the current page directs to. PageR-
ank will give the probability of each webpage during surfing. The probability is the
frequency that each webpage has been visited.

Figure 2.1 Panel (a) gives an example. There are 3 webpages and 5 links. A link
from a to b means the surfer can visit b from a. The simplest way to calculate the
PageRank values of these three webpages is using the flow model. We first define the

“rank” of a webpage p as:

= ;— (2.1)

where d; is the out-degree of page i, © — p means there is a link from ¢ to p. The

12
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(a) The relation between three webpages. (b) The flow transaction of three webpages.

FIGURE 2.1: The flow model of PageRank algorithm.

rank of a webpage is determined by the rank of its in-neighbours. The flow equations

between the three webpages are:

To =Ta/2+14/2
Tb:Ta/2+C (22)

Te =1p/2

a is pointing to b and itself, so a and b both achieve r,/2 flow. There are three
equations and three unknowns, but no constrains. Thus there is no unique solution.
To force the uniqueness, we add an additional constraint that r, + r, +r. = 1. By
applying the Gaussian elimination method [Atkinson, 2008] on the equations, we can
achieve the solution: r, = %, ry = %, e = é

By solving the flow equations by Gaussian elimination method, we can calcu-
late the PageRank importance of webpages. This method is straightforward, but
it only works for small examples. In real-world datasets, there may be millions of
nodes(webpages), thus we need a better method for large graphs.

An efficient method to deal with large graphs is using a matrix formulation. A
matrix M is used to represent the graph. Let webpage ¢ have d; outlinks, if there is
a link ¢ — j, then M;; = 1/d;. If there is no link from ¢ to j, M;; = 0. The Matrix

M for the above example is:

13
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1/2 1/2 0
M=11/2 0 1
0 1/2 0

The first row and first column represent page a, second row and second column
is page b and third is ¢. In the matrix, each column sums up to 1, thus M is a
column stochastic matrix. Let r be the rank vector, where r; is the importance score
of webpage ¢ and the constraint will be ) . r; = 1. The flow equations can be written

as:

r=DM-r. (2.3)
Equation 2.2 can be written as:
Tq 1/2 1/2 0 Ta
| =1{1/2 0 1| |n (2.4)
Te 0 1/2 0 Te

Since M is a column stochastic matrix, the rank vector r will be the first or prin-
cipal eigenvector of the matrix M with the corresponding eigenvalue 1. To calculate
the eigenvector, we can use an efficient way, called the power iteration method. Algo-
rithm 3 shows how to solve the matrix formulation using the power iteration method.
In line 3, we first initialize the values in the rank vector as 1/N, which means each
webpage has the same chance to be visited initially. Then the method iterates the
matrix formulation » = M - r, until the L1 norm of two iterations is smaller than a

small number e. The L1 norm is defined as

x| = Z |24, (2.5)

1<i<N

t

where z = r#*1) — +® and N is the vector length. € is usually set to be 107 to

14
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Algorithm 3 Power iteration

1: function POWER ITERATION(A web graph with N webpages.)
2: Generate the column stochastic matrix M of the graph.
Initialize: () =[1/N,.......,1/N]T
Iterate: r(H) = M- ¢(®)
Stop when [r(+1) — ()], <€
end function

1073 [Kamvar et al., 2004]. The power iteration method is efficient. It is reported by
Google’s founders in [Page et al., 1999] that the method converges in 52 iterations
on a network with 322 million edges and 45 iterations when the edge count is half
the above size. Moreover, they conclude that the method can be scaled to extremely
large networks.

For the above example, ° = [1/3,1/3,1/3] initially, then we can get the rank

vector by solving the Equation 2.3 using Algorithm 3. The procedure is:

ro 1/3| |1/3| |5/12| | 3/8 2/5
ro| =173 . |1/2|. | 1/3 |, |11/24] .cies [2/5 (2.6)
re 1/3| |1/6] | 1/4 1/6 1/5

Per the above discussion, PageRank algorithm is straightforward and efficient to
calculate the webpage importance, while it will not converge in some special circum-
stances. The first situation is spider traps, which means all out-links are within a
group. The random walk will get “stuck” in the trap and eventually traps will absorb
all importance. To understand this situation, we can make a minor change in the
above example and make it as Figure 2.2. In this figure, node ¢ is a spider trap,
where there are no links from the group to outside. Similar to Equation 2.6, the pro-
cedure of power iteration method on the new graph is shown in Equation 2.7. All the
PageRank score gets “trapped” in node c. ¢ absorbs all importance with PageRank

score of 1, while a and b have no importance at all.

ro 1/3| |2/6| |3/12] |5/24 0
Ty - 1/3 ) ]./6 ) 2/12 ) 3/24 IRRREEE ) 0 (27)
re 1/3| [3/6] |7/12] |16/24 1

15
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FIGURE 2.2: The network contains a spider trap.

To address the spider traps issue, Google proposed a random jump. At each step,
the random surfer has two options. The first option is to randomly follow a link
with the probability of . The second option is jumping to a random page with a
probability of 1 — a. The probability « is called the damping factor. The common
value of « is around 0.85 [Brin and Page, 1998]. By doing so, the surfer will jump
out of the spider trap within a few steps, which is expected to be ﬁ steps. A new
column stochastic matrix, which is usually called the Google matrix, can be generated
to consider the random jump, as shown in Equation 2.8. Thus the PageRank equation
can be rewritten as Equation 2.9, where M is the adjacency matrix, « is the damping
factor, N is the number of nodes in the graph, and e is the column matrix of all ones
with the same size as M. For the spider trap example, let a set to 0.8, the formula
will be Equation 2.10. Equation 2.11 shows each step of the iteration, and each node

will get a proper score.

1
M':oz-M—i-(l—oz)NeeT (2.8)

(2.9)
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FIGURE 2.3: The network contains a dead end node.

T 1/2 1/2 0 1/3 1/3 1/3 Tq
r| =(08[1/2 0 0] +02(1/3 1/3 1/3|)- |n
Te 0 1/2 1 1/3 1/3 1/3 Te
Tq 1/3| 0.33| [0.24| [0.26 7/33
m| = [1/3],0.20|, [0.20] , |0.18] ..., | 5/33
Te 1/3| 046 [0.52] [0.56 21/33

be 0 after several steps, as shown in Equation 2.13.

1/2 1/2 0
1/2 0 0
0 1/2 0

17

(2.10)

(2.11)

By introducing the damping factor, we can deal with most cases at this stage.
While there is another special case, called dead end. Dead end nodes have no out-
links. Node ¢ in Figure 2.2 is a dead end. In this case, the PageRank will “leak” out,
since the adjacency matrix is not stochastic, as shown in Matrix 2.12. Even with the

damping factor to control the random walk, the PageRank value for each node will

(2.12)
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7. | 1/2 1/2 0 1/3 1/3 1/3|  |ra
| =(08]1/2 0 0 +02(1/3 1/3 1/3])- |n
| 7] 0 1/2 0 1/3 1/3 1/3 re
(2.13)
o Ts] [2se] [s2] [5/24 0
ro| = [1/3], [1/6], [2/12], [3/24] ;.- .o
Te 131 [1/6| [1/12] [2/24 0

To overcome the dead end issue, we can follow the random jump links with prob-
ability 1.0 when the walker stands on a dead end node. It is similar to add N virtual
links from a dead end node to each node in the network, where NN is the node number.
Accordingly, the matrix can be adjusted to be a column stochastic matrix by making
the values in the last column to 1/3, as shown in Matrix 2.14. Now we have a col-
umn stochastic matrix, which can be used in Equation 2.9 to calculate the PageRank

values.

1/2 1/2 1/3
/2 0 1/3 (2.14)
0 1/2 1/3

The dimension of the adjacency matrix is the total number of nodes in a network.
When the network is getting large, the matrix will be in large dimensionality. Ap-
plying Power Iteration Method on a huge matrix is time and resource consuming.
Additional to calculate PageRank value algebraically using the matrix formulation,
we can alternatively use an iterative method, which is more efficient and fast for
large graphs. Equation 2.15 shows the new PageRank formula, which is equivalent to

Equation 2.9.

- "
r(pi;t+1) = “ta Z ripsit) (2.15)
pjen(p
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where « is the damping factor, r(p;; t) is the PageRank value of node p; at iteration
step ¢, N is the total number of nodes in a network, d(p;) is the out-degree of node
pi, n(p;) is the set of out neighbours of node p;. At t = 0, an initial PageRank vector
is assumed, usually r(p;; 0) =

1
-

2.1.3 PageRank-based Ranking Methods

PageRank algorithm is firstly applied on citation networks to identify the most influ-
ential papers in [Chen et al., 2007] and they also find that a paper’s citation number
and its PageRank value are closely correlated. Amjad et al. [2015b] proposes a new in-
formative metric called Topic-based Heterogeneous Rank which measures the impact
of scholarly data with respect to a given topic in a heterogeneous scholarly network
containing authors, papers, and journals. One of the main limitations of the proposed
method is computational complexity and high memory usage. Su et al. [2011] study
how missing data in the PageRank algorithm influences the result of papers ranking
and proposes PrestigeRank algorithm on that basis, but there is insufficient evidence
to make a definite conclusion that PrestigeRank is better than PageRank or cita-
tion counts. Zhou et al. [2016] introduce a preferential mechanism to the PageRank
algorithm when aggregating resource from different nodes to enhance the effect of
similar nodes. Though the method in this paper can more accurately predict papers
future degree than PageRank, the prediction for small or zero degree nodes is still not
satisfactory. Yan [2014] proposes topic-based PageRank, which is applied to a data
set on library and information science publications. Another two methods CiteRank
[Walker et al., 2007] and FutureRank [Sayyadi and Getoor, 2009] are introduced to
rank papers and predict the future citation number. PageRank is also used to rank
journals [Bollen et al., 2006] [Su et al., 2011] [Dellavalle et al., 2007] [Gonzalez-Pereira
et al., 2010], and even scientific contribution of countries [Ma et al., 2008].

There are several different kinds of academic networks for author ranking [Am-
jad et al., 2018]. PageRank is first applied to authors ranking in [Liu et al., 2005].
They propose AuthorRank, a weighted PageRank algorithm, in a co-authorship net-

work. If any two authors co-authored a paper, an undirected edge with unit weight
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is created between these two authors. Ding et al. [2009] use an author co-citation
graph, which is same as the co-authorship network in [Liu et al., 2005]. They focus
on evaluating the impact of various damping factors. Their methods differ from our
work is that they use a homogeneous network that consists of only papers or authors.
Besides the co-authorship network, they claim that the importance of authors can be
derived from papers. Sidiropoulos and Manolopoulos [2006] propose a new version of
PageRank. They first rank papers on the citation network consisting of only papers
and choose the same number of papers for each author. Then authors are ranked
by computing the average score of all their papers. A similar work is introduced
in [Fragkiadaki and Evangelidis, 2016]. Another interesting work is called PR-index
[Gao et al., 2016], which combines H-index and PageRank together to obtain objective
evaluation criteria. They first rank papers by PageRank, then replace the H-index’s
citation component with the PageRank score. Therefore, PR-index considers both
the productivity and popularity of an author. The importance of an author is de-
termined only by the influence of his/her papers, without considering the relation of
coauthors and the impact from authors to papers. The author citation network is
also widely used. Liang and Jiang [2016] generate an author citation network based
on paper citations. A paper citation results in several author citations, each of which
links a citing author to a cited author in the author citation network. Yan and Ding
[2011] also use an author citation network and a weighted PageRank algorithm to
get the importance of authors. A similar paper is proposed in [Radicchi et al., 2009].
They create a weighted author citation network from a paper citation network. A
weighted PageRank algorithm is then used to calculate the score of each author in
the network. Another method is proposed in [West et al., 2013]. They propose the
Eigenfactor score on the author network matrix. It is based on Eigenvector and gives
more weight to the highly cited authors. Author network is easy to obtain and is ef-
fective when the network size is small, but not scalable for large data. The complexity
of the PageRank algorithm depends on the number of edges in the network. The au-
thor citation network is a dense network compared with paper-author heterogeneous

network, and PageRank is not expected to be executed on such a network when the
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number of links explodes. Paper-paper citation link is crucial for author ranking since
the influence of an author should be evaluated by his/her papers. A heterogeneous
network, consisting of papers and authors, is first used by Zhou et al. [2007]. There
are three networks in the framework, citation network, author social network, and
paper-author network. They used two separate networks(i.e. citation network and
author social network), and random walks are performed independently on these two
networks, then the ranking is integrated afterward. In contrast, we delete the directed
links between authors and use such a heterogeneous network to rank authors for the
first time. Sun et al. [2009a] combine clustering and ranking together. They rank
authors within each conference cluster. The reputation of conferences can affect an
author’s influence. Basically, they use paper-author and conference-author links, but
not paper-paper citation links.

Besides using the PageRank algorithm on academic networks, centrality is also
applied to obtain the author importance. Bibi et al. [2018] use various centrality
measures to represent the importance of authors. They also find the centrality mea-
sures are significantly correlated with the citation count and h-index. Citation count
and H-index are still widely used in recent years. Steinbriichel [2019] divides authors
into two groups: Pls (principal investigators) and non-PIs. The author then intro-
duces a new index h, based on h-index, where PIs will obtain more weight than
non-PIs. Amjad and Daud [2017] first use Latent Dirichlet Allocation (LDA) to split
authors into different domains, then allocate paper citations to coauthors according
to their topic probability. Daud et al. [2017] try to find new influential researchers
by considering the co-authors’ citations, the order of appearance, and the citation
number of co-author venues. Similarly, Usmani and Daud [2017] obtain the rank-
ing scores for papers and venues, then generate authors’ scores accordingly. Another
work [Amjad et al., 2015a] suggests authors should receive citations according to their

productivity and author position.
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p1
b2 b3
P4 Ps

FIGURE 2.4: An example of an academic network.

2.1.4 Comparison between Ranking Methods

In this section, we will compare different ranking methods. Figure 2.4 shows an
example, which contains 5 papers and 6 authors. The blue directed links are citation
links. The link from p; to py represents p; cites po. Each paper has several authors,
for example, p; has 2 authors a; and ay. We will introduce how to calculate different
ranking metrics from this example, consisting 5 traditional count-based methods and

4 PageRank-based methods. The five count-based methods are:

e P. Paper Count. Authors that published more papers will get high rank. This

is the most straightforward method.

e (' [Gross and Gross, 1927]. Citation Count. The citation count of an author
is the summation number of all his/her papers. Authors that received more

citations will be ranked higher.

Cy [Lindsey, 1982]. Weighted metrics of C'. It splits credits among co-authors.

If a paper receives 4 citations and has 2 authors, each author will get 2 citations.

H [Hirsch, 2005]. H-index.

G [Egghe, 2006]. G-index.
4 PageRank-based methods are:
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(a) Paper network. (b) Author network. (¢) Co-Ranking network.

FIGURE 2.5: Three different networks induced from Figure 2.4. Panel(a) is the paper
citation network. Panel(b) is the author citation network. Panel(c) is Co-Ranking
network.

TABLE 2.3: PageRank values for 5 papers. Damping factor is setting to 0.85.

Paper ‘ PageRank value

D1 0.094
D4 0.218
s 0.414

e SPR[Fragkiadaki and Evangelidis, 2016]. The summation of papers’ PageRank,

which is calculated from paper citation network.
e SPR,[Lindsey, 1982]. The weighted version of SPR, which is similar to C,,.

e Co-Ranking [Zhou et al., 2007]. PageRank values of authors from a heteroge-

neous network.

e AN [Radicchi et al., 2009]. PageRank values of authors from an author citation

network.

From the original relation in Figure 2.4, we can generate paper citation network,
author network and Co-Ranking network, as shown in Figure 2.5. To get the ranking
values of authors for SPR and SPR,,, we need to calculate the PageRank values for

papers first. By setting the default damping factor a = 0.85, the PageRank values for
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TABLE 2.4: The ranking results of 9 different methods.
Author ‘ rp Cc ¢, H G SPR SPR, Co-Ranking AN

a; 1 0 0 0 0 0.094 0.047 0.118 0.012
as 1 0 0 0 0 0.094 0.047 0.118 0.012
as 1 1 11 1 0137 0.137 0.042 0.024
ay 1 1 05 1 1 0137 0.067 0.194 0.018
as 2 2 11 1 035 0.178 0.238 0.050
ag 2 3 15 1 1 0632 0.523 0.291 0.883

TABLE 2.5: The rank for 6 authors of 9 different methods.

Author | r(P) 1(C) r(Cy) r(H) r(G) r(SPR) r(SPR,) r(Co-Ranking) r(AN)
ay 3 5 5 ) 5 ) ) 4 )
as 3 5 ) ) ) ) ) 4 )
as 3 3 2 1 1 3 3 6 3
a4 3 3 4 1 1 3 4 3 4
as 1 2 2 1 1 2 2 2 2
ag 1 1 1 1 1 1 1 1 1

5 papers are list in Table 2.3. Among the 5 papers, ps has the highest PageRank value,
while p; is the least important paper. Since PageRank value is positively related to
the citation count [Chen et al., 2007] on citation network, it makes sense that ps is
ranked highest. Table 2.4 lists the values ranked by 9 methods. P and C' are the
most straightforward. C, is calculated from C', while they are quite different in some
cases. as has larger C' than az, but they have the same number of C,. a5 shares
credit with a4 and ag while a3 works independently and obtains all credit from ps.
It is similar to find that a3z and a4 have the same citation number, while a3’s C,, is
larger than ay. H and G consider both P and C'. Although an author published a
large amount of papers, this author will get 0 H and G if he/she gets no citations,
such as a; and as.

H-index and G-index are similar but have some differences. Highly cited papers
are important. While in H-index, once a paper is ranked in the top h papers, its
citation count will not affect the H-index value. For example, a; in Table 2.1 has
H-index of 1. Even if a;’s first paper has only 1 citation, his/her H-index is still 1.

To overcome this shortcoming, G-index considers the accumulated citation count and
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the citation evolution of the most highly cited papers.

A paper’s PageRank value is highly related to its citation count. SPR directly
sums papers’ rank values to authors and C' is the summation of papers’ citation
count. Thus it is obvious to find the rank between C' and SPR are similar, same
for their weighted version. Co-Ranking is quite different from others. It considers
three relations, citation relation, authorship relation, and coauthor relation. Different
from the point that solo authors deserve more credit [Lindsey, 1982], authors benefit
from their coauthors in Co-Ranking. It is interesting to see that although a; and as
coauthored one paper with no citation, their Co-Ranking values are higher than as,
who also has one paper with one citation. AN is straightforward and only consider

the author citation relation.

2.2 Network Embeddings

Besides author ranking, we would like to further study the relationship between au-
thors. Using the author relations, we can find similar authors, predict potential
collaborators, find author research interest and author groups. To build such appli-
cations, the first task is to represent authors and quantify the relationship between
authors. In this section, we first introduce a traditional method, called adjacency
matrix, to represent authors using high dimensional sparse vectors. After that, we

will review some neural network-based embedding methods.

2.2.1 Traditional Method — Adjacency Matrix

In graph theory, an adjacency matrix is widely used to represent a graph [Biggs et al.,
1993]. It is a square matrix. The elements in the matrix indicate whether two nodes
are connected or not. Usually, the adjacency matrix is a (0,1) matrix, where 1 means
there is a direct link between two nodes. Figure 2.6 gives an example of a network.
In this network, there are three papers and four authors. Papers are connected by
citation links. Authors and papers are connected by authorship links. Three is no

directed link between authors. From this network, we can build a V' x V' adjacency
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FIGURE 2.6: An example network.

Pi1 | P2 | P3| a1 | Q2| G3 | Q4
pr| 0] 1,0 1T]0]0|0
ppl L O 1T |0 111
ps| O] 110101071
ap |1 10]0]0]0|0]O0
ar | 011 10]0]01]0
a3 | 011010 0]01]0
a; | 0111 10]01]01]0

TABLE 2.6: The adjacency matrix of the network in Figure 2.6.

matrix M, where V is the number of nodes in the network. In the matrix M;; = 1,
if there is a direct link between ¢ and j. The matrix is shown in Table 2.6. Since
there are 7 nodes in the network, M is a square matrix with a size of 7. Each line in
the matrix will be a vector representation of a node. For example, the vector of as is
v, = [0,1,1,0,0,0,0]. With the vector representation of each node, we can calculate
the similarity between two nodes using the Cosine Similarity. The Cosine Similarity

between two vectors A and B can be computed by Equation 2.16.

o(A B) = — 2zt AiBi (2.16)

VYL AN B

where n is the size of two vectors.

Here we want to know which author is the most similar one to a4. First, we obtain
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the vector representation for all authors:

Ve, = [1,0,0,0,0,0,0]
sy = [0,1,1,0,0,0,0]
Vag = [0,1,0,0,0,0,0]

va, = [0,1,1,0,0,0,0]

Then we calculate the Cosine similarity between a4 and other three authors. We
have p(ay,as) = 0.0, p(as, ay) = 1.0, p(as, ay) = 0.7. Thus, in this network, a, is most
similar to as.

The adjacency matrix is straightforward and easy to obtain. However, it has some
limitations. Firstly, the matrix will be in high dimensionality in real-world datasets.
For example, in our Health data, there are 27,798,928 nodes, including 12,357,864
authors and 15,441,064 papers. The matrix is 27, 798, 928 x 27,798, 928. The second
issue is that when the network is getting large, the matrix will be sparse. The average
degree in Health data is 21.34, which means there are only 21 1’s and 27,798,907 0’s
in the vector. Such sparse high dimensional vectors may not be a good choice to

represent a huge network.

2.2.2 Network Embedding Methods

The high dimensionality of the sparse vector representation for networks is not fea-
sible for downstream tasks. To overcome the limitations of the adjacency matrix,
researchers use different methods to reduce the dimension of the matrix so that
nodes can be represented as short dense vectors, which is also known as embed-
dings. The simplest method is to apply SVD (Singular value decomposition) [Golub
and Reinsch, 1971] on the adjacency matrix. It has been widely used to factorize the
high-dimensional sparse matrix into a low-dimensional dense matrix. However, SVD
has high time complexity. Computing the SVD of an m x n matrix has complexity
O(m x n x min(n,m)) [Vasudevan and Ramakrishna, 2019]. It will be computa-

tionally expensive for large networks. There are many other kinds of embedding
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methods. Zhang et al. [2020] classify network embedding approaches into four cate-
gories: Matrix Factorization based, Random Walk based, Random Edge based, and
Deep Learning based.

Matrix Factorization is the easiest method to obtain network embeddings [Goyal
and Ferrara, 2018]. There are two main steps in Matrix Factorization based network
embedding frameworks. The first step is to use a matrix to preserve the relationship
between nodes. The second step is to factorize the matrix and generate the node
embeddings. Besides SVD, there are also many similar works. Tang and Liu [2009]
use eigenvectors of the Graph Laplacian in social networks for node classification. On
the other hand, GraRep [Cao et al., 2015] applies SVD on the kth order proximity
matrix to obtain the network embeddings. HOPE [Ou et al., 2016] also uses the
same idea but focuses on directed graphs. The authors experiment with four different
similarity matrices including Katz Index, Rooted PageRank, Common Neighbors,
and Adamic-Adar. There are some other methods that fall into this category, such as
GraphWave [Donnat et al., 2018], M-NMF [Wang et al., 2017], TADW [Yang et al.,
2015], HSCA [Zhang et al., 2016b], MMDW [Tu et al., 2016], DMF [Zhang et al.,
2016a|, LANE [Huang et al., 2017].

Beside Matrix Factorization, Random Walk is another widely used approach in
this field. For example, DeepWalk [Perozzi et al., 2014] preserves the network struc-
ture using random walk with a fixed length. Then it uses three layer neural network
to learn the node representation. Node2vec [Grover and Leskovec, 2016], on the other
hand, uses two parameters to control the random walk with preference between Depth
First Search and Breadth First Search. Similar works includes Walklets[Perozzi et al.,
2017], APP [Zhou et al., 2017], DDRW [Li et al., 2016], GENE [Chen et al., 2016],
TriDNR [Pan et al., 2016], UPP-SNE [Zhang et al., 2017], struct2vec [Ribeiro et al.,
2017], SNS [Lyu et al., 2017], PPNE [Li et al., 2017b], SemiNE [Li et al., 2017a], etc..

Random edge is also studied in the past. LINE is the first algorithm that uses
random edge to learn network embeddings. It defines two proximities of the net-
work. More specifically, if two nodes are linked together by an edge, their first-order

proximity is one, zero otherwise. While the second-order proximity measures the sim-
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ilarity between two nodes in terms of common neighbors. Similar idea is also used in
TLINE [Zhang et al., 2016¢], LDE [Wang et al., 2016b], pPRBM [Wang et al., 2016¢],
and GraphGAN [Wang et al., 2018a].

There are also some Deep Learning based models in this area, e.g. DNGR [Cao
et al., 2016], SDNE [Wang et al., 2016a], and GCN [Kipf and Welling, 2016]. For
example, DNGR uses random walk to capture the network structure, from which it
calculates the PPMI (positive point-wise mutual information) matrix. Then it uses
stacked denoising autoencoders (SDAE) to generate the embeddings of the network.
On the other hand, Wang et al. [2016a] propose a semi-supervised deep learning
model, in which the unsupervised part preserves the second-order proximity and the

supervised part preserves the first-order proximity of the network.

2.2.3 DeepWalk

DeepWalk [Perozzi et al., 2014] is the first work that applies word2vec [Mikolov et al.,
2013] on networks to learn network embeddings. Given a network, DeepWalk uses
random walk to capture the structure of the network. The walking path is fixed to
length [. Figure 2.7 shows an example. Panel (a) is a network that represents the
relationship between authors and papers. It contains seven nodes, where four nodes
are authors and three nodes are papers. To obtain the walking path, DeepWalk
randomly choices a node to start, say a; in Panel (b). Then at each step, it randomly
teleports to one of the linked nodes, say p; in Panel (c), then py as illustrated in
Panel (d). This process ends when the length of the walking path reaches the pre-set
threshold [. In this example, [ is set to 6. Thus, the walker stops at Panel (g) and
produces the walking path of (ay, p1, pa, as, p3, as) as illustrated in Panel (h).
Network embeddings are inspired by the Word2vec model, proposed by Mikolov
et al. [2013]. Word2vec takes a large corpus as input and learns dense low dimensional
vectors for words. It has two models — Continues Bag-of-words (CBOW) and Skip-
Gram with Negative Sampling (SGNS). In this dissertation, we use SGNS to learn
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FIGURE 2.7: An example of Random walk in DeepWalk. It starts from a;. The
length of the walking path is 6.

the embeddings. The objective of SGNS is to maximize:

O = % Z Z [logo(uj - v;) + ZEnkanloga(—uk -] (2.17)

nieV nj€N+(ni) k=1

In this objective function, S is the total number of observed training pairs, V'
is the set of nodes, K is the number of negative samples for each training sample.
E,,~p, is to randomly select a negative sample n; according to noise distribution F,.
The noise distribution is derived from the node degree distribution, which is defined
in Equation 2.18. o(-) is the Sigmoid function, which is defined in Equation 2.19.

Ny (n;) is the sampling strategy used to generate the training pairs for n;.

P(ni)0.75

B S T

(2.18)
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1
1+ exp(—x)

o(x) (2.19)

To optimize the objective function, DeepWalk uses skip-gram to generate the
training pairs. For each node n; on a walking path, it first gets a random integer
number ¢ as the window size in the range of (0,C]. The training samples for this
node will be ¢ nodes left to it and ¢ nodes right to it. For each node in the window,
the training pair is (n;,n;). Equation 2.20 is used to update the output vector v,,.
Besides nodes in the window, it also generates K negative samples for node n; and
updates the output vector for each negative sample. Then the embedding vector for n;
is updated. After scanning all walking paths, we will get a trained model, consisting

of the embedding vectors of all nodes.

K
Up; = Un; + 77[<1 - a(unj ’ Um)) " Uny + ZEnk"’Pn - U(unk ’ Unz‘) ’ unk]
k=1 (2.20)

Up; < Up; + N[t — 0 (Un, - Vn,) - Un,)-

In the update equation, ¢ = 1 when n; is a output node, and ¢ = 0 when n; is a
negative sample. 7 is the learning rate, which decays linearly from 0.025 to 0.0001 in
most related works and implementations [Rehurek and Sojka, 2010, Mikolov et al.,

2013, Tang et al., 2015b, Goyal and Ferrara, 2018|.

2.2.4 Node2vec

Node2vec, proposed in [Grover and Leskovec, 2016], is an improvement of DeepWalk.
It uses two parameters to control the walker to perform a biased random walk instead
of uniform random walk in DeepWalk. Parameter p controls the BFS(Breadth First
Search) and parameters ¢ controls the DFS(Depth First Search). Figure 2.8 gives an
example. Suppose the walker just traveled from as to py and now needs to determine

its next location. The probability of next spot x is calculated by the distance between
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FIGURE 2.8: An example of biased Random Walk probabilities in Node2vec.

as and z. If the shortest path between ay and x is 0, which means x = ay, node2vec
assigns weight of 1/p to . If the shortest path between ay and z is 1, then z is one
of the direct neighbor of ay. Node2vec assigns weight of 1 to it. If the shortest path
between as and x is 2, then the weight is 1/¢. More formally, the weighted transport
probability a,,(t,z) is defined as following:

(

pg(t,x) =<1 ifdy, =1 (2.21)
L ifd, =2
\ q

Note that dy, € {0,1,2}. Intuitively, smaller p encourages the walker to loop back
to the previous node so that it can capture more local structures of the graph via

BFS, while smaller ¢ sends the walker far away from the previous node by performing

DFS.

2.2.5 Heterogeneous Network Embeddings

Skip-gram based methods can also be found in learning heterogeneous network em-
beddings. Heterogeneous networks have multiple types of nodes and edges thus con-
tain more information than homogenous networks. PTE [Tang et al., 2015a] is the
first algorithm that adopts skip-gram to learn embeddings from heterogeneous net-
works [Dong et al., 2020]. Tt first splits the heterogeneous networks into homoge-
nous/bipartite networks, then learns the embeddings from different parts separately

via LINE[Tang et al., 2015b], a skip-gram based network embedding algorithm. LINE
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uses random edge, thus it only captures the basic structure (first order and second
order proximity) of the network. On the other hand, random walk based algorithms,
such as DeepWalk and Node2vec, capture more information of the networks. How-
ever, applying random walk directly on heterogeneous networks can be problematic.
[Balmin et al., 2004] and [Nie et al., 2005] point out that heterogeneous relationships
could affect the random walk. Thus, there are many works that try to design different
random walks to learn embeddings from heterogeneous networks. Meta-path is one
of the most popular approaches. Metapath2vec [Dong et al., 2017] is the first method
in this category. To learn network embeddings from heterogeneous networks, Metap-
ath2vec applies the mate-path based random walk in heterogeneous networks, which
preserves the relation of multiple types of nodes. Formally, a meta-path scheme is
defined as a path that has a specific form of V; LR Vs REN LV LN Vie1... E) Vi,
where R = Ry, Ry, ..., R;_1 is the relation between two types of nodes [Sun and Han,
2012]. After generating the meta-paths, SGNS is used to learn node embeddings,
which is similar to DeepWalk. Inspired by Metapath2vec, HIN2vec [Fu et al., 2017]
uses a single-hidden-layer feedforward neural network model to capture the relation
semantics in heterogeneous networks. The model learns node embeddings and uses
embeddings to predict the meta path relation. HeteSpaceyWalk [He et al., 2019]
is another meta-path based method that uses personalized spacey random walk to
generate walking paths. Then the embeddings are learned by SGNS model from the
paths. On the other hand, TapEm [Park et al., 2019] represents the heterogeneous
networks by combining node embedding pairs with meta path embeddings. Meta-
path is also used in HERec [Shi et al., 2018a], a heterogeneous information network
embedding algorithm build for recommendation. Node embeddings are learned from
different meta-paths and then integrated into an extended matrix factorization model,
which is further optimized for recommendation.

There are some other approaches in this area. Wang et al. [2018b] propose Signed
Heterogeneous Information Network Embedding (SHINE) that uses deep autoencoder
to extract node representations from signed heterogeneous networks. Shi et al. [2018¢]

propose HEER to learn edge representation from heterogeneous networks. Li et al.
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[2019b] propose a semi-supervised algorithm called ActiveHNE. After dividing a het-
erogenous network into multiple homogeneous and bipartite graphs, it extends graph
convolution networks with labels to obtain node embeddings. Shi et al. [2018b] use
multiple aspects to represent nodes in the heterogeneous network. For each node
in the graph, its embedding is the concatenation of embeddings learned from differ-
ent aspects. Heterogeneous network embeddings have been widely applied to solve
real-world problems, such as recommendation Shi et al. [2018a], disease association

predictions Xiong et al. [2019], and question answering Li et al. [2019a].

2.3 Summary

In this chapter, we introduce some existing works that are related to this disserta-
tion. PageRank algorithm is the core method that will be used in the author rank-
ing part. Thus we first give some details about the PageRank. Then we list some
PageRank-based ranking methods and analyze the difference between count-based
and PageRank-based methods. Author embedding is another part of our research.
We use network embedding methods to learn the author representations. It is neces-
sary to give an overview of existing network embedding works. These works, especially
SGNS related methods, will be important as a guideline for us to build our own au-
thor embedding method. We hope this chapter could give readers a comprehensive

overview of academic ranking and network embedding areas.
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CHAPTER 3

Measuring Academic Influence

Using Heterogeneous Networks

3.1 Introduction

Academic influence is inherently difficult to measure. Citation count has been used
widely since 1927 [Gross and Gross, 1927|. H-index was introduced to simplify the
citation count by disregarding papers that are less cited [Hirsch, 2005]. However, H-
index treats papers equally once they pass a threshold value (the H-index), measures
unfavorably for authors who publish one or two very highly cited papers. G-index
ameliorates this problem by giving credits for citation counts of each paper that pass
a threshold value (the G-index) [Egghe, 2006].

Citations are not independent and acting alone. Instead, they form a complex
network in which papers and authors interact with each other. In such network, not
every citation is equal. A citation from an influential paper should have a higher
weight than others. Thus, Bonacich [1972] proposed that the principal Eigenvalues
of a citation matrix should be used for the importance of the papers. This idea also
inspired the well-known PageRank algorithm when applied on the Web network [Brin
and Page, 1998]. Intuitively, the influence of a node is proportional to the probability
of being visited in a random walk on the graph.

Despite the successful application of the PageRank algorithm in the Web domain,
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we have not seen a wide application of the algorithm in bibliometrics where the
very idea originated. This is due to two significant differences between the academic
network and the Web. Firstly, citation networks are mostly acyclic: papers only cite
papers in the past, not the ones to be published in the future. Although occasionally
there are loops due to the merge of different versions of a paper, most citations form
a chain chasing down to earlier papers. Secondly, academic networks are inherently
heterogeneous. In the Web network where PageRank is used, there is only one type
of node (web pages) and one type of links (hyperlinks). In the academic network,
there are at least two kinds of nodes, i.e., papers and authors.

To solve the first problem, Chen et al. [2007] proposed to employ a lower damper
factor (a) in the PageRank algorithm. It can be interpreted as a higher random jump
probability (1 — «) in the random walk interpretation. They propose to use a = 0.5
in contrast to normal practice which is a = 0.85. A high random jump probability
implies that every node/paper will receive credits from random sources. Hence, author
ranking will be highly correlated with paper counts as we will demonstrate in the
Experiment section.

To solve the second problem, there are at least two approaches. One approach is
to work on an author network that is derived from the heterogeneous network. Then,
the PageRank algorithm is applied to the author network. The difference is how the
author network is induced. West et al. [2013] derived an author-citation network that
is induced from the paper citation network. In the induced author network, author A
has a weighted link to author B if A cites a paper written by B. The weight reflects
the division of credits to multiple authors and multiple references.

The second approach develops algorithms directly on the heterogeneous academic
network. Zhou et al. [2007] proposed Co-Ranking method to run random walks on
three different networks - a social network between authors, a citation network con-
necting papers, and a bipartite network between authors and papers. Sun et al.
[2009a] use a heterogeneous network to represent the academic network, where au-
thors, papers, and conferences are nodes in the graph. First, they apply their

RankClus framework to generate clusters based on conferences, then use the Au-
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thority Ranking rule on each conference cluster.

Regardless of the approach, there is no objective evaluation to compare the re-
sulting ranking. Evaluation of the existing methods is mostly anecdotal, citing a few
well-known authors being ranked high by their methods. The data is also fragmented,
consisting of small networks in a narrow area.

Based on the literature review in Chapter 2 Section 2.1.3, several works derive au-
thor’s importance from papers, without considering the impact between them, such as
[Fragkiadaki and Evangelidis, 2016]. Most researchers use co-authorship network and
author-citation network to rank authors without paper information, such as [Radicchi
et al., 2009] and [West et al., 2013]. This kind of network is also dense and cannot
be large scaled. The heterogeneous network proposed by Zhou et al. [2007] may be
a progress, but they treat citation and author ranking separately. In our work, we
believe that integrating authors and papers in a coherent network is a better attempt.
The importance of an author is determined by not only his/her published papers, but
also coauthors. Besides, papers with influential authors will attract more attention.
This paper thus aims to measure the academic influence on such an academic net-
work, and propose the APR method and make some comparison with some existing
methods.

We propose a new ranking method, called APR (Author-PageRank), which applies
to heterogeneous academic networks. Papers can only cite older papers, therefore
random walks can only go from older papers to newer ones. APR handles the acyclic
network problem by adding links between papers and authors. When a new paper
and an old paper are written by one author, the random walks can start from the
old paper to its author, then go to the new paper; thereby random walks can visit
newer papers. Different from the large jump probability used in [Chen et al., 2007]
that transfers much of the weight to random papers, it transfers only 15% weight of
random jump. It tackles the second problem (the heterogeneous network problem)
by combining the author and paper networks together. Instead of random walking on
different networks and aggregating the results [Zhou et al., 2007], one random walk

is performed on the entire network. Additionally, rather than working on an induced
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author network, the entire network is maintained so that information is not lost or
skewed during the network transformation as in [West et al., 2013].

We test our method on two large data sets. One is a large academic network
in health domain that is collected by us. It contains 15 million papers, 12 million
authors, about 500 million citations. The other is the well-known AMiner (Arnet-
Miner Academic Social Network) network in computer science developed by Tang
et al. [2008]. We evaluate our methods based on the number of Nobel Prize winners
for the Health data, and the number of Turing Award winners for the CS data. Our
method outperforms all other methods consistently for both datasets. Among the
top 50 CS authors ranked by APR, there are 16 Turing Award Winners. Our ranking
result is also very different from that of existing methods in terms of Spearman rank
correlation. One interesting result is that APR is negatively correlated with paper

count, H-index, and G-index among top authors.

3.2 APR Method

3.2.1 Problem Definition

Measuring academic influence is to evaluate authors quantitatively. We use a hetero-
geneous network to represent the academic data. Definition 1 gives a formal definition
of the heterogeneous network. Our network consists of two types of nodes, i.e., au-
thors and papers. There are two types of links — the citation link between papers,
and authorship link between a paper and an author. The heterogeneous author-
paper network is defined in Definition 2. Moreover, we define the importance of an
author as the probability of the author being visited by a long random walk in the

heterogeneous network.

Definition 1. (Heterogeneous Network ) Given a network G = (V, E), G is called
a heterogeneous network if the types of V> 1 or the types of E > 1. Otherwise, it is

a homogeneous network.

Definition 2. (Heterogeneous Author-citation Network )
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FIGURE 3.1: An example of the heterogenous author-citation network structure.

Given a set of authors a = {ay,ay, ..., ay} and a set of papers p = {p1,D2, ..., Pn}-
Let Epp denote the citation links between papers; Epa denote the authorship relation
between a paper and an author. The heterogeneous author-citation network is a graph

G = (aUp, EPPUEPA)-

For a network containing m papers and n authors, the graph can be represented

by a binary (m + n) X (m + n) adjacency matrix A:

A= , (3.1)

where App is the citation matrix between papers, Ap4 and A,p represent paper-
author relations. Apy = A%Lp, since the relation between papers and authors are
symmetric. Note that in our graph, there are no direct relations between authors.

Given a heterogeneous author-citation network G = (aUp, Epp U Ep4), our goal
is to obtain a vector r for the network G, where 7 can reflect the importance/influence
of authors a (and papers p).

Figure. 3.1 gives an example of a heterogeneous author-citation network. In
this network, isolated components (ps and p7) would receive very low weight if they
were evaluated in citation network only. Now it is connected with the main citation
network via author a4. Besides, a random walk can also go up stream from p4 to p;
via author a;.

Our network differs other paper/author networks such as the networks proposed
in [Zhou et al., 2007],[Sun et al., 2009a], and [West et al., 2013]. In our heteroge-

neous graph, there are no edges between authors. Author relations can be induced
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from several sources, such as co-authoring a paper [Zhou et al., 2007], citation of one
author to another [West et al., 2013], or even publishing in the same conference [Sun
et al., 2009a]. Such induced relations lost information during the graph transforma-
tion. Moreover, the induced graph normally expands in size, sometimes in orders of
magnitude. For instance, if an author writes m papers, each cites n papers on average,
and each paper has k coauthors, then there will be m x n x k induced author-citation
edges. Direct links between authors may also make author social network dominating
the ranking system. Coauthors of a paper form a clique. Random walk traffic will
be directed to such cliques, especially when the size of cliques is large. The ranking
should be decided mainly by papers, not author relations. Therefore, we excluded
the edges between coauthors in the graph. Although direct edges are not presented,
coauthor relation still plays a major role in the ranking system: the weight of an

author is passed indirectly to his co-author via their papers.

3.2.2 APR

The adjacency matrix represented by A can be turned into a column stochastic ma-
trix B, where each column sums up to one. Now the network can be viewed as a
Markov chain, and the influence of authors are defined as the stationary distribution
of the Markov process. In other words, an author’s importance is interpreted as the
probability of a random surfer visiting the node. Because not every Markov chain
has a stationary distribution, it is necessary to modify the network so that stationary
distribution is guaranteed. We follow the normal practice, which is to add virtual
links to every pair of nodes with an equal but small transition probability, i.e., a
new stochastic matrix M is introduced by adding every cell with a small transition
probability:

1
M =aB + (1 —a)=ce’, (3.2)
n

where e is a vector of 1’s, « is the damping factor that is normally chosen to be a value

around 0.85 [Brin and Page, 1998]. n is the length of the matrix. Now, the Markov
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FIGURE 3.2: An example of the APR method.

process represented by M is guaranteed to be strongly connected and aperiodic, and
its stationary distribution is guaranteed. The author (and paper) ranking is also the
principal Eigen vector r of the matrix M, which can be computed by the following

equation:

Mr =r. (3.3)

Figure 3.2 gives an example. In this network, there are two papers and three
authors. p; cites po. p; is written by a; and as and py is written by as and az. We
first convert the network into the adjacency matrix A, then turn it into the column
stochastic matrix B. By adding virtual links to the network, a new stochastic matrix
M can be deduced. In this example, we set « = 0.85. The importance of authors
and papers is the principal Eigen vector of M. As expected, as is the most influential
author, who writes two papers and one paper has citation. Although a; and az both

write only 1 paper and share a same coauthor, as’s paper has citation. In this case,
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az will gain more importance.

In our work, the largest network contains 12 million authors and even larger
number of papers. Despite the large size of the matrix (107 x 107), fortunately, it
is sparse, and we do not actually store the virtual links during the computation.
Hence, we can use the ‘power iteration method’ [Brin and Page, 1998| to compute
the principal Eigenvector of matrix M. In our implementation, we iterate 100 times

to guarantee the convergence.

3.3 Datasets

Experiments are conducted on two large academic networks. The first dataset is from
Aminer academic social network, which is in the Computer Science (CS) domain The

! which is in Health domain. Most

second dataset is from our industry partener
experiments in this dissertation will be conducted on these two datasets. The two

datasets can be found in http://zhaolbm.myweb.cs.uwindsor.ca/datasets/.

3.3.1 Raw Data
CS Dataset

The Aminer academic social network [Tang et al., 2008] is extracted from ArnetMiner
website 2. Papers in Aminer are all in the Computer Science domain, so we name it as
CS dataset. Aminer integrates publications from DBLP and citation links from ACM
Digital Library, CiteSeer, and other sources. There are 2,092,356 papers, 8,024,869
citation links, and 1,712,433 distinct authors. The raw data contains paper informa-
tion, paper citation relations, author information and authorship relations. There are
three files:

AMiner-Paper.rar This file contains the information of papers and the citation

network. There are 8 entities for a paper:

e #index — index id of this paper

https://www.meta.org/
’https://aminer.org/aminernetwork
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e #* — paper title

#@ — authors

#o — affiliations

#t — year

#c — publication venue

#% — the id of references of this paper (The citation network can be generated

from here.)

#! — abstract

AMiner-Author.zip This file contains the author information. Each author has

9 properties:

e #index — index id of this author

#n — name

#a — affiliations

#pc — the count of published papers of this author

#cn — the total number of citations of this author

#hi — the H-index of this author

#pi — the P-index with equal A-index of this author

#upi — the P-index with unequal A-index of this author

#t — research interests of this author

Although this file contains some indices that will be used in out later experiment,
such as paper count and H-index, we discard these information and only extract
author names. The number of papers, citations, H-index and P-index will be different

after we further clean the data. Thus in our experiment, we recalculate those indices.
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AMiner-Author2Paper.zip This file is the authorship relations between papers
and authors. Each line is an authorship relation. The first column is index, the second
column is author id, the third column is paper id, the fourth column is author’s

position.

Health Dataset

The Health data is provided by our industry partner. It contains research papers
in the area of biomedical and includes full coverage of PubMed and bioRxiv. In
total there are 26,812,984 papers, 17,070,652 authors, 479,358,572 citation links and
202,139,474 authorship links.

3.3.2 Data for Author Ranking

To do the author ranking, we need to build a heterogeneous network. In our research,
we combine the citation network and authorship relations together, then further re-
moving the isolated papers to generate the heterogeneous author-paper network. It
contains two types of nodes, which are papers and authors, and two types of edges,
which are citation relation and authorship relation. The induced heterogeneous au-
thor paper network in the CS dataset contains 1,286,254 papers, 1,004,536 authors,
8,024,869 citation links and 4,946,706 authorship links. In the Health dataset, there
are 15,441,064 papers, 12,680,628 authors, 479,358,572 citation links and 113,792,568
authorship links. The statistics of the two datasets are tabulated in Table 3.1.

TABLE 3.1: The academic networks for the Health and CS domains. Note that the
data size is reduced due to the removal of isolated nodes.
Node and Links Counts
Paper 1,286,254
Author 1,004,536

5 Paper-Paper link 8,024,869
Author-Paper link 4,946,706

Paper 15,441,064

Health Author 12,680,628

Paper-Paper link 479,358,572
Author-Paper link 113,792,568
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FIGURE 3.3: Reference and citation distributions of CS and Health dataset. The x-
axes represent the number of references or citations. The y-axes denote the frequency
of references or citations.

To evaluate the performance of different ranking methods, we use the number of
famous researchers among top ranked authors as the criteria. More specifically, we
use 60 Turing Award winners and 1028 ACM Fellows as famous authors in the CS
dataset. 352 Nobel Prize winners are detected in the Health dataset to evaluate the
ranking performance.

Figure 3.3 shows the reference and citation distributions of papers in CS and
Health dataset. As expected, both citations and references have a long tail that re-
sembles a power-law distribution. We use the maximum likelihood estimation [Clauset
et al., 2009] to estimate the power-law exponents. The probability density function
(PDF) is computed and plotted on the figure as a. Most papers have only less than
10 references and citations. Some survey papers contribute around 10° references in
Health data. Few papers can receive large amount of citations.

Figure 3.4 shows the citation generation in the CS citation network. All papers
are published between 1939 and 2014. Panel(a) is the number of published papers
each year. Panel(b) is the number of citations received each year. Panel(c) is the
number of citations made each year. Panel(d-g) show the citation year gap. There
are negative year gaps in Panel(d) and (e),which represents the abnormal citations.

The abnormal citation relations are deleted in Panel(f) and (g). The negative citation
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FIGURE 3.4: Citation generation of the citation network in CS dataset.

year gaps, which is due to the data error in the dataset. Taking the largest negative
gap year as an example, ‘Dynamic programming treatment of the traveling salesman
problem’ was published in 1961, but its year in the dataset is 2003, leading to that all
citations containing this paper have abnormal gap years. In total, there are 61,195
abnormal citations, with the largest negative gap year is -44. We do not have the
publication year information in Health data, so we only list the citation generation

in CS data only.

3.4 Experimental Setup

Our experiments are carried out on two servers. Each one equips with 24-core CPU

and 256GB memory. The complexity of PageRank-based algorithms depends on the
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number of edges in the graph. The largest graph in our experiment contains about
600 million edges, which can be loaded into the memory easily. The code and data

can be accessed on our webpage?®.

3.4.1 Compared Metrics

We compare our method with C'o- Ranking[Zhou et al., 2007], P(paper count), C(citation
count)|[Gross and Gross, 1927], H(H-index)[Hirsch, 2005], G(G-index)[Egghe, 2006,
S P R(summation of PageRank)[Fragkiadaki and Evangelidis, 2016], and their weighted
versions C, and SPR,[Lindsey, 1982]. Weighted metrics split credits among co-
authors. For an author a, P is the total number of papers that an author has pub-

lished. Other indexes for a are defined as:

Cla) = Z ClitationCount, (3.4)
pEa
CitationCount,,
w(a) = 8]
Cula) AuthorCount, (3.5)
pEa
SPR(a) = > PR, (3.6)
pEQ
PR,
SPRy(a) = p%; AuthorCount, (3.7)

Here PR, is the PageRank value for the paper p in citation network.

For SPR, two damping factors are tested (0.85 and 0.5). 0.85 is the empirically
best damping factor suggested by Brin and Page [1998] for web page ranking. « =
0.5 was suggested by Chen et al. [2007] to offset the acyclic problem in citation
network. Our APR method uses the default a = 0.85 since there are already loops
in our heterogeneous network. For the sake of simplicity, we adopt this parameter in
consistency with SPR0.85 method. Authority Ranking in [Sun et al., 2009a] is not
compared because it uses co-author and co-conference links. Citation information is

not included.

3http://zhaolbm.myweb.cs.uwindsor.ca/apr/
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FIGURE 3.5: Number of award winners among top-k authors on CS dataset.

3.5 Results

3.5.1 How Good Is APR?

We evaluate the ranking results using the number of award winners within top-k
authors in Figure 3.5 and Figure 3.6. To quantify the difference among these methods,
we treat each line as a ROC(Receiver Operating Characteristic) curve [Hanley and
McNeil, 1982], then AUC(Area Under the Curve) can be calculated from each curve.
The AUC values of the ROC curves in Figure 3.5 Panel A and Figure 3.6 Panel A are
listed in Table 3.2. The awards are Nobel Prize for the health data and Turing Award
for the CS data. In the figure, Panel A is the global view of top authors. Panel B is a
zoom-in for the starting section that contains the top 500 for CS and top 10,000 for
the Health data. We can see that APR outperforms all other methods consistently
in both CS and Health data. Table 3.3 is the number of Turing and Nobel winners
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FIGURE 3.6: Number of award winners among top-k authors on Health dataset.

within top authors on two datasets. AP R performs best almost within every range.
Table 3.4 and 3.5 list the top 40 authors ranking by APR and their indexes in other
metrics on CS and Health dataset.

From the plots, especially Panel B of the Health data, we can see that the methods
fall into roughly four groups. The baseline is P. Without question, it gives the lowest
performance. Above that, we see a group that contains of H,G and C', which are
citation-based methods. As expected, G-index is indeed an improvement of H-index.
Both G and H cannot compete with C' in most cases, probably because they over-
simplified the citation data.

PageRank-based algorithms outperform citation-based algorithms with o = 0.85.
Sitting in between Citation-based and PageRank-based method are SPR0.5, which
is a special case of PageRank algorithm with high random jumping probability (o =
0.5). We shall understand that PageRank is a spectrum algorithm. When « is smaller,
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TABLE 3.2: AUC values of the ROC curves in Figure 3.5 Panel A and Figure 3.6
Panel A.

Methods CS Health
AUC (1e3) Improvement | AUC (1e6) Improvement
APR 246.8 - 114.8 -
P 91.8 169.07% 70.2 63.53%
C 170.1 45.10% 82.9 38.49%
Cuw 195.1 26.51% 100.5 14.14%
H 135.0 82.90% 7.7 47.72%
G 163.4 51.13% 78.6 45.91%
SPRO.85 231.0 6.87% 99.0 15.87%
SPR,,0.85 240.5 2.65% 110.4 3.93%
SPRO.5 198.6 24.30% 91.1 25.97%
SPR,,0.5 216.9 13.83% 106.0 8.27%
Co-Ranking 238.1 3.66% 109.4 4.88%

there is a higher probability of random jump. Thus the algorithm favors more authors
with more papers or citations. For C', SPR0.5, and SPR0.85, their weighted versions
are consistently better.

Figure 3.7 shows the top-100 APR authors along with their rankings in terms of
citation count. It shows that 1) APR can identify many (20) Turing award winners;
2) Correlation between APR and C'is low. For instance, Marvin Minsky is the 1461-st
most cited author, but our APR rank is 35. This prompts us to explore how different
APR is from other methods.

3.5.2 How Different Is APR?

Figure 3.8 shows the pair-wise Spearman’s rank correlation coefficient among 11 meth-
ods for the top 100 authors. The top authors are determined by their APR values.
When we extend the list to include more authors, the correlation coefficients will
increase, but the pattern discussed below is similar.

We can observe that the metrics differ with each other greatly, especially with
APR. APR differs from the other methods the most, probably because it is the only
method that includes authors in the heterogeneous network. For the Health data, the

highest positive correlation happens between APR and Eigen-vector based methods
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TABLE 3.3: Number of Turing/Nobel award winners within top authors.
CS Health

50 100 200 500 1,000 | 100 500 1,000 2,000 10,000
APR 16 20 29 45 48 | 15 55 67 90 143

Methods

PN 0 2 4 5 12 0 1 2 8 34
C 8§ 14 19 22 27 3 17 28 38 30
Cuw 11 15 21 30 33 8 37 48 60 111
H 4 7 1216 23 9 19 27 39 74
G 9 16 20 22 29 4 20 27 42 76

SPRO0.85 13 20 27 35 41 12 34 43 61 110
SPR,0.85 16 20 30 41 441 15 48 67 86 139
SPRO.5 10 13 20 26 31 8 19 26 36 84
SPR,,0.5 1218 26 34 38| 10 34 20 67 118
Co-Ranking 16 20 29 39 431 13 48 66 81 139

such as Co-Ranking (correlation coefficient p = 0.26) and SPR,,0.50 (p = 0.45). It
is expected that APR correlates with these methods since all of them are based on
random walk interpretation. It is surprising that the closest correlation coefficient is
only 0.29(with SPR,,0.85) for Health, and 0.55 for CS(with C'o-Ranking). Both are
quite low, indicating that the ranking results are very different. What is even more
interesting is that in Health data, APR correlates with several indexes negatively,
including H-index (p = —0.17), G-index (p = —0.15), and Paper count ((p = —0.08).
Among the top authors, the more influential you are, the fewer papers you write.
This pattern also extends to the CS data.

Figure 3.6 illustrates the satisfied layers of the metrics. There are a few close-pairs.
For instance, C'o-Ranking and SPR,,0.85 correlate almost perfectly (p = 0.99). This
can be explained by the fact that C'o- Ranking runs random walks on three disparate
networks. When they do the random walk on the citation network, it equals to
calculate the PageRank values for the citation matrix independent of the author
network. Their combination with the author network is merely summing up the
PageRank values for each author from the citation network. Another group includes
indexes H, GG, and extends slightly to C'. They are citation-based metrics.

Next, we look at the cause of the difference. In Figure 3.9 and 3.10, each subplot

is the rank value against the rank for each metric. The rank values are normalized so
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FIGURE 3.7: Top 100 APR vs. their citation rankings. Red names are Turing Award

winners.

that they sum up to one. This way we can compare them on the same scale. APR
is plotted in every subplot as a reference (the red line). We can see that the weights
(ranking values) of authors have a long tail distribution that resembles a power-law.
That means that the top authors collect most of the weights, while a large majority
of the authors have very small weights. Although the pattern is the same across all
the metrics for both datasets, the slopes are different, indicating the in-equalities are
different. For the CS data, the coefficient of variation (CV) of weights is 23.61 for
APR, merely 1.13 for H, 2.25 for GG, and 6.42 for P. When the variation of the
weights are small, it won’t be easy to tell the difference between the authors. That
may explain why those metrics are not good. Among the top 10,000 authors, the
Gini coefficient is 0.42 for APR, 0.36 for H, and 0.38 for G.

3.5.3 Weighted vs. Unweighted Methods

Weighted methods share credits between multiple authors of a paper. They reflect

authors’ contribution in a more accurate way. This is verified in both data sets as
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illustrated Figure 3.11. In the figure we can see that weighted methods outperform

the corresponding unweighted versions consistently along all the top authors.

3.6 Results of Paper Ranking

Since APR is running on the heterogeneous network, it also gives the ranking for
papers. Table 3.6 lists the 40 highly ranked papers in CS dataset, and Table 3.7
lists the 30 highly ranked papers in Health dataset. We also list the citation number

for each paper. Our evaluation rule is only valid for authors. It is hard to measure

53



3. MEASURING ACADEMIC INFLUENCE USING HETEROGENEOUS NETWORKS

H G C P SPRO.5
— —— ~
1077 4 - g ’ g - -
g i
% T T T T T T T T T T
‘g 103 107 103 107 103 107 103 107 103 107
o
g SPR0.85 Cw Co-Ranking SPRw0.85 SPRwO0.5
a,
E \ ==
=) _ ==
‘3 10-7 < - ~ . - -
= i i i
T T T T T T T T T T
103 107 103 107 103 107 103 107 103 107
Rank Rank Rank Rank Rank

FIGURE 3.10: Distribution of ranking values on Health dataset. APR (the solid line)
vs. other methods.

El 1
E
E _
3 —— SPR0.85 —-— SPRO.5
—— SPRy0.85 —— SPRy0.5
T 1 T 1 T 1
10* 0 104 0 104

300 0

200 H

qares

100

—-= SPRO0.85
—_— Cuw —— SPR¢0.85

# Nobel

0 T 1 T 1 T 1
0 106 0 106 0 106

Top authors
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sistently for both CS and Health data.

the quality of papers. While we still find that papers’” APR values and citation
numbers are highly positively correlated, with Pearson’s correlation coefficient 0.78

and Spearman’s correlation coefficient 0.49 in CS data; 0.82 and 0.72 in Health data.

3.7 Discussions and Conclusions

This paper proposes Author PageRank (APR) as a method for measuring academic
influence of authors in a heterogeneous author-citation network. We demonstrate
that it outperforms 10 other methods on two very large data sets. We also show that

the ranking results differ greatly with all the other methods.
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To the best of our knowledge, this is the first attempt in integrating authors and
papers in a coherent academic network. In the past, various approaches have been
tried to add author data into citation network. When treating citation and author
ranking separately in the case of Co-Ranking, we show that their result is actually
the same as the PageRank on the citation network alone. When transforming the
heterogeneous network into an author-citation network, the resulting graph can be
too large to be processed. There are computational challenges when carrying out
PageRank-based algorithms due to the very large size of the data. Some methods
based purely on author citation relations are not scalable (e.g., [Radicchi et al., 2009],
[West et al., 2013]), hence they can not deal with data sets of our size. In the
author-citation network, although the node number is reduced by containing authors
only, the number of links can increase in orders of magnitude, depending on the
average reference number and the average number of papers per author. We solve
this computational problem by replacing a dense author-author graph with a sparse
author-paper-author network, hence reducing the number of edges greatly. Probably
this is the reason why we never see PageRank-like algorithms run on a very large
author network.

Academic networks are not restricted with authors and papers. We can add other
entities, such as journals, conferences, and institutions into the ranking framework
[Wang et al., 2013]. Ranking is not limited to author’s overall influence. Better
ranking could be domain dependent [Yan, 2014], given that different areas have their
own style of the publication. In additional to measuring influence, there are other
aspects need to be reflected, such as an author’s potential and impact in the future.
We also plan to extend the ranking from authors to journal [Bergstrom et al., 2008]
and institutes [Liu and Cheng, 2005]. Those are the topics that we will continue to

work on.
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CHAPTER 4

Weighted Heterogeneous
Author-Paper Network

4.1 Introduction

This chapter proposes a weighted heterogeneous academic network, called APN (Author-
Paper Network), and identify influential authors by applying PageRank algorithm on
this network. We test our method on two large datasets. One is an academic network
in health domain that is collected by us. It contains 15 million papers, 12 million
authors, about 500 million citations. The other is the well-known AMiner network in
computer science developed by Tang et al. [2008]. Our contributions can be summa-
rized as follows: 1) We summarize and compare three widely used academic networks
in the author ranking area. 2) We find the self citation problem in author network and
mutual citation problem in paper network. 3) We propose a weighted heterogeneous
author-paper network. The above two problems can be avoided in our proposed net-
work. 4) We evaluate our methods based on the number of Nobel Prize winners for
the Health data, the number of Turing Award winners and ACM fellows for the CS
data. Our method outperforms other methods consistently for both datasets. 5) Our
ranking result is also very different from that of existing methods in terms of Spear-
man rank correlation. One interesting result is that APN is negatively correlated

with paper count, H-index, and G-index among top authors on Health dataset.
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b2 b3

(b) Paper network.

(¢) Author network. (d) Author Paper network.

FIGURE 4.1: Three different networks. Panel(a) is the original network, consisting
of 5 papers and 7 authors. Panel(b) is the paper network. Panel(c) is the author
network. weights on edges are the transferring ratio. Panel(d) is the heterogeneous
author paper network.

4.2 Three Different Networks

PageRank can be applied to author ranking on different kinds of networks [Amjad
et al., 2018], consisting of papers or/and authors. Figure 4.1 lists three basic academic
social networks. In this figure, there are five papers. p;, po and ps has 2 authors
respectively. Blue lines are citation relations. p; — po indicating that p; cites po.

According to this relation, three different networks can be derived:

e Paper network [Fragkiadaki and Evangelidis, 2016][Sidiropoulos and Manolopou-
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los, 2006] (Panel b).

It only contains citation links. Gp = (Vp, Ep) is the directed paper network,
where Vp is the paper set, FEp is the set of links, representing citations between
papers. When p; cites po and ps, there exist two edges p; — pa, p1 — p3 in the
network, and the weight of p; transfers to py and p3 equally.

Author network [Radicchi et al., 2009] (Panel c).

G4 = (Va, E4) is the directed author network, where V) is the author set, Fy4
is the set of links, representing citations between authors. It is derived from
the original network. Consider the paper p;, written by two authors a; and
az, which cites a paper ps, written by two authors a4 and as, 4 = 2 - 2 links
are created from each of the citing authors(a,as) to each cited authors(ag,as),
where every link has the weight equal to 1/(2-2). The weight of a; is transferred
to a4 and as proportionally to the weight. There exists self citation relation in
the network. ps and ps are both written by a7, and there is a citation relation

between these two papers, resulting in a self loop for a;.

Author-paper network [Zhao et al., 2019] (Panel d).
G = (‘/, E) = (VAUVP,EPPUEPAUEAP). VA is the author set. Vp is the
paper set. Epp is the citation relation between papers, which is same as links

in the paper network in Panel(b). Fps and E4p are links between a paper and

its authors.

Paper network, illustrated in Figure 4.1 Panel b, is usually used to rank papers, but

the importance of authors can be derived from papers. [Fragkiadaki and Evangelidis,

2016] and [Sidiropoulos and Manolopoulos, 2006] both first rank papers on the paper

network, then the the rank value of authors are calculated by the average PageRank of

their papers. Gao et al. [2016] combine H-index and PageRank together to obtain an

objective evaluation criteria. They first rank papers by PageRank on Paper Network,

then replace the H-indexs citation component with the PageRank score to get the PR-

index values. Applying PageRank on paper network is useful and efficient to rank
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papers. While the importance of an author should be affected not only by his/her
papers, but also coauthors. Moreover, the importance of authors should affect papers.
Thus, paper network may be not good enough to produce objective ranking results.

Author network, illustrated in Figure 4.1 Panel c, is widely used to rank authors.
Yan and Ding [2011] use a weighted PageRank algorithm on author network to get the
importance of authors and compared their method with citation based algorithms.
A similar paper is proposed in [Radicchi et al., 2009]. They create a weighted au-
thor citation network(WACN) from paper citation network(PCN). The weight from
n citing authors to every of the m cited authors is 1/{nm}. A weighted PageRank
algorithm is then used to calculate the score of each author in the network. Another
method is proposed in [West et al., 2013]. They propose the Eigenfactor score on au-
thor network. Different from Eigenvector, they give more weight to the highly cited
authors. When ranking on author network, authors with more citations will obtain
more weights. Without the coauthor links, collaborating a paper will not contribute
to an author’s influence. While it is obvious that collaborating with a famous re-
searcher will attract more attentions. Another concern about author network is the
complexity issue. The complexity of most efficient PageRank algorithms depends on
the number of edges in the network. The author network is a dense network. It is
efficient to apply PageRank on a small dense network. While academic data is usually
large, containing millions of authors. PageRank is not expected to be executed on
such a network when the number of links explodes.

An effective way is to derive a heterogeneous network consisting of both papers
and authors. This kind of network is first used by Zhou et al. [2007]. There are
three networks in the framework, which are paper network, coauthor network and
authorship network. They apply two random walks on paper network and coauthor
network independently, then use the authorship relations to combine them together.
More recently, Zhao et al. [2019] integrate authors and papers in a coherent author-
paper network. With no direct links between coauthors, coauthors are connected
indirectly by their papers. Compared to the Co-ranking network in [Zhou et al.,

2007], their network is more efficient. Moreover, this kind of network has been tested
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to identify more influential authors comparing with many existing methods.

There are several other link analysis based methods. Liu et al. [2005] propose a
weighted PageRank algorithm, called AuthorRank, on a co-authorship network. If
any two authors co-authored a paper, an undirected edge with unit weight is created
between these two authors. They care more about the author centrality and results
show that AuthorRank is better than other similar index like closeness, degree and
centrality. Sun et al. [2009a] combine clustering and ranking together. They rank
authors within each conference cluster. The reputation of conference can affect an
author’s influence. Basically, they use paper-author and conference-author links, but
not paper-paper citation links.

There are several issues with the derived homogeneous Author network:

e The induced homogeneous network inevitably loses some information during
the transformation process. For example, in the Author-network, there is no
path to walk from one co-author to another. Most of the ranking algorithms,
including [Radicchi et al., 2009], [West et al., 2013], and our paper, are based on
PageRank, and can be explained by random walk model. The importance of a
node corresponds to the probability of visiting the node in a very long random
walk. In the homogeneous network, there is no possibility of an author to visit
his/her co-author. In other words, one author does not share any importance
with her/his co-authors. Our model as illustrated in Panel (c¢) will enable the

random walk among co-authors.

e The induced homogeneous network mostly directs downwards to older authors,
due to the fact that citation is always directed to older papers. It is mostly
an acyclic graph. That may explain why their ranking on older papers (before
seventies) can find many award winners. Our heterogeneous network introduce
links upwards through Author-Paper connections, thus can pass some of the

weights upwards.

e The induced homogeneous network is very large. People may mistakingly think

that the induced graph is smaller by eliminating all the paper nodes. On the
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contrary, it is actually much bigger in terms of the number of edges. We should
note that it is the edge count, not the node count, that dominates the complexity
of PageRank algorithms. In our health data, there are about 4.2 billion edges
in the homogeneous network, only about 600 million links in our heterogeneous
network. The network size exceeds the capacity of most commodity computer

servers.

In this chapter, we first find the self citation problem on author network and
mutual citation problem on paper network. To deal with these two problems, we use
a new heterogeneous author-paper network, based on the one in [Zhao et al., 2019]
to do author ranking. Add weights onto the network can efficiently control the flow.
Then we study the difference among these three networks and shows our method
can reduce the impact of the two problems. Another contribution of our paper is a
systematic comparison with 11 other ranking methods, and quantifies the difference
with each method by Spearman Correlation coefficient. We also tried to explain the
difference using their distributions of the ranking values. It is consistently better than

all those 11 methods.

4.3 Motivation

Among the three derived networks, paper network(PN) and author network(AN)
are widely used. We generate the PN and AN from Aminer dataset, which will
be described in the experiment section. Then two proposed ranking algorithms are

applied on the two networks.

4.3.1 Self Citation

We generate a weighted author network(AN) and use PageRank to rank authors,
which is proposed in [Radicchi et al., 2009]. In this method, an author transfers
his/her credit to the descending authors proportional to the weight on edges. From

the ranking results, we find AN has the self citation problem. Figure 4.2 shows an
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Author | # Citation # Paper Weight(10~°) Rank
E. F. Codd (1) 2204 24 06.16 12
Robert E. Bleier (as) 28 2 114.07 8

TABLE 4.1: Author weight and ranks on AN.

example of this problem. In this figure, Codd is an influential author, who writes
24 papers and has 2,294 citations, listed in Table tab:bleier-AN. One of his highly
cited paper, with 1497 citations and only 2 references, cites another paper, which is
written by Bleier. Bleier has only 2 papers, and one of them cites another. In this
case, Bleier will have a loop in the author network. This loop attracts large amount
of weight for Bleier, resulting to his larger credit and higher rank than Codd. While
considering both quality and quantity, Codd should be more influential than Bleier.

Codd

27authors 9.27

214 ’p 102.66

Bleier

FIGURE 4.2: An example of self citation problem on AN.

592citations

Gray

3.26

l4citations 32citations

FIGURE 4.3: Am example of mutual citation problem on PN.
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Paper #Citation | Author Weight(107°)
D1 592 James N. Gray 11.51
D2 15 | Lawrence A. Bjork 28.58
D3 33 | Charles T. Davies 28.89

TABLE 4.2: Authorship relations and paper weight on PN.

Author ‘ # Citation # Paper Weight(1075) Rank
James N. Gray 5,725 89 26.54 61
Lawrence A. Bjork 16 2 28.62 52
Charles T. Davies 47 2 28.98 49

TABLE 4.3: Author weight and ranks on PN.

4.3.2 Mutual Citation

In PN, only papers and citation relations will be included into the network, as de-
scribed in section 4.2. Based on our previous work [Zhao et al., 2019], we can apply
the PageRank algorithm on the paper network to get the rank values for papers first,
then the rank value of a paper is allocated to its authors equally. Moreover, 0.85 is
experimented as a good damping factor. Thus we use the results of PN,,0.85 (here
after PN), as described in [Zhao et al., 2019], to analyze the properties of paper net-
work. From the ranking results, we find PN suffers from the mutual citation problem.
Figure 4.3 shows an example. In this figure, Bjork has 2 papers and 16 citations, with
only one paper py has citations. Two of his citing papers p; and p3 are written by
James N. Gray and Charles T. Davies respectively. py [Bjork, 1973] and ps[Davies Jr,
1973] cite each other, which truly happens. This citation circle gains large weights to
p2 and ps, in which ps only cites ps. po also only cites ps, resulting in high weights
to Bjork and Davies. Bjork is ranked 52 and Davies is ranked 49 in PN. While p; is
an important paper, with 592 citations, but gains less weight than p, and ps in PN,
resulting to Gray’s lower rank.

Besides the two problems on AN and PN, there are also several shortcomings.

e PN contains only papers and citation relations, lacking authorship relations.
The weight of an author is only determined by the importance of his/her pa-

pers. While in real world, a paper and its authors should affect each other. More
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influential authors will gain more attraction for their papers. Another short-
coming is that PN does not contain the coauthor relations, while collaborating

with a famous researcher will attract more attention.

e AN contains only authors and author citation relations, which makes one author
does not share any importance with her/his co-authors. Another concern is that
AN is a large and dense network. The complexity of PageRank based algorithm
is dominated by the number of edge, not node, resulting to AN’s scalability

issue.

In this chapter, we will introduce a weighted heterogeneous author-paper network.

The mutual citation, self citation problem will also be avoided.

4.4 Our Weighted APN Network

We use a heterogeneous author-paper network to represent the academic data. We
define the importance of an author to be the probability of the author being visited
by a long random walk in the heterogeneous network. Edges between two papers
represent the citation relationship, and edges between papers and authors are the

authorship relation.

Definition 3. (Author-Paper Network )

Given a set of authors a = {ay, as,...,an} and a set of papers p = {p1,p2, ..., Pn}-
Let Epp denotes the citation links between papers; Epa denotes the authorship rela-
tion from a paper to an author; E p denotes the authorship relation from an author
to a paper. The author-paper network is a graph G = (aU p, Epp U Eps U E4p).
Consider for a paper p;, written by the n coauthors a;1, a;a, ..., @iy, which cites a paper
p;, written by m coauthors a;, ajs, ..., Q. A citation link will first be created from p;
to pj. Then n authorship links are created from the n citing authors to their paper p;

and m authorship links are created from p; to the m cited authors.

For an author-paper network contains m papers and n authors, the graph can be
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(b) Weighted Author-Paper network.

(a) Unweighted Author-Paper network.

FIGURE 4.4: An example of author-paper network. Derived from Figurel Panel (a).

represented by a binary (m + n) X (m + n) adjacency matrix A:

- App Aap

Apsa O

, (4.1)

where App is the adjacency matrix for citation relations between papers, Ap, is the
adjacency matrix for links from papers to authors, A p is the adjacency matrix for
links from authors to papers. 0 means there is no direct links between authors.

The adjacency matrix represented by A can be turned into a new matrix A’, in
which each submatrix(App, A'yp, A 4) is a column stochastic matrix.

A/ /
A — PP “lap , (4.2)

pa O
Figure 4.4 Panel (a) shows an example of our proposed heterogeneous author-
paper network, which is derived from Figure 4.1 Panel (a). Consider for a citation
link from p; to p3, two links are created from citing authors a; and ay to the citing
paper p;. One more link is also created from the cited paper p3 to the cited author

as.
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To achieve the PageRank weight for authors, the simplest way is to apply the
original PageRank algorithm on this network. While we observed this network suffers
from the long reference issue, similar to the one proposed in [Zhao et al., 2019]. Figure
4.5 gives am example of this issue. In this example, p; is written by a;, and it has 9
references. p, is written by as, and it has only 2 references. In this case, a; receives %o
of p1’s weight. ay receives % of po’s weight. if p; and p, achieve the same importance,
as will be more influential than a;, which does not make sense. Especially for survey
papers with several hundred references, the authors will receive few weight. To avoid
this issue, we use a ratio  to control the weight from a paper to its descending papers
and authors. To be specifically, 8 weight of a paper is transferring to its descending

papers, and 1 — 8 goes to its authors. We do not control the weight from authors to

papers since authors’ descending nodes can only be papers. The induced weighted
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/N
“"

(a) Long reference. (b) Short reference.

FIGURE 4.5: Long Reference Issue.

author-paper network is shown in Figure 4.4 Panel(b).
By adding the ratio 3, we can derive another column stochastic matrix B, where
each column sums up to one.

A /
B— B PP AP (43)

(1-0)-Aps O

Now the network can be viewed as a Markov chain, and the influence of authors
are defined as the stationary distribution of the Markov process. In other words, an
author’s importance is interpreted as the probability of a random surfer visiting the
node. Because not every Markov chain has a stationary distribution, it is necessary
to modify the network so that stationary distribution is guaranteed. We follow the
normal practice, which is to add virtual links to every pair of nodes with an equal but
small transition probability, i.e., a new stochastic matrix M is introduced by adding
every cell with a small transition probability:

1
M =aB+ (1 —a)—ee’, (4.4)

n

where e is a vector of 1’s, a is the damping factor that is normally chosen to be a
value around 0.85 [Brin and Page, 1998]. n is the length of the matrix.

Now, the Markov process represented by M is strongly connected because ee”
represents a complete network. Brin and Page [1998] also point out that M is aperi-

odic, and its stationary distribution is guaranteed. The author (and paper) ranking
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is also the principal Eigen vector r of the matrix M, which can be computed by the

following equation:

Mr =r. (4.5)

This network has the following properties:

e Paper can go upwards by random jump and co-author link. For example, al-
though ps cites p4, the weight of p, can still transfer to p, through their author

as.

e The importance of a paper depends not only on citations, but also the impor-

tance of its authors.
e The long reference issue can be avoided.

e Adding the transferring ratio [ is expected to avoid the self citation problem

and mutual citation problem.

It differs from other paper/author networks such as the one proposed in [Zhao
et al., 2019], [Zhou et al., 2007],[Sun et al., 2009a], [West et al., 2013]. In our hetero-
geneous author-paper graph, there are no edges between authors. Author relations
can be induced from several sources, such as co-authoring a paper [Zhou et al., 2007,
citation of one author to another [West et al., 2013], or even publishing in the same
conference [Sun et al., 2009a]. Such induced relations lost information during the
graph transformation. Moreover, the induced graph normally expands in size, some-
times in orders of magnitude. For instance, if an author writes m papers, each cites n
papers on average, and each paper has k coauthors, then there will be m x n X k in-
duced author-citation edges. Direct links between authors may also let author social
network dominate the ranking system. Coauthors of a paper form a clique. Random
walk traffic will be directed to such cliques, especially when the cliques size is large.
The ranking should be decided mainly by papers, not author relations. Therefore,

we excluded the edges between authors in the graph. Although direct edges are not
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TABLE 4.4: The relation between weights in Figure 4.6.The random jump weight is
not considered here.

AN a = 0.9 Bleier 29(1 of 29 is himself) authors cite Bleier.
’ 114.07 114.07 = 9.27 + 102.66 + 2.14(weight from other 27 authors).

102.66 102.66 = 114.07 % 0.9.
p1— > p2 0.91 =6.73%0.9% 0.3 % +

APN @=08,5=03 p1i— > a1 4.24 =6.73%0.9%0.7, C20dd is p1’s only author.
p2— > ag 1.20 = 1.91 % 0.9 % 0.7, Bleier is pa’s only author.
p2 has no reference papers  1.91 % 0.9 % 0.3 will be added into the random jump.
p3— > p1 0.69 =2.55%0.9%0.3
p3— > a2 1.61 =2.55%0.9%0.7
az— > p3 2.54 =2.82%0.9

Codd

Codd 4.24

@ 1497citations

lref
27authors 9.27 25citations  0.91

214 ’p 102.66

Bleier

0.59

lcitation

Bleier
(a) Author network.

(b) Author paper network.

FIGURE 4.6: The self citation problem in APN. Weights on links are multiplied by
10°.

present, author relation still plays a major role in the ranking system: the weight of
an author is passed indirectly not only to his cited authors through citation links, but

also co-author via their papers.

4.5 Self Citation and Mutual Citation Problems

As we discussed in the motivation section, PN suffers from the mutual citation prob-
lem and AN has the self citation problem. Our previously proposed author-paper
network has the long reference issue. By adding the ratio [, the long reference issue
can be addressed. In this section, we will show that our APN can reduce the impact
of the self citation and mutual citation problems.

Figure 4.6 and Table 4.5 show the comparison between AN and APN for the self
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TABLE 4.5: The weights of nodes in Figure 4.6.

AN(107°) AN rank | APN (107°) APN rank

E. F. Codd(a;) 96.16 12 0.18 21

Robert E. Bleier(as) 114.07 8 2.82 402

D1 - - 6.73 -

s ; ; 1.91 ;

3 - - 2.55 -
592citations

Gray

3.26
l4citations

(a) Paper network. (b) Author paper network.

FIGURE 4.7: The mutual citation problem in APN. Weights on links are multiplied
by 10°.

citation problem. The weights transferred between nodes is illustrated in the figure
and weights of nodes are in Table 4.4. In AN, Bleier attracts large amount of weight
due to his self citation. In APN, although there is still a cycle between ps, a; and ps,
the transfer ratio properly control the weight within the cycle.

Figure 4.7 and Table 4.6 show the comparison between PN and APN for the
mutual citation problem. The weights transferred between nodes are listed in Table
4.7. Bjork is ranked extraordinary high in PN due to his mutual citation with Davies.
In real world, an author(Bjork) with only 2 papers and 16 citations should not be
ranked higher than that(Gray) with 89 papers and 5725 citations. In APN, weight
in this small loop is weakened. Gray’s rank remains almost the same, but Bjork and
Davies are ranked much lower than before as expected.

Next we look at the difference of these three networks. Figure 4.8 illustrates the
comparisons. In each subfigure, we list 100 top authors ranked by the index on x-axis,

and their corresponding ranks by the index on y-axis. Each dot is an author, where
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TABLE 4.6: The weights of nodes in Figure 4.7.

PN(107°) PNrank APN (107°) APN rank

James N. Gray(a;) 26.54 61 5.76 62
Lawrence A. Bjork(az) 28.62 52 0.70 4734
Charles T. Davies(as) 28.98 49 1.07 2361
Py 11.51 5 214 -

D2 28.58 - 1.09 -

D3 28.89 - 1.65 -

TABLE 4.7: The relation between weights in Figure 4.7. The random jump weight
is not considered here.

PN a = 0.85 P2 28.58 = 3.26 + 24.56 + 0.76. 0.76 is from other 13 citations.
D3 28.89 = 24.30 + 4.59. 4.59 is from other 32 citations.
p1— >p2  3.26 =11.51 % 0.85 % %, p1 has 3 references.
p2— >p3  24.30 = 28.58 % 0.85
p3— >p2  24.56 = 28.89 % 0.85
pi—>a1 0.34=214%0.9%0.7x L p; has 4 authors.
APNa=09,5=03 p1—>p2  0.19=214%0.9x%0.3 % 3, D1 has 3 references.
p2— >az2 0.69=1.09%0.9x%0.7
az— >p2 0.31 =0.70 «0.9 %, Bjork has 2 papers.
p2—>p3 0.29=1.09%0.9%0.3
p3— >p2  0.45=1.65%0.9%0.3
p3— >a3 1.04=1.65%x0.9%0.7
a3— > p3 0.96 = 1.07 0.9

P2 1.09 = 0.19 + 0.31 4+ 0.45 + 0.14, 0.14 is from other 14 citations.
p3 1.65 = 0.29 4+ 0.96 + 0.4, 0.4 is from other 32 citations.

as 0.70 = 0.69. 0.01 difference may because of the rounding.

as 1.07 = 1.04 4+ 0.03, 0.03 is from Davies’s other paper.

red ones are Turing Award winners and green ones are ACM fellows. From Panel(A)
and Panel(C), we can see that there are no outliers for APN, compared with PN
and AN. While when ranking by PN in Panel(B), there are two outliers, Charles-T.-
Davies and Lawrence-A.-Bjork, which is caused by mutual citation problem. Same
for AN, there are still several outliers. One of them, Robert-E.-Bleier, is caused by
his self citation problem, as we discussed before.

They also perform quite different in identifying new rising gems. Figure 4.9 shows
the performance of three networks in different years. X-axis is the top authors’ ranks.
Y-axis is the number of ACM fellows within top authors. It is clear that APN
outperforms other two in most years. AN can obtain good results in early years,
especially in 1994. ACM fellows in 1994 are all old authors, such as John McCarthy,
Edsger W. Dijkstra and Donald E. Knuth. This is obviously a limitation for AN,

because people care about not only old authors, but also some recent active ones.
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FIGURE 4.8: Several outlier authors ranking by PN and AN vs. APN. The top 100
authors in Panel (A) and (C) are ranked by APN. The top 100 authors in Panel (B)
is ranked by PN. The top 100 authors in Panel (D) is ranked by AN.

APN performs well both in early and recent years. Overall, AN is the best one in
the first four years. After that, especially after 2005, APN is consistently the best

one, while PN performs not well enough to identify influential authors.

4.6 Performance and Comparisons

For PN and PN,, two damping factors are tested (0.85 and 0.5). 0.85 is the empir-
ically best damping factor suggested by Brin and Page [1998] for web page ranking.
a = 0.5 was suggested by Chen et al. [2007] to offset the acyclic problem in citation
network. For our APN method, we grid search the damping factor a and ratio [3,
then set o = 0.9, § = 0.3 for CS dataset and o« = 1.0, § = 0.9 for Health dataset.
For the Health dataset, we fail to obtain the results of AN, because there will be
more than 4 billion edges on the weighted author network, and generating such a
huge network is too time and space consuming.

To evaluate the performance, we extract some well-known famous researchers

and evaluate each method by comparing the number of identified famous researchers
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FIGURE 4.9: Number of ACM fellows among top 1000 authors in different years.
ROC curves for three methods APN, AN and PN over are listed in each plot. APN
performs better for more recent ACM fellows.
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FIGURE 4.10: The comparison between APN and APR. Panel (a) is the performance
on Turing Award winners, Panel (b) is ACM Fellows, Panel (c) is Nobel Prize winners.

among top-k ranked authors. Health data contains papers and authors working in the
domain of biomedical science. We first get official full names for Nobel Prize Winners
in Chemistry and Physiology or Medicine from the Nobel website!. Then for each
full name, we match it with all names in the dataset and generate some candidates,
whose last name and first name initial are the same as the full name. Last we get
the best candidate for each full name by choosing the most highly ranked candidate
identified by Zhao et al. [22]. 315 Nobel Award Winners are finally matched. In CS
dataset, we crossmatched 1028 ACM fellows and 61 Turing Award winners using the
same method as we did for the Health dataset.

As we discussed before, APN avoids the long reference issue of APR. First, we
want to compare APN with APR. In APR, we do not control the weight between
papers and authors. Since a paper usually has more references than authors, more
weight will go to its citing papers. Large amount of weight will transfer to old papers,
because a paper can only cite papers that have been published and eventually the
citation link will end on old papers. Thus, APR is good at identifying “old” influential
authors. APN, differently, uses 3 to control the weight between papers and authors,
making less weight transfer to references. Therefore, APN can identify more young
influential authors. In Figure 4.10, we evaluate them using three kinds of famous
authors. Some Turing Award winners and Nobel Prize winners are nominated in
1970s and 1910s, so we can see that APR performs better in Panel (a) and slightly
better in Panel (¢). While when identifying ACM Fellows, who are relatively young

https://www.nobelprize.org/
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FIGURE 4.11: The comparison between APN and other ranking methods by identi-
fying the number of award winners among top-k authors on CS and Health datasets.

and mostly nominated after 2000, APN performs much better than APR. It is hard
to say which method is better or worse. The only conclusion we can draw is that
APR and APN are capable of different scenarios.

Next, we compare APN with other ranking methods, which are introduced in
Chapter 3. Figure 4.11 shows the overall performance of identifying the number
of ACM Fellows and Nobel Prize winners in top ranked authors. Panel (a) and
(b) are from CS dataset and Panel (¢) and (d) are from Health dataset. In CS
dataset, although APN is not the best in top 1500, it is better than others in the
middle and rear range in Panel (b). In Health data, APN consistently performs
best among all methods. Similarly as the observation in Chapter 3, there are four
groups in Health data, indicating the effectiveness of ranking authors using PageRank
algorithm. Since it is hard to distinguish more than 10 lines in the figure, we still

use the AUC values to quantify the performance. Table 4.8 lists the AUC values
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TABLE 4.8: The AUC values of the ROC curves in Figure 4.11 Panel (a) and (c).
APN is used as the baseline for calculating the improvement.

Methods CS Health
AUC (10*) TImp(%) | AUC (10*) TImp(%)
APN 710 — 113 —
P 568 25.01 19 498.53
C 655 8.29 56 104.29
Cu 668 6.27 82 39.12
H 650 9.18 52 116.20
G 655 8.32 53 114.07
PNO0.85 698 1.64 83 36.86
PN,,0.85 704 0.82 108 5.19
PNO.5 674 5.31 56 101.12
PN, 0.5 689 2.96 86 32.32
Co-Ranking 692 2.60 106 6.88
AN 709 0.08 - -

and corresponding improvements. APN is slightly better than other PageRank-based
methods in CS dataset and significantly better in Health dataset.

To further study the difference between APN and other ranking methods, we cal-
culate their Spearman’s Correlation [Myers et al., 2010]. The Spearman’s Correlation

of two variables x and y can be computed as:

w21 (R(w:) — R(x)) - (R(y:) — R(y))

- R
PXyYy =
VS (R(z) - B(2))?) - (2 S, (R() — B(y)?)

, (4.6)

where z; if the i-th variable in X and R(z;) is the rank of z; in X. R(z) and R(y) are
the mean value of R(z) and R(y). The range of p is from —1 to 1. pxy = 1 means
the rank of X and Y are the same. Here we list the correlation on top 100, 500, 1000
ranked authors on both datasets. First, we calculate the Spearman’s Correlation
between two ranking methods, then use 1 — p as distance and apply Hierarchical
Agglomerative Clustering (HAC) [Rokach and Maimon, 2005] to split 12 methods
into clusters. In HAC, each method starts in its own cluster, then pairs of clusters

are merged as one until there is only one cluster. Complete linkage [Defays, 1977] is
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used to calculate the distance between two clusters A and B:

d(A, B) = max{d(z,y) : x € A,y € B}. (4.7)

Figure 4.12 show the heatmaps of HAC and the corresponding dendrograms. We
apply HAC on top 100, 500, 1000 ranked authors respectively. The values on the
heatmap is the Spearman’s correlation between two methods on the specific row and
column. Basically, count-based methods are close to each other, same for PageRank-
based methods. PN0.5 and several count-based methods are merged together, such as
C, Cyand G. The similarity would be as large as 0.94. The reason is that in PNO.5,
more than 50% weight is random jump, and the weight of papers will transfer to
citing papers. Thus large amount of weight goes to highly cited papers, then authors
achieve all weight from papers, leading to the high similarity with C'. G considers
more about citation count, so it is not surprising to see that PN0.5 and G are also
similar. H and G sit close in Figure 4.12, since they both combine paper count and
citation count together. The similarity is 0.96 in top 100. While they have difference.
H considers more about paper count and G gives more weight to citation count. Thus
P and H are first merged. Another observation is that P is negatively related to our
method, especially in Figure 4.12 top 100, where the value is —0.22. It shows that
publishing more papers does not mean getting more influence. While C' is positively
related to almost all other methods, indicating that publishing papers with more
citations is essential to be influential. APN is unique and has small similarity with
other methods, especially in Health data top 100. It even has negative similarities
with most count-based methods. This maybe due to the heterogeneous network APN
is using. Unlike PN and AN, APN contains more information, making it considers
more relations. From the overview, count-based and PageRank-based methods are
separated in two main clusters, as expected. Compared with top 100, similarities in
top 1000 become more positive.

Similar to Chapter 3, here we still list the top ranked authors in Table 4.9 and

4.10. In the first table, red names are Turing Award winners and bold names are

81



4. WEIGHTED HETEROGENEOUS AUTHOR-PAPER NETWORK

ACM Fellows. Our method can identify 5 Turing Award winners in top 10 and 16
ACM Fellows in top 20, which is impressive. Overall, there are 15 Turing winners
and 40 ACM Fellows in top 50 authors. This table shows that APN can efficiently
identify more influential authors, not only the “old” influential people, but also some

rising stars in recent years.

4.7 Discussions and Conclusions

In this chapter, we propose a new method that applies PageRank algorithm on a
new weighted heterogeneous author-paper network, which is named as APN. Based
on the previous work in Chapter 3, we improve APR by reducing the impact of the
long reference issue. By adding the weight 8 to the network, we can balance the
weight transfer from one paper to its references and authors. Another contribution
we made is that we find the self citation problem of author network (AN) and mutual
citation problem of paper network (PN). To the best of our knowledge, this is the
first work discussing the impact of self citation and mutual citation problems when
measuring academic influence. We illustrate that how our AP N reduces the impact of
the two problems in the heterogeneous network. Another finding is that our method
can identify not only “old” influential people, but also more ACM Fellows, who are
mostly rising stars in recent years. Besides AN and PN, we later compare our method
with other 9 existing ranking methods. The experiments are conducted on two large
datasets in the domain of Computer Science and Health. The experiment results
show that our method is superior among all methods. The later similarity analysis
show that our method performs differently from citation based methods. The HAC
heatmap and dendrograms could help readers have a better understanding about

different kinds of ranking methods.
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CHAPTER 5

SEHN: Stratified Embedding for

Heterogeneous Networks

5.1 Introduction

Network (or graph) embedding aims to find dense and short latent representations for
network nodes. It is crucial for graph mining and analyses. Once a latent embedding is
obtained, off-the-shelve machine learning algorithms can be applied on the network.
Therefore, network embedding has been studied extensively, as reflected in recent
review papers such as [Wang et al., 2019] [Cai et al., 2018] [Goyal and Ferrara, 2018]
[Chen et al., 2018].

A heterogeneous network (HN) is a network that has more than one node types
or edge types. In real applications, most networks are heterogeneous. Naturally, sub-
stantial research has shifted the focus from homogeneous network embedding [Perozzi
et al., 2014, Grover and Leskovec, 2016] to heterogeneous network embedding [Dong
et al., 2017, Fu et al., 2017, He et al., 2019, Park et al., 2019, Dong et al., 2020, Yang
et al., 2020].

Similar to embedding algorithms for homogeneous graphs, many HN embedding
algorithms are also induced from Skip-Gram Negative Sampling (SGNS) [Mikolov
et al., 2013]. The overall idea is to generate Random Walk traces, then the traces are

used as the input of SGNS. Directly applying existing graph embedding algorithms
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(a) DeepWalk. (b) Metapath2vec.

FIGURE 5.1: Embeddings of top 200 top-ranked authors and papers. The dimen-
sion of embedding vectors is reduced from 128 to 2 by t-SNE. Both DeepWalk and
Metapath2vec can not distinguish authors and papers.

to HN is doable — we can simply disregard the types of the nodes, and treat the HN
as a homogeneous graph. The results of this kind of naive approach failed as reported
in Dong et al. [2017]. Now it is commonly accepted that, instead of choosing the
next node to visit indiscriminately as in a normal Random Walk, we should choose
the next node restricted to some trace patterns. Dong et al. [2017] used the term
MataPath, which was originally coined in Sun and Han [2012], to denote such path
schemes or patterns. Lots of efforts have been spent on identifying MetaPaths for
a variety of machine learning tasks, such as node classification [Fu et al., 2017, Shi
et al., 2018b], link prediction[Wang et al., 2018b, He et al., 2019] and recommendation
Zhao et al. [2017], Hou et al. [2017], Shi et al. [2018a]. Most of them have different
types of nodes mixed along the Random Walk path.

Let us look at an author-paper citation network as illustrated in Figure 5.2. There
are two types of nodes, i.e., author and paper, and two types of edges, i.e., paper
citation and authorship. When we run DeepWalk and Metapath2vec on AMiner
author-paper citation network, we have embeddings as shown in Figure 5.1 when they
are projected into two-dimensions. Authors are mingled with papers. It is impossible

to delineate the boundary between the two. Intuitively, papers and authors are two
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Matapath

l Stratified

FIGURE 5.2: An example of how to generate a walking path. We first use Random
Walk to achieve a walking path with some MetaPath patterns, then stratify the path
by keeping one node type.

different objects. We should not compare authors directly with papers, just as we
do not compare apple with orange. Technically, along the MetaPath traces that are
taken in SGNS, the dominant training pairs are the pairs between author and paper,
not between author and author. Every time an (author, paper) pair is encountered,
an author vector is updated so that it can resemble the paper. Author nodes are never
adjacent to each other, always separated by at least one paper node. The connection
between authors is reflected indirectly through papers.

To solve this problem, we propose Stratified Embedding for Heterogeneous Net-
works (SEHN). It trains embeddings from a single type of traces that are obtained
from MetaPath. We also show that stratification not only works for Metapath2vec,
which is a generic strategy that can be used to improve other embedding algorithms.
As a demonstration, we construct two stratified versions of DeepWalk and Node2vec,
denoted as DeepWalk® and Node2vec®. Experiments show that DeepWalk® and
Node2vec® outperform the unstratified ones significantly.

SEHN also outperforms the embedding of the homogeneous author network that
is induced from the heterogeneous network. The stratified traces seem to be the
same as those obtained from the corresponding homogeneous author citation graph.
One question arises is whether it is better to obtain embedding directly from the
homogeneous graph. When a heterogeneous graph is transformed into a homogeneous
one, some information is lost. For instance, two authors can be connected by multiple

paper citation traces. Then we need to transform the heterogeneous network into a
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weighted homogeneous network.

5.2 SEHN: Stratified Embedding for Heterogeneous
Networks

Learning heterogeneous network embeddings is to apply the network embedding
strategies on a heterogeneous network to generate the vector representation for nodes.
In this problem, there are two major components. The first one is the heterogeneous
network, which is defined in Definition 4. In our work, we use the heterogeneous
author-citation network. Figure 5.2 illustrates an example. There are five papers.
p1, p2 and py has 2 authors respectively. p3 and ps have one author. Blue lines are
citation relations. Red lines are authorship relations. p; — ps indicates that p; cites
p2. The network integrates authors and papers in a coherent author-paper network.
With no direct links between coauthors, where coauthors are connected indirectly by

their papers.

Definition 4. (Heterogeneous Network [Shi et al., 2016]) Given a network G =
(V,E), G is called a heterogeneous network if the types of V> 1 or the types of E

> 1. Otherwise, it is a homogeneous network.

The second component is the MetaPath based Random Walk. MetaPath is first
introduced in [Sun and Han, 2012]. In our work, we capture the author relations
using two MetaPaths: APPA and APA. APPA represents the author citation and
APA is the coauthor. Then we stratify the Random Walk paths by only keeping
author nodes A. Right part of Figure 5.2 illustrates this procedure. The procedure
of generating walking paths is illustrated in Algorithm 4 The next step is to feed
the paths into SGNS to learn efficient node embeddings. The algorithm is illustrated
in Algorithm 5. We first generate paths as shown in Line 2 and 3. Then for each
node n; on a walking path, we first get a random integer number as the window size
in the range of (0,C]. The training samples for this node will be ¢ nodes left to it

and ¢ nodes right to it. For each node in the window, the training pair is (n;,n;).
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Equation 5.4 is used to update the output vector v,;. Besides nodes in the window,
we also generate K negative samples for node n; and update the output vector for
each negative sample. Then the embedding vector for n; is updated. After scanning
all walking paths, we will get a trained model, consisting of the embedding vectors of

all nodes.

Algorithm 4 Stratified RW

1: function RW(G, LENGTH.)
2: Generate P2Adict from G.

3 Random.shuffle(G.nodes())
4 PATHS =1]
5 for node in G.nodes() do
6: if node is an author then > Generate a path for each author.
7 cur = node
8: path = [cur], pathwithP = [cur]
9: pathwithP.append(cur.neighbor) > cur is an author. Its neighbor must be a paper
10: while len(path) < LENGTH do
11: stepl = pathwith P[—2]
12: step2 = pathwithP[—1]
13: if stepl is a paper and step2 is a paper then
14: if len(PAdict[step2]) = 0 then > If the second papers has no author
15: Break > Break this path.
16: end if
17: while True do
18: step3 = a random neighbor of step2
19: if step3 is an author then
20: path.append(step3)
21: pathwith P.append(step3)
22: end if
23: end while
24: else > Decide the next node after AP. It could be A or P.
25: step3 = a random neighbor of step2
26: if step3 is an author then
27: path.append(step3) > Only append authors to path.
28: pathwith P.append(step3)
29: else
30: pathwithP.append(step3)
31: end if
32: end if
33: end while
34: PATH S.append(path)
35: end if
36: end for

37: return h
38: end function
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Algorithm 5 SEHN

Input: The heterogeneous network G, walking path length [, window size C'
Output: Vector representation v

1: Initialize v < uniform(—%2 0:5)

2: PATHS « StratifiedRW (G,1) .

3: Keep Author nodes A from PATHS.

4: for each path in PATHS do

5: for node n; on path do

6: window ¢ < random integer € (0, C|

7 for each node n; in window ¢ do

8: Update output vector u,, according to Eq. 5.4

9: Draw K negative samples according to the noise distribution P,
10: for each negative sample ny do
11: Update output vector u,, according to Eq. 5.4
12: end for
13: Update embedding vector v,, according to Eq. 5.4
14: end for
15: end for
16: end for

17: return v

The objective function is the same as in SGNS [Mikolov et al., 2013]:

K

J = Z Z log o(u; - v;) + ZEnkan log o (—uy - v;)], (5.1)

n; €V njEN+(ni) k=1

where K is the number of negative samples, E,, . p, is to randomly select a negative
sample n; according to noise distribution P,. The noise distribution is derived from

the node degree distribution [Mikolov et al., 2013], which is defined in Equation 5.2.

P(n;)°™
P,(n;) = (5.2)
2 nsev P(15)%7
o(+) is the Sigmoid function, which is defined in Equation 5.3.
@)= (5.3
= exp(—1) '

Ny (n;) is the sampling strategy used to generate the training pairs for n;. In our
work, we use Random Walk as V.

The update equations in SGNS are:
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K
Up; = Up; + 7][(1 - O<unj ’ Um)) " Unp, + ZEnkNPn - O(Unk : Uni) ) unk]
— (5.4)

Up; = Up; + N[t — 0(Un; - Vn;) - Un,]-

In the update equation, ¢t = 1 when n; is a output word, and ¢ = 0 when n; is a
negative sample. 7 is the learning rate, which decays linearly from 0.025 to 0.0001 in
most related works and implementations [Rehurek and Sojka, 2010, Mikolov et al.,

2013, Tang et al., 2015b, Goyal and Ferrara, 2018].

5.3 Experiments

5.3.1 Experimental Setup

The experiments are designed to demonstrate the efficacy of stratification. Hence,
we compared several algorithms side by side with their stratified counterparts. The

comparison methods are:

1. DeepWalk. DeepWalk treats the heterogeneous network as homogeneous net-
work. It uses original RandomWalk with fixed length to generate walking paths.
We set the length to 100.

2. DeepWalk®: The walking strategy is the same as DeepWalk. It only keeps

authors on the walking oaths and remove all papers.

3. Node2vec. Node2vec uses a biased Random Walk to generate walking paths.
There are two parameters in Node2vec to control the walker. The return pa-
rameter p controls the probability of revisiting a node on the existing path. The

in-out parameter ¢ determines how far the walker will go.

4. Node2vec®: The walking strategy is the same as Node2vec. It only keeps authors

on the walking oaths and remove all papers.
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5. Metapath2vec. Metapath2vec, the state of the art in HN embedding, specifies
a meta-path scheme when generating walking paths from heterogeneous net-
works. Based on the property of our network, we set the scheme as ‘APA’
and ‘APPA’. ‘APA’ indicates the coauthor relation and ‘APPA’ represents the
citation relation. Thus the walking path will be ‘... APAPPAPPAPAPA...".

6. SEHN. Same as Metapath2vec, we also specify two meta-path schemes. While
we stratify the paths by removing all papers.

The experiments are replicable by running the code and data from our webpage !.

We reimplemented DeepWalk, Node2vec, and Metapath2vec using Gensim [Re-
hurek and Sojka, 2010] in the same framework so that the comparison is fair. The
hyper-parameters are set as follows. The trace length in DeepWalk is 100, a commonly
used length for better performance [Grover and Leskovec, 2016]. The dimension of
embedding vectors is 128. The number of negative samples for each training sample
is 5. The learning rate decays linearly from 0.025 to 0.0001. For window size, we
choose 10 instead of 5 that is normally used in word and network embedding. This
is because, to have roughly 5 authors in a trace, we need to have a trace of length 10
or more that is a mix of authors and papers.

In order to have a fair comparison, we generate the same length of traces for
DeepWalk, Node2vec, and Metapath2vec. i.e., we generate a waking path with a
length of 100 for each author. In total, there are #author x 100 nodes on the walking
paths. When doing this, there is a dead-end problem in MetaPath Random Walk.
Due to the in-completeness of the data, not every paper has an author. If this kind
of paper is the second paper on the MetaPath APP A, the walking path will have no
place to go and have to be terminated before reaching the length of 100. In this case,

we do a random restart of the Random Walk to make up for the lost length.

http://zhao15m.myweb.cs.uwindsor.ca/sehn
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5.3.2 Evaluation

We test our embeddings in the classification task. The classifier is the off-the-shelve
Logistic Regression [Nelder and Wedderburn, 1972] implemented in the scikit-learn
toolkit [Pedregosa et al., 2011] with default parameters. The input of the classifier is
the embedding vector of an author, then it predicts the corresponding label of this
author. In CS data, there are 9 classes and we want to analyze each class. Thus,
we use one-vs-all [Bishop, 2006] and 10-fold cross-validation, then calculate the micro
average F1 score as the performance for each class. Due to the randomness of the
embedding algorithms and randomness in Random Walks, each run produces different
embeddings. To reduce the variance of the results, we train five independent models
and report the average on these five models. Due to the relatively small size of the
labeled data, there is also variation caused by the split of the test data and training
data. Hence we train 20 classifiers using different random splits. In total, there will
be 100 evaluations per algorithm and per dataset. For each classifier, we calculate the
macro and micro average F1 score of all classes as the performance. By doing so, we
can get 100 performance for each dataset. The average score of the 100 performance is
finally reported as the final performance. The micro and macro F1 scores are defined

as:

micro-F1 :2*p>—<i- "
p+r
5.5)
Fi(l (
macro-F1 = —Zle‘ﬁﬁ‘ ( ),

where L is the set of classes, F'1(() is the F1 score for class [, p is the precision and r

is the recall. The precision and recall in the formula are defined as

e Siectrl)
> iec(tp(l) + fp(1))
- Zleﬁ tp(l)
> iec(tp(l) + fn(l))

(5.6)
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TABLE 5.1: Statistics of two datasets.
‘ DBLP CS

#Author 992,874 999,940
#Paper | 1,755,623 1,283,369
#Edge | 16,967,820 12,963,509

#Labeled authors 3,982 784
#Classes 4 9
Avg. degree 6.17 5.68

The micro-F1 is the weighted average score of all classes. While the macro-F1 value

is the unweighted mean of all classes.

5.3.3 Datasets

We focus on author-citation HN in this study. Although there are many such net-
works, not many of them are labeled so that the classification task can be evaluated.
We use one such network (named as DBLP) that is often used for HN embedding
evaluation such as in [Shi et al., 2018b, Ji et al., 2018, Shi et al., 2018c]. The original
data contains five types of nodes: author (A), paper (P), term (T), venue (V), and
year (Y). There are five types of relations in the data: paper-paper, paper-author,
paper-term, paper-venue, paper-year. In our experiment, we only keep papers, au-
thors, paper-paper relation and paper-author relation. We also construct another
network in Computer Science domain, called CS. Their statistics for WCC (weakly
connected components) are summarized in Table 5.1. The two datasets are HN in
the real world. The data in the Metapath2vec paper is not used because it is not an
author-citation network-it does not have citation links.

In DBLP dataset, Sun et al. [2009b] manually labeled 3,982 authors in four re-
search areas, including 975 authors in information retrieval, 1169 authors in database,
740 authors in data mining, and 1098 authors in artificial intelligence.

We conduct the author embedding experiments on the CS dataset. The details
can be found in Section 3.3. We first build the heterogeneous author-paper network

and further clean the data by taking the largest WCC(weakly connected component)
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in our experiment. There are 999,940 authors and 1,283,369 papers. It also consists

12,963,509 edges, including 4,940,418 authorship links and 8,023,091 citation links.
The average degree in the CS dataset is 5.68. We manually label 784 ACM fellows

using the 9 areas from CCF conference and journal categories

2
Architecture. 133 authors. Include computer Systems, Parallel and Distributed

Systems, Computer Storage.

AL 68 authors. Include Pattern Recognition, Machine Learning, Artificial Intel-
ligence, Fuzzy Systems, Neural Networks, Computational Linguistics, Computer-

Human Interaction.

Network. 71 authors. Include Network Communication, Mobile Network Ad

Hoc, Sensors, Wireless Communications, Computer Security, Cryptography.

Graphics. 54 authors. Include Image Processing, Visualization and Computer

Graphics, Multimedia Computing, Video Technology.

Theory. 133 authors. Include Information Theory, Algorithmica, Mathematical
Structures, Complexity, Symbolic Logic, Discrete Mathematics, Virtual Reality.

SE. 171 authors. Include Programming Language, Software Engineering, Sys-

tem Software, Software Quality, Image Processing.

DB. 101 authors. Include Database Management, Information Science, Data

Mining, Knowledge Discovery, Web Semantics, Information Retrieval.

Security. 31 authors. Include Secure Computing, Cryptography, Computer

Security, System Security, Privacy.

HCI. 22 authors. Humane-Computer Interaction.

2http://faculty.neu.edu.cn/swc/guogb/docs/ccf-2015. pdf
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FIGURE 5.3: Multi-class author classification performance on DBLP and CS
datasets.

5.3.4 Results

The overall results are summarized in Table 5.2 and Figure 5.3. SEHN outper-
forms Metapath2vec, the state-of-the-art HN embedding algorithm, consistently in
two datasets. DeepWalk and Node2vec also improve greatly with stratification. The
highest improvement observed is 24% when the training size is 5% for macro-F1
in CS dataset. It tapers off with the increase of training size, but still have 9.6%
improvement when training size is 90%.

To highlight the importance of stratification, we shall take notice that stratifica-
tion plays a bigger role than MetaPath in the improvement. All stratified algorithms
perform better than the un-stratified versions. Even the stratified Node2vec outper-
forms Metapath2vec.

This also draws our attention to the difference in the performance of DeepWalk

and Node2vec from what is reported in Dong et al. [2017]. In Dong et al. [2017],
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DeepWalk and Node2vec underperform by a much bigger margin compared with
Metapath2vec, especially when the training data is small. This is mainly because
the network is different. Our network uses citations to connect authors, while their
network does not have citation information.

As a side-by-side comparison of stratified algorithms and their un-stratified coun-

terparts, Figure 5.4 shows the average micro F1 scores when training ratio is 90%.

0.8
0.6 -
0.6
E E
5 5 041
E 04 g
= =
0.2 1
0.2
0.0 0.0 — .
¥ % & 2 <
g § ¥ g4
& 3 s g
£& <32 §
&y
(a) Micro F1 score on DBLP. (b) Micro F1 score on CS.

FIGURE 5.4: Multi-class author classification performance on DBLP and CS
datasets. Stratification outperforms the heterogeneous counterparts on DeepWalk,
Node2vec, and Metapath2vec. Training ratio = 90%.

5.3.5 Visual Inspection

We plot ACM Fellows from CS dataset in Figure 5.5. The dimension of embedding
vectors is reduced from 128 to 2 by t-SNE [Van Der Maaten, 2014]. Each color
represents a class. Each dot is an ACM Fellow. We can see that SEHN outperforms
other methods visibly—the boundary between the classes are more clear, and the
clusters are tighter. It is especially visible for areas Graphics, HCI, AI, Theory, and
DB. Another observation is that Al and DB are hard to set apart, which reflects
the nature of these two research areas. In addition to SEHN, we also see a clear

improvement of stratified versions over their un-stratified DeepWalk and Node2vec

algorithms.
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®  Architecture ® HCI ®  Security e Al ®  Graphics e SE ®  Theory e DB ©  Network

(e) Metapath2vec. (f) SEHN.

FIGURE 5.5: 2D plots of ACM Fellows in CS dataset.
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FIGURE 5.6: The performance of DB and AI on Aminer dataset. Each box is 100
evaluations. DeepWalk: 0.90, DeepWalk®: 0.92, Node2vec: 0.89, Node2vecS: 0.92,
Metapath2vec: 0.91, SEHN: 0.95.

As a case study, we plot the ACM Fellows in areas DB and Al in Figure 5.7. It
is obtained from 6 embedding methods with 128 dimensions, then reduced to two
dimensions using T-SNE. The orange color represents DB class and the blue color
is Al class. Overall, SEHN can efficiently split the two classes apart. Moreover,
the authors in the same class are located closer. Figure 5.6 shows the side-by-side
comparisons. One interesting author is C-Faloutsos. Without stratification, he is
located deep in the DB area. After stratification, he is moved towards Al, sitting
on the boundary between DB and AI. Obviously, this describes better the research
area of Professor Faloutsos. Another obvious observation can be found on J-Han.
J-Han is working on both database management and artificial intelligence. While his
recent research is focusing on AI. All three methods can effectively put him in the
junction area. J-Han sits alone in DeepWalk in the central part. He is close to J-Pei
in Metapath2vec. While he is in the middle of a small group in SEHN. We argue that
SEHN put him in a better place that other two methods. J-Pei is J-Han’s highest
coauthored people in Google Scholar. Thus they should be the closest. Similar for
C-Aggarwal, who is J-Han’s 8th highly coauthored author. P-Yu, although he is
in DB group, is J-Han’s 3rd highly coauthors people and they are colleagues in the
University of Illinois. They published lots of papers together in the cross domain.
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FIGURE 5.7: 2D plot of authors in DB and Al classes. Orange dots are database.

Blue dots are authors in artificial intelligence.
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TABLE 5.3: Performance of all methods. 5 independent models for each algorithm.
Evaluate 20 times for each model. 100 evaluations for each algorithm.

Dataset Class DeepWalk  DeepWalk® | Node2vec Node2vec® | Metapath2vec SEHN
DM 0.7018 0.7503 0.6725 0.7171 0.6950 0.7601

DB 0.8329 0.8748 0.8403 0.8578 0.8454 0.8800

DBLP IR 0.7746 0.8144 0.7491 0.7825 0.7820 0.8195
Al 0.7862 0.8558 0.8181 0.8303 0.8090 0.8603

Micro-F1 0.7814 0.8316 0.7806 0.8056 0.7919 0.8375
Architecture 0.5725 0.6208 0.5831 0.6196 0.5934 0.6407

HCI 0.6758 0.7570 0.7218 0.7758 0.6428 0.7369

Security 0.6435 0.6573 0.6596 0.6866 0.6153 0.6790

Al 0.6254 0.6833 0.6576 0.6803 0.6305 0.7090

cs Graphics 0.6886 0.7303 0.6915 0.7331 0.7130 0.7561
SE 0.5984 0.6258 0.6000 0.6207 0.6017 0.6333

Theory 0.6155 0.6571 0.6347 0.6626 0.6165 0.6697

DB 0.7661 0.7887 0.7695 0.7819 0.7586 0.7962

Network 0.6752 0.6861 0.6963 0.6939 0.6688 0.6994

Micro-F1 0.6380 0.6738 0.6506 0.6749 0.6410 0.6875

TABLE 5.4: Improvement. 5 independent models for each algorithm. Evaluate 20
times for each model. 100 evaluations for each algorithm.

Dataset Class DeepWalk® v.s. DeepWalk | Node2vec® v.s. Node2vec | SEHN v.s. Metapath2vec
DM 6.91 6.63 9.37

DB 5.03 2.08 4.09

DBLP IR 5.14 4.46 4.80
Al 8.85 1.49 6.34

overall 6.42 3.20 5.76
Architecture 8.44 6.26 7.97

HCI 12.02 7.48 14.64

Security 2.14 4.09 10.35

Al 9.26 3.45 12.45

cs Graphics 6.06 6.02 6.04
SE 4.58 3.45 5.25

Theory 6.76 4.40 8.63

DB 2.95 1.61 4.96

Network 1.61 -0.34 4.58

overall 5.61 3.74 7.25

SEHN can efficiently merge these authors together, although they may have different

labels.

5.3.6 Class-wise Classification and Variation Analysis

To have a microscopic view on the performance of the classification tasks, we also
plot some class-wise results. The evaluation is one-against-all remaining data. The
repetition is the same as before. In Figure 5.8, the x-axis represents each class and
y-axis is the average F1 scores. The shaded area shows the standard deviation of
100 F1 scores. We can see that our result is consistent for each individual class.

In addition, the variance is small, indicating that the improvements are statistically
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significant.

= DeepWalk —— DeepWalk® = Node2vec —— Node2vec® = Metapath2vec —— SEHN

= DeepWalk —— DeepWalk® = Node2vec = Node2vec® = Metapath2vec = SEHN

(b) Micro F1 score on CS.

FIGURE 5.8: Performance of each class on DBLP and CS datasets. 5 independent
models for each algorithm. Evaluate 20 times for each model. 100 evaluations for
each algorithm.

In class-wise classifications, we observe even larger improvements. For example in
the CS dataset, SEHN improves by 5.0% on DB class. DeepWalk®, Node2vec® and
SEHN can achieve 5.61%, 3.74%, 7.25% overall improvement. SEHN is consistently
the best among all classes. Our best performance is on DB class with 0.80 F1 score.
The largest improvement is 14.64% on HCI class compared with Metapath2vec. Ar-
chitecture and SE are the most difficult to be classified. All three methods get low
F1 scores. It may because many authors work in these two large areas, but they
focus on some specific small research domains, making them are not similar to each
other. Unlike DB and AI, which are small areas and works in these areas are close
to each other. Another reason is that Architecture, Security and Network are usually
close. Someone may work on the security of architecture. Some focus on network
architecture. The boundary of these three research areas are relatively more blur
than DB, AI Graphics and HCI. Theory is also not easy to be classified. It makes
sense that most theoretical work are proposed early and have been used in most areas,
such as complexity theory and some fundamental mathematical theory. All methods

can get high performance on DB, Al, Graphics and HCI classes. Figure 5.8 shows
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the performance of all methods on 9 classes. Since the evaluation data is small, the
standard deviation area is large. All stratified versions are consistently better, except
for Node2vec® on network class, which is only 0.34% worse. There is no big difference
between DeepWalk and Metapath2vec. Although the number of papers between two
authors is smaller in Metapath2vec, both of them learn embeddings for papers and

authors simultaneously.

5.4 Comparison with Homogeneous Network

Since the Stratified Random Walk trace retains the author nodes only, it resembles
Random Walk traces that are obtained from a homogeneous author network. Such
an author network can be induced from the heterogeneous graph as illustrated in
Figure 5.9. We follow the transformation defined in [Radicchi et al., 2009], i.e., we
first generate an unweighted undirected author citation network, then add coauthor

links into the network.

FIGURE 5.9: Induced homogeneous network from heterogeneous network.

To compare embeddings on these two networks, we apply DeepWalk on homoge-
neous networks and apply our SEHN on heterogeneous networks. Table 5.5 lists the
performance. We use the same evaluation as discussed in the evaluation section, i.e.,
we train 5 models for each embedding method, then evaluate each model 20 times.
The final performance is the average of 100 micro F'1 scores. We also list the standard

deviation of 100 evaluations in the table. As expected, SEHN outperforms Random
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TABLE 5.5: The F1 scores and standard deviation of homogeneous and heterogeneous
networks in CS and DBLP datasets. Each F1 score is the average of 100 evaluations.

Dataset ‘ DeepWalk on induced network SEHN
DBLP 0.61 (£ 0.004) 0.84 (£ 0.003)
CS 0.68 (£ 0.007) 0.69 (£ 0.010)

TABLE 5.6: The statistics of the homogeneous author network in CS and DBLP
datasets.

Dataset ‘ # node # edge Avg. degree
DBLP | 992,874 406,694,612 409.6
CS 999,940 43,456,456 43.5

Walk on homogeneous networks. This can be explained by the loss of information
when the homogeneous author network is obtained from the heterogeneous network.
For example, the multiple author citation relation is lost during the transformation.
One interesting phenomenon is the big difference in terms of improvement margin
in two datasets. One improves 37.7% while the other is merely 1.5%. To understand
such a difference, let’s check the difference in the datasets. For both datasets, the
induced author network is much larger than the original heterogeneous network in
terms of the edge count, although the node count is reduced. Table 5.6 lists the
statistics of the author network in CS and DBLP datasets. Although the number
of authors in the two datasets is similar, the homogeneous network in DBLP is ten
times larger than in CS data. On average, each author is linked with 409 authors in
the DBLP dataset, making the network denser than its heterogeneous counterpart.
Because of the higher density of the citation links in DBLP data, its induced
network loses more information, i.e, the weight on the edge that reflects the flow
between the author. Hence the homogeneous network underperforms more. In an
extreme case when every author had only one paper and made only one citation, we
project that SEHN would perform the same as the Random Walk on homogeneous

networks.
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5.5 Discussions and Conclusions

This paper proposes to stratify Random Walk traces to improve the embedding of
heterogeneous networks. The evaluation is very successful using academic citation
networks: it improves the corresponding un-stratified traces significantly on both
networks. The evaluation is the commonly used classification task.

Stratification is not a panacea that works for all networks. It needs to be applied
with care. As a rule of thumb, we only throw away another type of node when they
do not add much information. For instance, in the author-paper-venue network in
Dong et al. [2017], one MetaPath is Author-Paper-Venue-Paper-Author, aka APV PA.
Suppose that we are only interested in the embedding of authors. We can not stratify
the path APV PA to AA in this case. We have conducted experiments and find that
the stratified version is inferior. The reason is that the MetaPath APV P A represents
a co-attendance relation that encompasses many authors. Each author connects with
hundreds of other authors, for different reasons (i.e., their papers). In this case,
the papers in the MetaPath APV PA are important to distinguish the connection
between authors. If we remove the papers in between, we lose the meaning as for
why they are connected. All the authors are connected in the same way as if they
had written the same paper. On the other hand, in our author-citation network, the
MetaPath APPA has much less variations in the papers in between. For any given
authors A; and A;, when there is a MetaPath A;PPA;, there are not many different
paper citations between A; and A;. Therefore, they can be removed, and embedding
is consequently improved. This guideline can help us identify types of heterogeneous

networks that can use stratification.
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CHAPTER 6

Conclusions and Future Directions

Heterogeneous academic networks have been studied for decades. More and more
researchers are trying to extract information and build some useful applications from
such networks. In this chapter, we will summarize what we have done to study
the heterogeneous academic networks. We will also introduce some potential future

directions in this research area.

6.1 Discussions and Conclusions

A heterogeneous network is a network that has more than one node type or edge
type. In real applications, most networks are heterogeneous. Naturally, substantial
researchers have shifted the focus from homogeneous networks to heterogeneous net-
works. Academic networks are derived from scholarly data. They are heterogeneous
in the sense because different types of nodes are involved, such as papers and authors.

This dissertation starts with the introduction of two problems we are studying.
More specifically, we give an overview as well as the challenges of academic ranking
and heterogeneous network embeddings. Chapter 2 give a comprehensive overview of
the academic ranking and network embeddings. PageRank algorithm has been widely
applied to academic ranking. Thus we use the PageRank algorithm and propose a new
heterogeneous author paper network to measure the academic influence for authors

in Chapter 3. The academic influence of scholars is hard to measure. To concur this
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problem, we propose to use the number of award winners among top-ranked authors
to do the evaluation. We also introduce two datasets. The first one is in the Computer
Science domain, which is collected by us from the AMiner dataset. Another is in the
Health domain. The raw data is provided by our industry partner, then cleaned by
us. Some analyses are made to help readers to have a comprehensive understanding
of the two datasets. During our research, we further improve the method by finding
and avoiding the long reference issue. Besides the heterogeneous network, we also
noticed two phenomenons of the other two widely used networks. The paper citation
network has the mutual citation issue, which will highly rank some low productive
authors. The author citation network, on the other hand, tends to prefer old authors.
Thus, in Chapter 4, we improve our previous method by restricting the authorship
directions and adding a proper weight ratio between papers and authors. Our new
method can efficiently address the above three issues. Experiments indicate that we
can achieve better performance in terms of the number of award winners among top-
ranked authors. More importantly, our method can identify not only old influential
authors but also more rising stars. The experiments also demonstrate some interesting
phenomenons. For instance, among the top authors, our ranking negatively correlates
with citation ranking and paper count ranking.

The second main part of this dissertation is to learn the vector representations of
authors from the heterogeneous networks. In Chapter 5, we propose a new embedding
method called Stratified Embedding for Heterogeneous Networks (SEHN). Similar to
embedding algorithms for homogeneous graphs, many heterogeneous network embed-
ding algorithms are also induced from Skip-Gram Negative Sampling (SGNS). The
overall idea is to generate Random Walk traces, then the SGNS model takes the
traces as input and learns the vector representations for nodes on traces. MetaP-
ath is widely used to generate traces from heterogeneous networks. The MetaPath
traces consist of mixed node types, and different node types are projected into one
single low-dimensional space. In many applications, there is no need to compare dif-
ferent types of nodes, hence there is no need to embed them in one space. In this

scenario, we propose that different types of nodes should be projected into differ-
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ent spaces. More specifically, we first generate MetaPath based walking traces, then
further separate the traces into different layers, where each layer contains only one
type of node. By testing on two datasets, our SEHN outperforms the state-of-the-art
method. Moreover, the efficacy of stratification is also demonstrated on two classic
network embedding algorithms DeepWalk and Node2vec. We also show that SEHN

can learn better embeddings than the corresponding homogeneous author networks.

6.2 Future directions

This dissertation studies the heterogeneous academic networks. The complex struc-
ture and rich information can give us a comprehensive overview of such data. Despite
the topics in this dissertation is limited, there are many other possible directions

worth exploring in the future:

e This dissertation focuses on authors in academic networks. It is natural to see
we expand our methods for other types of entities, such as papers, institutions,
venues, etc. For example, our ranking method is running on heterogeneous
academic networks. It also gives the ranking for papers. Similar to author
ranking, it is hard to obtain ground truths for paper rankings. Thus, one
possible direction is to design and obtain the evaluation criteria for other entities
in academic networks and compare our methods with others. We also study the
embeddings of heterogeneous academic networks. Our methods are validated
on two datasets where authors are labeled into different domains. Similarly, we

can also study and evaluate the embeddings for other entities.

e There are many possible applications that can be built on top of this disserta-
tion. For instance, after we get the rank and embeddings of the authors, we
can predict the future raising stars and make a collaboration recommendation
system for different fields. We can also track the evolution of the author rank-
ing to predict the trend of science. For example, we can extract the influential

authors in the past few months or years, then the largest community among
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them are most likely to be the hot research topic.

We only focus on academic data in this dissertation. Thus, another possible
direction is to apply our methods on other kinds of heterogeneous networks, such
as Twitter and Movie Review data. In fact, most of the real-world networks are
heterogeneous naturally. Our ranking method can identify the most important
entities in other networks. We can also use our embedding method to learn node
embeddings for such networks so that out-of-box machine learning toolkits can

be applied.
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