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ABSTRACT

Academic networks are derived from scholarly data. They are heterogeneous in

the sense that different types of nodes are involved, such as papers and authors.

This dissertation studies such heterogeneous networks for measuring the academic

influence and learning vector representations of authors.

Academic influence has been traditionally measured by the citation count and

metrics derived from it. PageRank based algorithms have been used to give higher

weight to citations from more influential papers. A better metric is to add authors

into the citation network so that the importance of authors and papers are evaluated

recursively within the same framework. Based on such heterogeneous academic net-

works, we propose a new algorithm for ranking authors. Tested on two large networks,

we find that our method outperforms the other 10 methods in terms of the number of

award winners among top-ranked authors. We further improve the method by finding

and dealing with the long reference issue. Moreover, we find the mutual citation in

paper networks and the self citation issue in author networks. Our new method can

reduce the impact of the above three issues and identify more rising stars.

To learn efficient author representations from heterogeneous academic networks,

we propose a new embedding method called Stratified Embedding for Heterogeneous

Networks (SEHN) based on Skip-Gram Negative Sampling (SGNS). We conduct Ran-

dom Walks to generate the traces that represent the structure of the network, then

separate the traces into different layers so that each layer contains the nodes of one

type only. Such stratification improves embeddings that are derived from the mixed

traces by a large margin. SEHN improves the state-of-the-art Metapath2vec by up

to 24% at a certain point. The efficacy of stratification is also demonstrated on

two classic network embedding algorithms DeepWalk and Node2vec. The results are

validated in two heterogeneous networks. We also demonstrate that SEHN outper-

forms the embedding of homogeneous author networks that are induced from their

corresponding heterogeneous networks.
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CHAPTER 1

Introduction

1.1 Introduction

A network is a structure made up of a set of nodes and edges. It exists everywhere in

our daily life. For example, people follow others on Twitter, which forms an online

social network. In scholarly data, papers refer to each other, forming into a citation

network where each node represents a paper and each edge represents a citation link.

Similarly, we can have co-author networks that describe the co-authorship relations

between authors. Traditionally, these networks are studied in a homogeneous way –

there is only one type of node and one type of edge in the network. However, most

of the real-world networks are heterogeneous, which contains multiple types of nodes

and edges. Heterogeneous networks are more complex than homogeneous networks,

but they also contain more information. Therefore, more and more researchers are

switching their focus from homogeneous networks to heterogeneous networks.

The popularity of open access such as arXiv has attracted attention to both

academia and industry in the past few years. There are around 1.76 million scholarly

articles archived on arXiv at the time of writing this dissertation. The massive volume

of data has great potentials. Heterogeneous academic networks are heterogeneous net-

works derived from this kind of academic data. Figure 1.1 shows an example. Panel

(a) is a screenshot of an academic paper. There are multiple types of entities such

as paper title, authors, institutions, venue, and publication year as shown in Panel

1



1. INTRODUCTION

(a) The information of a paper.

Entity Description

Paper dong metapath2vec 2017
Year 2017
Venue KDD
Author1 Y Dong
Author2 N Chawla
Author3 A Swami
Institution1 Microsoft Research
Institution2 University of Notre Dame
Institution3 Army Research Laboratory

(b) List of entities

p

a1

a2

a3

i1

i2

i3

y

v

...p2...

...p3...

(c) The induced network.

FIGURE 1.1: An example of an academic paper and the induced heterogeneous
network.

(b). These entities link together and form into a complex heterogeneous academic

network, which is illustrated in Panel (c). Node p represents the paper, which refers

to other papers and also receives citation links. The links between three authors

a1, a2, a3 and p represent authorship relations. From these three authorship relations,

we can also infer the co-authorship relation between a1, a2, a3. Similarly, year y, venue

v and institution i are present in this heterogeneous academic network.

This dissertation studies the heterogeneous academic networks from two aspects.

The first problem is to measure the academic influence. The widely used metrics eval-

uate the contribution of a scholar by the quality and/or quantity based on academic

outputs. The quality is measured by citation count and the quantity is measured

by the number of academic publications. And most importantly, these metrics are

obtained from homogeneous networks which only consider a certain type of entity. In

our work, we exam and design the heterogeneous academic network from raw data

and propose a PageRank-based method to measure the academic influence of scholars.

Our proposed method outperforms the other 10 methods in terms of the number of

2
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award winners among top-ranked authors. We further improve the method by finding

and dealing with the long reference issue. Moreover, we find the mutual citation in

the paper network and self citation issue in the author network. Our new method

can address the above three issues and can identify more rising stars. To the best of

our knowledge, this is the first work that discusses the three issues in the academic

ranking problem.

The second problem we study in this dissertation is to learn embeddings from het-

erogeneous academic networks. Embeddings are short dense vector representations of

nodes or edges in a network. With the learned embeddings, we can easily apply various

machine learning / deep learning algorithms for different tasks, such as classification,

link prediction, and recommendation. However, most existing works only focusing on

learning embeddings from homogeneous networks. In our work, we introduce a new

embedding method called Stratified Embedding for Heterogeneous Networks (SEHN)

based on Skip-Gram Negative Sampling (SGNS) [Mikolov et al., 2013]. To learn the

heterogeneous network embeddings, most works use MetaPath [Sun and Han, 2012],

which restricts Random Walk patterns, to produce traces of mixed node types. We

argue that different types of nodes should be projected into different spaces. In this

scenario, we separate the traces into different layers, where each layer contains only

one type of node. SEHN improves the state-of-the-art Metapath2vec [Dong et al.,

2017] by up to 24% at a certain point. The efficacy of stratification is also demon-

strated on two classic network embedding algorithms DeepWalk [Perozzi et al., 2014]

and Node2vec [Grover and Leskovec, 2016]. We also demonstrated that SEHN out-

performs the embedding of homogeneous author networks that are induced from their

corresponding heterogeneous networks.

1.2 Challenges

Similar to most of the real-world networks, academic networks are heterogeneous.

There are various entities in the academic network, such as papers, authors, venues,

institutions, etc. The heterogeneity of the network makes it difficult to study and

3
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understand. In our work, we focus on one of the most important entities to study – au-

thors. More specifically, this dissertation contains two major components: measuring

the academic influence of authors and representing authors using network embedding

methods.

Measuring the academic influence of authors is a challenging task. Traditional

metrics such as citation count[Gross and Gross, 1927], H-index[Hirsch, 2005] and G-

index[Egghe, 2006] treat every paper and citation equally. However, citations, papers,

and authors are not independent and acting alone. Instead, they form a complex het-

erogeneous network in which papers and authors interact with each other. The success

of PageRank [Brin and Page, 1998] has inspired lots of works to address the ranking

problem on academic networks since 2007 [Chen et al., 2007]. Most of these works

only apply PageRank on homogeneous author networks [West et al., 2013, Radicchi

et al., 2009] or derive the author influence from homogeneous paper citation net-

works [Fragkiadaki and Evangelidis, 2016]. Converting heterogeneous networks into

homogeneous networks could cause information loss, and increase the computation

cost unnecessarily. Yet, how to use the heterogeneous network to efficiently rank au-

thors is still an open problem. The other challenge is lack of datasets. Most existing

datasets are relevantly small. For example, there are only 108 authors in [Ding et al.,

2009], 1,567 authors in [Liu et al., 2005], and 7,488 authors in [Zhou et al., 2007].

Moreover, evaluating author ranking is also challenging due to the ground truth is

not available. Developing a standard benchmark for author ranking is a curial and

difficult task. While studying the above problems, we encounter three special cases

when ranking authors using academic networks. These special cases will accidentally

boost the rank of some authors. These problems need to be addressed for a fair result.

In this dissertation, we address these problems and challenges using a heterogeneous

author paper network. The details will be discussed in Chapter 3 and 4.

Learning the representation of academic networks has been studied for many years.

When studying scholarly data, most works focus on papers instead of authors. The

first challenge is that there are limited datasets, especially labels. The scholar data

evolves rapidly so that the research interest for an author may shift from time to

4
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time. When learning the representation from scholarly data, most works mainly learn

the node representations from homogeneous networks induced from heterogeneous

networks. However, it is challenging to learn the structure of heterogeneous networks.

Most existing works ignore the heterogeneity property and use Random Walk based

method to capture the structure of heterogeneous networks and the embeddings of

different entities lay in the same vector space. In this dissertation, we try to tackle

these challenges and propose a new method to learn author representations from

heterogeneous academic networks.

1.3 Contributions

We summarize our contributions from the following aspects:

• APR: We propose the APR (Author PageRank) method to efficiently identify

influential authors using our proposed heterogeneous network, which contains

various relations, including citation relation and authorship relation. Our net-

work contains more information than the widely used homogeneous author cita-

tion network and is in a smaller size in terms of the edge count. Compare with

existing works, our APR method outperforms the other 10 methods in terms

of the number of award winners identified in top-ranked authors. For example,

we can identify 8 Turing Award winners among top 20 ranked authors.

• APN: When analyzing the correlation between APR and other methods, we

discover three social cases: mutual citation issue in the paper network, self ci-

tation issue in the author network, and long reference issue. In our work, we

propose a new weighted heterogeneous author paper network (APN) to im-

prove our APR method. By specifying the authorship directions and properly

controlling the transfer weight, our APN network can avoid the long reference,

mutual citation and self citation problems. To the best of our knowledge, we

are the first to identify and deal with the three issues. Our method can identify

5 Turing Award winners in top 10 and 16 ACM Fellows in top 20 on the CS

5
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dataset. We also comprehensively analyze the difference of different ranking

methods by calculating their Spearman’s Correlation and applying the Hierar-

chical Agglomerative Clustering (HAC).

• Author Embeddings on Heterogeneous networks: This dissertation pro-

poses Stratified Embedding for Heterogeneous Networks (SEHN) to learn effi-

cient author representations from heterogeneous networks. It trains embeddings

from a single type of traces that are obtained from MetaPath. We also show that

stratification not only works for Metapath2vec, but also is a generic strategy

that can be used to improve other embedding algorithms. Experiments show

that our stratified versions outperform the unstratified ones significantly. On

the multi-class author classification task, SEHN improves the state-of-the-art

method by 6.32 % improvement on DBLP dataset and 8.03 % on CS dataset.

We further apply DeepWalk on homogeneous networks and apply our SEHN

on heterogeneous networks to make some comparisons. SEHN also outperforms

Random Walk on homogeneous networks with the improvement of 37.7 % on

DBLP dataset.

• Datasets: We collect and publish two large real-world datasets for Computer

Science and Health domains. CS dataset contains 13 million edges and 2 million

nodes. The Health dataset has 28 million nodes and 590 million edges. To the

best of our knowledge, our Health dataset is the largest dataset in a specific

domain. To better evaluate the ranking methods, we propose to use the number

of famous researchers among top-ranked authors to evaluate the performance

of ranking methods. We also collect 9 labels for 784 ACM Fellows on CS

dataset, which can be used for the author classification. These datasets are

publicly available on our webpage http://zhao15m.myweb.cs.uwindsor.ca/

datasets/.
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1.4 The Structure of the Dissertation

The rest part of this dissertation is structured as follows:

• In Chapter 2, we give a comprehensive overview of existing works that are

related to our research. The author ranking section includes some widely used

methods such as H-index and G-index. It also covers the PageRank algorithm,

PageRank-based ranking methods, and the analysis between different ranking

methods. In the network embedding section, we first explain a traditional vector

representation method and reveal the limitation. Then the neural network based

network embedding methods are discussed.

• In Chapter 3, we measure the academic influence using our proposed APR

method. We propose to use the number of famous researchers among top-

ranked authors to evaluate the ranking performance. Experiments that are

conducted on two large datasets show that our method is superior to other

widely used ranking methods. We also analyze the difference of our method

compared with others. Besides, we introduce two datasets that will be used in

this dissertation. We start with the raw data, then present the induced data

for both author ranking and author embeddings. We also make some analysis

to give readers a deep understanding of these two datasets.

• In Chapter 4, we first identify several issues when ranking the author influence

in existing works, including long reference issue in APR framework, mutual

citation on the paper network and self citation on the author network. We

propose a new weighted heterogeneous author paper network, which can address

the above issues. Our method is different from others in terms of Spearman’s

Correlation and can achieve better performance.

• In Chapter 5, we propose a new method to learn the author representations from

heterogeneous networks. Our stratified methods outperform the unstratified

versions significantly. We also experiment that our SEHN method generates

better embeddings than the induced homogeneous author network.

7
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• The conclusion of this dissertation along with some potential future directions

are introduced in Chapter 6.
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CHAPTER 2

Background and Related Works

In this chapter, we introduce some background knowledge and works that are related

to this dissertation. The focus for this dissertation divides into two parts: academic

ranking on heterogeneous networks and learning vector representations of the het-

erogeneous networks. We start with some traditional ranking metrics for measuring

academic influence. These metrics are widely used in both academia and indus-

try. PageRank is also a popular algorithm for measuring the importance of nodes

in networks. Thus, it is natural to see people applying PageRank-based algorithms

on academic networks, which will also be discussed in detail. We also review the

effectiveness of these methods in ranking academic data.

Representing an academic network is one of the crucial tasks when applying aca-

demic networks to solve real-world problems. Section 2.2 introduces the background

about the network embedding methods. It starts from the adjacency matrix and

ends with neural network-based approaches, such as DeepWalk, node2vec, and Meta-

path2vec. Some applications are also discussed.

2.1 Ranking on Academic Networks

Measuring academic influence for papers, journals, authors et al. has been studied

for decades. The most straightforward method is citation count [Gross and Gross,

1927], which is still widely used recently. An entity with more citations would be

9
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TABLE 2.1: An example of H-index. Two authors a1 and a2 both have 6 publications
and 10 citations.

# Paper
a1 a2

# Citation h # Citation h

1 10 1 4 1
2 0 2 3 2
3 0 3 3 3
4 0 4 0 4
5 0 5 0 5
6 0 6 0 6

ranked higher. H-index [Hirsch, 2005] and G-index [Egghe, 2006] are introduced

to treat papers differently according to citation count. Not every citation is equal.

Thus PageRank [Brin and Page, 1998] algorithm is applied to address the academic

ranking problem. In this section, we will start by introducing H-index and G-index,

then explain the PageRank algorithm. We also list some related works that apply

PageRank to the author ranking problem.

2.1.1 Count-based Ranking Methods

The influence of an author is traditionally measured by his/her productivity, thus

the simplest method is to use the number of publications to rank authors. However,

the quality of papers should also be considered. Researchers usually identify the

importance of a paper by counting its citations. Similar to authors, we can use the

total citation count of an author’s papers as his/her influence. Ranking authors by

papers’ citation count has been used since 1927 [Gross and Gross, 1927]. However,

simply using citation count may be aggressive. For example, author a1 has 2 papers

and each paper has 5 citations. Author a2 has only 1 paper with 10 citations. It

is hard to say which author is more influential. To solve this issue, Hirsch [2005]

combines the paper number and citation count together and disregards papers that

are less cited. This method is known as H-index.

H-index is easy to calculate and widely used until now. An author has an H-index

of h if he/she has published at least h papers and each paper has at least h citations.

10
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Algorithm 1 H-index
1: function H-index(a list of n papers and the corresponding citation counts.)
2: citation[0...n− 1] ← Sort papers by citation count in descending order.
3: Initialize h← 0
4: for i = 0 to n− 1 do
5: if i+ 1 ≤ citation[i] then
6: h = h+ 1
7: end if
8: end for
9: return h

10: end function

Table 2.1 gives an example. a1 and a2 both have 6 papers and 10 citations in total.

a1’s 10 citations are all from the first paper, while a2 has three less cited papers. By

applying Algorithm 1 on a1 and a2, the H-index of a1 is 1 and a2 is 3. Although these

two authors have the same number of publications and citations, H-index treats a2

more influential based on the citation generation. Thus the limitation of the H-index

is that it is not sensitive to one or several extremely highly cited papers. Another

issue is that if one paper is selected in the top h highly cited group, the citation count

of this paper will not be considered at all, even if the number doubles or triples.

Besides the original H-index, it has inspired lots of variants [Jin, 2006, Jin et al.,

2007, Burrell, 2007, Sidiropoulos et al., 2007, Tol, 2009] and extensions [Egghe and

Rousseau, 2008, Schreiber, 2008, Batista et al., 2006]

G-index [Egghe, 2006], a variant of H-index, overcomes the above limitations.

Similar to H-index, G-index also ignores papers with no citations. Egghe [2006]

defines G-index as “ If a set of papers are ranked in decreasing order of the number of

citations that they received, the G-index is the (unique) largest number such that the

top g articles received (together) at least g2 citations”. He also proves that for any

set of papers, we have G-index > H-index. Table 2.2 shows an example of G-index.

In this example, an author has published 6 papers, with three of them have citations.

We compare g2 with the accumulated citation count until the accumulated citation

count is less than g2. By using Algorithm 2, we can calculate the G-index value of

an author.

11
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TABLE 2.2: An example of G-index. This author has published 6 papers. By
comparing the accumulated citation count and g2, this author has G-index of 5.

# Paper (g) # Citation
∑

# Citation g2

1 20 20 1
2 10 30 4
3 5 35 9
4 0 35 16
5 0 35 25
6 0 35 36

Algorithm 2 G-index
1: function G-index(a list of n papers and the corresponding citation counts.)
2: citation[0...n− 1] ← Sort papers by citation count in descending order.
3: Initialize g ← 0
4: sum = 0
5: for i = 0 to n− 1 do
6: sum = sum+ citation[i]
7: if (i+ 1)2 ≤ sum then
8: g = g + 1
9: end if

10: end for
11: return g
12: end function

2.1.2 PageRank Algorithm

PageRank algorithm is proposed by Brin and Page [1998] to calculate the importance

of webpages. The basic idea of PageRank is to simulate a surfer, who first randomly

opens a webpage, then jumps to another page that the current page directs to. PageR-

ank will give the probability of each webpage during surfing. The probability is the

frequency that each webpage has been visited.

Figure 2.1 Panel (a) gives an example. There are 3 webpages and 5 links. A link

from a to b means the surfer can visit b from a. The simplest way to calculate the

PageRank values of these three webpages is using the flow model. We first define the

“rank” of a webpage p as:

rp =
∑
i−>p

ri
di
, (2.1)

where di is the out-degree of page i, i → p means there is a link from i to p. The
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b

a

c

(a) The relation between three webpages.

b

a

c

a
2

b
2

a
2

b
2

c

(b) The flow transaction of three webpages.

FIGURE 2.1: The flow model of PageRank algorithm.

rank of a webpage is determined by the rank of its in-neighbours. The flow equations

between the three webpages are: 
ra = ra/2 + rb/2

rb = ra/2 + c

rc = rb/2

(2.2)

a is pointing to b and itself, so a and b both achieve ra/2 flow. There are three

equations and three unknowns, but no constrains. Thus there is no unique solution.

To force the uniqueness, we add an additional constraint that ra + rb + rc = 1. By

applying the Gaussian elimination method [Atkinson, 2008] on the equations, we can

achieve the solution: ra = 2
5
, rb = 2

5
, rc = 1

5
.

By solving the flow equations by Gaussian elimination method, we can calcu-

late the PageRank importance of webpages. This method is straightforward, but

it only works for small examples. In real-world datasets, there may be millions of

nodes(webpages), thus we need a better method for large graphs.

An efficient method to deal with large graphs is using a matrix formulation. A

matrix M is used to represent the graph. Let webpage i have di outlinks, if there is

a link i → j, then Mji = 1/di. If there is no link from i to j, Mji = 0. The Matrix

M for the above example is:

13
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M =


1/2 1/2 0

1/2 0 1

0 1/2 0

 .
The first row and first column represent page a, second row and second column

is page b and third is c. In the matrix, each column sums up to 1, thus M is a

column stochastic matrix. Let r be the rank vector, where ri is the importance score

of webpage i and the constraint will be
∑

i ri = 1. The flow equations can be written

as:

r = M · r. (2.3)

Equation 2.2 can be written as:


ra

rb

rc

 =


1/2 1/2 0

1/2 0 1

0 1/2 0

 ·

ra

rb

rc

 (2.4)

Since M is a column stochastic matrix, the rank vector r will be the first or prin-

cipal eigenvector of the matrix M with the corresponding eigenvalue 1. To calculate

the eigenvector, we can use an efficient way, called the power iteration method. Algo-

rithm 3 shows how to solve the matrix formulation using the power iteration method.

In line 3, we first initialize the values in the rank vector as 1/N , which means each

webpage has the same chance to be visited initially. Then the method iterates the

matrix formulation r = M · r, until the L1 norm of two iterations is smaller than a

small number ε. The L1 norm is defined as

|x|1 =
∑

1≤i≤N

|xi|, (2.5)

where x = r(t+1) − r(t) and N is the vector length. ε is usually set to be 10−4 to

14
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Algorithm 3 Power iteration
1: function Power iteration(A web graph with N webpages.)
2: Generate the column stochastic matrix M of the graph.
3: Initialize: r(0) = [1/N, ......, 1/N ]T

4: Iterate: r(t+1) = M · r(t)
5: Stop when |r(t+1) − r(t)|1 < ε
6: end function

10−3 [Kamvar et al., 2004]. The power iteration method is efficient. It is reported by

Google’s founders in [Page et al., 1999] that the method converges in 52 iterations

on a network with 322 million edges and 45 iterations when the edge count is half

the above size. Moreover, they conclude that the method can be scaled to extremely

large networks.

For the above example, r0 = [1/3, 1/3, 1/3]T initially, then we can get the rank

vector by solving the Equation 2.3 using Algorithm 3. The procedure is:
ra

rb

rc

 =


1/3

1/3

1/3

 ,


1/3

1/2

1/6

 ,


5/12

1/3

1/4

 ,


3/8

11/24

1/6

 , ......,


2/5

2/5

1/5

 (2.6)

Per the above discussion, PageRank algorithm is straightforward and efficient to

calculate the webpage importance, while it will not converge in some special circum-

stances. The first situation is spider traps, which means all out-links are within a

group. The random walk will get “stuck” in the trap and eventually traps will absorb

all importance. To understand this situation, we can make a minor change in the

above example and make it as Figure 2.2. In this figure, node c is a spider trap,

where there are no links from the group to outside. Similar to Equation 2.6, the pro-

cedure of power iteration method on the new graph is shown in Equation 2.7. All the

PageRank score gets “trapped” in node c. c absorbs all importance with PageRank

score of 1, while a and b have no importance at all.


ra

rb

rc

 =


1/3

1/3

1/3

 ,


2/6

1/6

3/6

 ,


3/12

2/12

7/12

 ,


5/24

3/24

16/24

 , ......,


0

0

1

 (2.7)

15



2. BACKGROUND AND RELATED WORKS

b

a

c

a
2

b
2

a
2

b
2

c

FIGURE 2.2: The network contains a spider trap.

To address the spider traps issue, Google proposed a random jump. At each step,

the random surfer has two options. The first option is to randomly follow a link

with the probability of α. The second option is jumping to a random page with a

probability of 1 − α. The probability α is called the damping factor. The common

value of α is around 0.85 [Brin and Page, 1998]. By doing so, the surfer will jump

out of the spider trap within a few steps, which is expected to be 1
1−α steps. A new

column stochastic matrix, which is usually called the Google matrix, can be generated

to consider the random jump, as shown in Equation 2.8. Thus the PageRank equation

can be rewritten as Equation 2.9, where M is the adjacency matrix, α is the damping

factor, N is the number of nodes in the graph, and e is the column matrix of all ones

with the same size as M . For the spider trap example, let α set to 0.8, the formula

will be Equation 2.10. Equation 2.11 shows each step of the iteration, and each node

will get a proper score.

M ′ = α ·M + (1− α)
1

N
eeT (2.8)

r = M ′ · r

= (α ·M + (1− α)
1

N
eeT )r

(2.9)
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FIGURE 2.3: The network contains a dead end node.


ra

rb

rc

 = (0.8


1/2 1/2 0

1/2 0 0

0 1/2 1

 + 0.2


1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

) ·


ra

rb

rc

 (2.10)


ra

rb

rc

 =


1/3

1/3

1/3

 ,


0.33

0.20

0.46

 ,


0.24

0.20

0.52

 ,


0.26

0.18

0.56

 , ......,


7/33

5/33

21/33

 (2.11)

By introducing the damping factor, we can deal with most cases at this stage.

While there is another special case, called dead end. Dead end nodes have no out-

links. Node c in Figure 2.2 is a dead end. In this case, the PageRank will “leak” out,

since the adjacency matrix is not stochastic, as shown in Matrix 2.12. Even with the

damping factor to control the random walk, the PageRank value for each node will

be 0 after several steps, as shown in Equation 2.13.


1/2 1/2 0

1/2 0 0

0 1/2 0

 (2.12)
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ra

rb

rc

 = (0.8


1/2 1/2 0

1/2 0 0

0 1/2 0

 + 0.2


1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

) ·


ra

rb

rc



ra

rb

rc

 =


1/3

1/3

1/3

 ,


2/6

1/6

1/6

 ,


3/12

2/12

1/12

 ,


5/24

3/24

2/24

 , ......,


0

0

0


(2.13)

To overcome the dead end issue, we can follow the random jump links with prob-

ability 1.0 when the walker stands on a dead end node. It is similar to add N virtual

links from a dead end node to each node in the network, where N is the node number.

Accordingly, the matrix can be adjusted to be a column stochastic matrix by making

the values in the last column to 1/3, as shown in Matrix 2.14. Now we have a col-

umn stochastic matrix, which can be used in Equation 2.9 to calculate the PageRank

values.


1/2 1/2 1/3

1/2 0 1/3

0 1/2 1/3

 (2.14)

The dimension of the adjacency matrix is the total number of nodes in a network.

When the network is getting large, the matrix will be in large dimensionality. Ap-

plying Power Iteration Method on a huge matrix is time and resource consuming.

Additional to calculate PageRank value algebraically using the matrix formulation,

we can alternatively use an iterative method, which is more efficient and fast for

large graphs. Equation 2.15 shows the new PageRank formula, which is equivalent to

Equation 2.9.

r(pi; t+ 1) =
1− α
N

+ α
∑

pj∈n(pi)

r(pj; t)

d(pj)
, (2.15)
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where α is the damping factor, r(pi; t) is the PageRank value of node pi at iteration

step t, N is the total number of nodes in a network, d(pi) is the out-degree of node

pi, n(pi) is the set of out neighbours of node pi. At t = 0, an initial PageRank vector

is assumed, usually r(pi; 0) = 1
N

.

2.1.3 PageRank-based Ranking Methods

PageRank algorithm is firstly applied on citation networks to identify the most influ-

ential papers in [Chen et al., 2007] and they also find that a paper’s citation number

and its PageRank value are closely correlated. Amjad et al. [2015b] proposes a new in-

formative metric called Topic-based Heterogeneous Rank which measures the impact

of scholarly data with respect to a given topic in a heterogeneous scholarly network

containing authors, papers, and journals. One of the main limitations of the proposed

method is computational complexity and high memory usage. Su et al. [2011] study

how missing data in the PageRank algorithm influences the result of papers ranking

and proposes PrestigeRank algorithm on that basis, but there is insufficient evidence

to make a definite conclusion that PrestigeRank is better than PageRank or cita-

tion counts. Zhou et al. [2016] introduce a preferential mechanism to the PageRank

algorithm when aggregating resource from different nodes to enhance the effect of

similar nodes. Though the method in this paper can more accurately predict papers

future degree than PageRank, the prediction for small or zero degree nodes is still not

satisfactory. Yan [2014] proposes topic-based PageRank, which is applied to a data

set on library and information science publications. Another two methods CiteRank

[Walker et al., 2007] and FutureRank [Sayyadi and Getoor, 2009] are introduced to

rank papers and predict the future citation number. PageRank is also used to rank

journals [Bollen et al., 2006] [Su et al., 2011] [Dellavalle et al., 2007] [González-Pereira

et al., 2010], and even scientific contribution of countries [Ma et al., 2008].

There are several different kinds of academic networks for author ranking [Am-

jad et al., 2018]. PageRank is first applied to authors ranking in [Liu et al., 2005].

They propose AuthorRank, a weighted PageRank algorithm, in a co-authorship net-

work. If any two authors co-authored a paper, an undirected edge with unit weight
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is created between these two authors. Ding et al. [2009] use an author co-citation

graph, which is same as the co-authorship network in [Liu et al., 2005]. They focus

on evaluating the impact of various damping factors. Their methods differ from our

work is that they use a homogeneous network that consists of only papers or authors.

Besides the co-authorship network, they claim that the importance of authors can be

derived from papers. Sidiropoulos and Manolopoulos [2006] propose a new version of

PageRank. They first rank papers on the citation network consisting of only papers

and choose the same number of papers for each author. Then authors are ranked

by computing the average score of all their papers. A similar work is introduced

in [Fragkiadaki and Evangelidis, 2016]. Another interesting work is called PR-index

[Gao et al., 2016], which combines H-index and PageRank together to obtain objective

evaluation criteria. They first rank papers by PageRank, then replace the H-index’s

citation component with the PageRank score. Therefore, PR-index considers both

the productivity and popularity of an author. The importance of an author is de-

termined only by the influence of his/her papers, without considering the relation of

coauthors and the impact from authors to papers. The author citation network is

also widely used. Liang and Jiang [2016] generate an author citation network based

on paper citations. A paper citation results in several author citations, each of which

links a citing author to a cited author in the author citation network. Yan and Ding

[2011] also use an author citation network and a weighted PageRank algorithm to

get the importance of authors. A similar paper is proposed in [Radicchi et al., 2009].

They create a weighted author citation network from a paper citation network. A

weighted PageRank algorithm is then used to calculate the score of each author in

the network. Another method is proposed in [West et al., 2013]. They propose the

Eigenfactor score on the author network matrix. It is based on Eigenvector and gives

more weight to the highly cited authors. Author network is easy to obtain and is ef-

fective when the network size is small, but not scalable for large data. The complexity

of the PageRank algorithm depends on the number of edges in the network. The au-

thor citation network is a dense network compared with paper-author heterogeneous

network, and PageRank is not expected to be executed on such a network when the
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number of links explodes. Paper-paper citation link is crucial for author ranking since

the influence of an author should be evaluated by his/her papers. A heterogeneous

network, consisting of papers and authors, is first used by Zhou et al. [2007]. There

are three networks in the framework, citation network, author social network, and

paper-author network. They used two separate networks(i.e. citation network and

author social network), and random walks are performed independently on these two

networks, then the ranking is integrated afterward. In contrast, we delete the directed

links between authors and use such a heterogeneous network to rank authors for the

first time. Sun et al. [2009a] combine clustering and ranking together. They rank

authors within each conference cluster. The reputation of conferences can affect an

author’s influence. Basically, they use paper-author and conference-author links, but

not paper-paper citation links.

Besides using the PageRank algorithm on academic networks, centrality is also

applied to obtain the author importance. Bibi et al. [2018] use various centrality

measures to represent the importance of authors. They also find the centrality mea-

sures are significantly correlated with the citation count and h-index. Citation count

and H-index are still widely used in recent years. Steinbrüchel [2019] divides authors

into two groups: PIs (principal investigators) and non-PIs. The author then intro-

duces a new index hpi based on h-index, where PIs will obtain more weight than

non-PIs. Amjad and Daud [2017] first use Latent Dirichlet Allocation (LDA) to split

authors into different domains, then allocate paper citations to coauthors according

to their topic probability. Daud et al. [2017] try to find new influential researchers

by considering the co-authors’ citations, the order of appearance, and the citation

number of co-author venues. Similarly, Usmani and Daud [2017] obtain the rank-

ing scores for papers and venues, then generate authors’ scores accordingly. Another

work [Amjad et al., 2015a] suggests authors should receive citations according to their

productivity and author position.
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p3p2

p5p4

FIGURE 2.4: An example of an academic network.

2.1.4 Comparison between Ranking Methods

In this section, we will compare different ranking methods. Figure 2.4 shows an

example, which contains 5 papers and 6 authors. The blue directed links are citation

links. The link from p1 to p2 represents p1 cites p2. Each paper has several authors,

for example, p1 has 2 authors a1 and a2. We will introduce how to calculate different

ranking metrics from this example, consisting 5 traditional count-based methods and

4 PageRank-based methods. The five count-based methods are:

• P . Paper Count. Authors that published more papers will get high rank. This

is the most straightforward method.

• C [Gross and Gross, 1927]. Citation Count. The citation count of an author

is the summation number of all his/her papers. Authors that received more

citations will be ranked higher.

• Cw [Lindsey, 1982]. Weighted metrics of C. It splits credits among co-authors.

If a paper receives 4 citations and has 2 authors, each author will get 2 citations.

• H [Hirsch, 2005]. H-index.

• G [Egghe, 2006]. G-index.

4 PageRank-based methods are:
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(b) Author network.
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(c) Co-Ranking network.

FIGURE 2.5: Three different networks induced from Figure 2.4. Panel(a) is the paper
citation network. Panel(b) is the author citation network. Panel(c) is Co-Ranking
network.

TABLE 2.3: PageRank values for 5 papers. Damping factor is setting to 0.85.

Paper PageRank value

p1 0.094
p2 0.137
p3 0.137
p4 0.218
p5 0.414

• SPR[Fragkiadaki and Evangelidis, 2016]. The summation of papers’ PageRank,

which is calculated from paper citation network.

• SPRw[Lindsey, 1982]. The weighted version of SPR, which is similar to Cw.

• Co-Ranking [Zhou et al., 2007]. PageRank values of authors from a heteroge-

neous network.

• AN [Radicchi et al., 2009]. PageRank values of authors from an author citation

network.

From the original relation in Figure 2.4, we can generate paper citation network,

author network and Co-Ranking network, as shown in Figure 2.5. To get the ranking

values of authors for SPR and SPRw, we need to calculate the PageRank values for

papers first. By setting the default damping factor α = 0.85, the PageRank values for
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TABLE 2.4: The ranking results of 9 different methods.

Author P C Cw H G SPR SPRw Co-Ranking AN

a1 1 0 0 0 0 0.094 0.047 0.118 0.012
a2 1 0 0 0 0 0.094 0.047 0.118 0.012
a3 1 1 1 1 1 0.137 0.137 0.042 0.024
a4 1 1 0.5 1 1 0.137 0.067 0.194 0.018
a5 2 2 1 1 1 0.355 0.178 0.238 0.050
a6 2 3 1.5 1 1 0.632 0.523 0.291 0.883

TABLE 2.5: The rank for 6 authors of 9 different methods.
Author r(P ) r(C) r(Cw) r(H) r(G) r(SPR) r(SPRw) r(Co-Ranking) r(AN)

a1 3 5 5 5 5 5 5 4 5
a2 3 5 5 5 5 5 5 4 5
a3 3 3 2 1 1 3 3 6 3
a4 3 3 4 1 1 3 4 3 4
a5 1 2 2 1 1 2 2 2 2
a6 1 1 1 1 1 1 1 1 1

5 papers are list in Table 2.3. Among the 5 papers, p5 has the highest PageRank value,

while p1 is the least important paper. Since PageRank value is positively related to

the citation count [Chen et al., 2007] on citation network, it makes sense that p5 is

ranked highest. Table 2.4 lists the values ranked by 9 methods. P and C are the

most straightforward. Cw is calculated from C, while they are quite different in some

cases. a5 has larger C than a3, but they have the same number of Cw. a5 shares

credit with a4 and a6 while a3 works independently and obtains all credit from p3.

It is similar to find that a3 and a4 have the same citation number, while a3’s Cw is

larger than a4. H and G consider both P and C. Although an author published a

large amount of papers, this author will get 0 H and G if he/she gets no citations,

such as a1 and a2.

H-index and G-index are similar but have some differences. Highly cited papers

are important. While in H-index, once a paper is ranked in the top h papers, its

citation count will not affect the H-index value. For example, a1 in Table 2.1 has

H-index of 1. Even if a1’s first paper has only 1 citation, his/her H-index is still 1.

To overcome this shortcoming, G-index considers the accumulated citation count and
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the citation evolution of the most highly cited papers.

A paper’s PageRank value is highly related to its citation count. SPR directly

sums papers’ rank values to authors and C is the summation of papers’ citation

count. Thus it is obvious to find the rank between C and SPR are similar, same

for their weighted version. Co-Ranking is quite different from others. It considers

three relations, citation relation, authorship relation, and coauthor relation. Different

from the point that solo authors deserve more credit [Lindsey, 1982], authors benefit

from their coauthors in Co-Ranking. It is interesting to see that although a1 and a2

coauthored one paper with no citation, their Co-Ranking values are higher than a3,

who also has one paper with one citation. AN is straightforward and only consider

the author citation relation.

2.2 Network Embeddings

Besides author ranking, we would like to further study the relationship between au-

thors. Using the author relations, we can find similar authors, predict potential

collaborators, find author research interest and author groups. To build such appli-

cations, the first task is to represent authors and quantify the relationship between

authors. In this section, we first introduce a traditional method, called adjacency

matrix, to represent authors using high dimensional sparse vectors. After that, we

will review some neural network-based embedding methods.

2.2.1 Traditional Method – Adjacency Matrix

In graph theory, an adjacency matrix is widely used to represent a graph [Biggs et al.,

1993]. It is a square matrix. The elements in the matrix indicate whether two nodes

are connected or not. Usually, the adjacency matrix is a (0,1) matrix, where 1 means

there is a direct link between two nodes. Figure 2.6 gives an example of a network.

In this network, there are three papers and four authors. Papers are connected by

citation links. Authors and papers are connected by authorship links. Three is no

directed link between authors. From this network, we can build a V × V adjacency
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a3

a4

p1
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FIGURE 2.6: An example network.

p1 p2 p3 a1 a2 a3 a4

p1 0 1 0 1 0 0 0
p2 1 0 1 0 1 1 1
p3 0 1 0 0 1 0 1
a1 1 0 0 0 0 0 0
a2 0 1 1 0 0 0 0
a3 0 1 0 0 0 0 0
a4 0 1 1 0 0 0 0

TABLE 2.6: The adjacency matrix of the network in Figure 2.6.

matrix M , where V is the number of nodes in the network. In the matrix Mj,i = 1,

if there is a direct link between i and j. The matrix is shown in Table 2.6. Since

there are 7 nodes in the network, M is a square matrix with a size of 7. Each line in

the matrix will be a vector representation of a node. For example, the vector of a2 is

va2 = [0, 1, 1, 0, 0, 0, 0]. With the vector representation of each node, we can calculate

the similarity between two nodes using the Cosine Similarity. The Cosine Similarity

between two vectors A and B can be computed by Equation 2.16.

ρ(A,B) =

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

, (2.16)

where n is the size of two vectors.

Here we want to know which author is the most similar one to a4. First, we obtain
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the vector representation for all authors:

va1 = [1, 0, 0, 0, 0, 0, 0]

va2 = [0, 1, 1, 0, 0, 0, 0]

va3 = [0, 1, 0, 0, 0, 0, 0]

va4 = [0, 1, 1, 0, 0, 0, 0]

Then we calculate the Cosine similarity between a4 and other three authors. We

have ρ(a1, a4) = 0.0, ρ(a2, a4) = 1.0, ρ(a3, a4) = 0.7. Thus, in this network, a4 is most

similar to a2.

The adjacency matrix is straightforward and easy to obtain. However, it has some

limitations. Firstly, the matrix will be in high dimensionality in real-world datasets.

For example, in our Health data, there are 27,798,928 nodes, including 12,357,864

authors and 15,441,064 papers. The matrix is 27, 798, 928× 27, 798, 928. The second

issue is that when the network is getting large, the matrix will be sparse. The average

degree in Health data is 21.34, which means there are only 21 1’s and 27,798,907 0’s

in the vector. Such sparse high dimensional vectors may not be a good choice to

represent a huge network.

2.2.2 Network Embedding Methods

The high dimensionality of the sparse vector representation for networks is not fea-

sible for downstream tasks. To overcome the limitations of the adjacency matrix,

researchers use different methods to reduce the dimension of the matrix so that

nodes can be represented as short dense vectors, which is also known as embed-

dings. The simplest method is to apply SVD (Singular value decomposition) [Golub

and Reinsch, 1971] on the adjacency matrix. It has been widely used to factorize the

high-dimensional sparse matrix into a low-dimensional dense matrix. However, SVD

has high time complexity. Computing the SVD of an m × n matrix has complexity

O(m × n × min(n,m)) [Vasudevan and Ramakrishna, 2019]. It will be computa-

tionally expensive for large networks. There are many other kinds of embedding
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methods. Zhang et al. [2020] classify network embedding approaches into four cate-

gories: Matrix Factorization based, Random Walk based, Random Edge based, and

Deep Learning based.

Matrix Factorization is the easiest method to obtain network embeddings [Goyal

and Ferrara, 2018]. There are two main steps in Matrix Factorization based network

embedding frameworks. The first step is to use a matrix to preserve the relationship

between nodes. The second step is to factorize the matrix and generate the node

embeddings. Besides SVD, there are also many similar works. Tang and Liu [2009]

use eigenvectors of the Graph Laplacian in social networks for node classification. On

the other hand, GraRep [Cao et al., 2015] applies SVD on the kth order proximity

matrix to obtain the network embeddings. HOPE [Ou et al., 2016] also uses the

same idea but focuses on directed graphs. The authors experiment with four different

similarity matrices including Katz Index, Rooted PageRank, Common Neighbors,

and Adamic-Adar. There are some other methods that fall into this category, such as

GraphWave [Donnat et al., 2018], M-NMF [Wang et al., 2017], TADW [Yang et al.,

2015], HSCA [Zhang et al., 2016b], MMDW [Tu et al., 2016], DMF [Zhang et al.,

2016a], LANE [Huang et al., 2017].

Beside Matrix Factorization, Random Walk is another widely used approach in

this field. For example, DeepWalk [Perozzi et al., 2014] preserves the network struc-

ture using random walk with a fixed length. Then it uses three layer neural network

to learn the node representation. Node2vec [Grover and Leskovec, 2016], on the other

hand, uses two parameters to control the random walk with preference between Depth

First Search and Breadth First Search. Similar works includes Walklets[Perozzi et al.,

2017], APP [Zhou et al., 2017], DDRW [Li et al., 2016], GENE [Chen et al., 2016],

TriDNR [Pan et al., 2016], UPP-SNE [Zhang et al., 2017], struct2vec [Ribeiro et al.,

2017], SNS [Lyu et al., 2017], PPNE [Li et al., 2017b], SemiNE [Li et al., 2017a], etc..

Random edge is also studied in the past. LINE is the first algorithm that uses

random edge to learn network embeddings. It defines two proximities of the net-

work. More specifically, if two nodes are linked together by an edge, their first-order

proximity is one, zero otherwise. While the second-order proximity measures the sim-
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ilarity between two nodes in terms of common neighbors. Similar idea is also used in

TLINE [Zhang et al., 2016c], LDE [Wang et al., 2016b], pRBM [Wang et al., 2016c],

and GraphGAN [Wang et al., 2018a].

There are also some Deep Learning based models in this area, e.g. DNGR [Cao

et al., 2016], SDNE [Wang et al., 2016a], and GCN [Kipf and Welling, 2016]. For

example, DNGR uses random walk to capture the network structure, from which it

calculates the PPMI (positive point-wise mutual information) matrix. Then it uses

stacked denoising autoencoders (SDAE) to generate the embeddings of the network.

On the other hand, Wang et al. [2016a] propose a semi-supervised deep learning

model, in which the unsupervised part preserves the second-order proximity and the

supervised part preserves the first-order proximity of the network.

2.2.3 DeepWalk

DeepWalk [Perozzi et al., 2014] is the first work that applies word2vec [Mikolov et al.,

2013] on networks to learn network embeddings. Given a network, DeepWalk uses

random walk to capture the structure of the network. The walking path is fixed to

length l. Figure 2.7 shows an example. Panel (a) is a network that represents the

relationship between authors and papers. It contains seven nodes, where four nodes

are authors and three nodes are papers. To obtain the walking path, DeepWalk

randomly choices a node to start, say a1 in Panel (b). Then at each step, it randomly

teleports to one of the linked nodes, say p1 in Panel (c), then p2 as illustrated in

Panel (d). This process ends when the length of the walking path reaches the pre-set

threshold l. In this example, l is set to 6. Thus, the walker stops at Panel (g) and

produces the walking path of (a1, p1, p2, a2, p3, a4) as illustrated in Panel (h).

Network embeddings are inspired by the Word2vec model, proposed by Mikolov

et al. [2013]. Word2vec takes a large corpus as input and learns dense low dimensional

vectors for words. It has two models – Continues Bag-of-words (CBOW) and Skip-

Gram with Negative Sampling (SGNS). In this dissertation, we use SGNS to learn

29



2. BACKGROUND AND RELATED WORKS

a1

a2

a3

a4

p1

p2

p3

(a)

a1

a2

a3

a4

p1

p2

p3

(b)

a1

a2

a3

a4

p1

p2

p3

(c)

a1

a2

a3

a4

p1

p2

p3

(d)

a1

a2

a3

a4

p1

p2

p3

(e)

a1

a2

a3

a4

p1

p2

p3

(f)

a1

a2

a3

a4

p1

p2

p3

(g)

a1

a2

a3

a4

p1

p2

p3

(h)

FIGURE 2.7: An example of Random walk in DeepWalk. It starts from a1. The
length of the walking path is 6.

the embeddings. The objective of SGNS is to maximize:

O =
1

S

∑
ni∈V

∑
nj∈N+(ni)

[logσ(uj · vi) +
K∑
k=1

Enk∼Pnlogσ(−uk · vi)]. (2.17)

In this objective function, S is the total number of observed training pairs, V

is the set of nodes, K is the number of negative samples for each training sample.

Enk∼Pn is to randomly select a negative sample nk according to noise distribution Pn.

The noise distribution is derived from the node degree distribution, which is defined

in Equation 2.18. σ(·) is the Sigmoid function, which is defined in Equation 2.19.

N+(ni) is the sampling strategy used to generate the training pairs for ni.

Pn(ni) =
P (ni)

0.75∑
nj∈V P (nj)0.75

(2.18)
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σ(x) =
1

1 + exp(−x)
(2.19)

To optimize the objective function, DeepWalk uses skip-gram to generate the

training pairs. For each node ni on a walking path, it first gets a random integer

number c as the window size in the range of (0, C]. The training samples for this

node will be c nodes left to it and c nodes right to it. For each node in the window,

the training pair is (ni, nj). Equation 2.20 is used to update the output vector vnj
.

Besides nodes in the window, it also generates K negative samples for node ni and

updates the output vector for each negative sample. Then the embedding vector for ni

is updated. After scanning all walking paths, we will get a trained model, consisting

of the embedding vectors of all nodes.

vni
← vni

+ η[(1− σ(unj
· vni

)) · unj
+

K∑
k=1

Enk∼Pn − σ(unk
· vni

) · unk
]

unj
← unj

+ η[t− σ(unj
· vni

) · vni
].

(2.20)

In the update equation, t = 1 when nj is a output node, and t = 0 when nj is a

negative sample. η is the learning rate, which decays linearly from 0.025 to 0.0001 in

most related works and implementations [Rehurek and Sojka, 2010, Mikolov et al.,

2013, Tang et al., 2015b, Goyal and Ferrara, 2018].

2.2.4 Node2vec

Node2vec, proposed in [Grover and Leskovec, 2016], is an improvement of DeepWalk.

It uses two parameters to control the walker to perform a biased random walk instead

of uniform random walk in DeepWalk. Parameter p controls the BFS(Breadth First

Search) and parameters q controls the DFS(Depth First Search). Figure 2.8 gives an

example. Suppose the walker just traveled from a2 to p2 and now needs to determine

its next location. The probability of next spot x is calculated by the distance between
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FIGURE 2.8: An example of biased Random Walk probabilities in Node2vec.

a2 and x. If the shortest path between a2 and x is 0, which means x = a2, node2vec

assigns weight of 1/p to x. If the shortest path between a2 and x is 1, then x is one

of the direct neighbor of a2. Node2vec assigns weight of 1 to it. If the shortest path

between a2 and x is 2, then the weight is 1/q. More formally, the weighted transport

probability αpq(t, x) is defined as following:

αpq(t, x) =


1
p

if dtx = 0

1 if dtx = 1

1
q

if dtx = 2

(2.21)

Note that dtx ∈ {0, 1, 2}. Intuitively, smaller p encourages the walker to loop back

to the previous node so that it can capture more local structures of the graph via

BFS, while smaller q sends the walker far away from the previous node by performing

DFS.

2.2.5 Heterogeneous Network Embeddings

Skip-gram based methods can also be found in learning heterogeneous network em-

beddings. Heterogeneous networks have multiple types of nodes and edges thus con-

tain more information than homogenous networks. PTE [Tang et al., 2015a] is the

first algorithm that adopts skip-gram to learn embeddings from heterogeneous net-

works [Dong et al., 2020]. It first splits the heterogeneous networks into homoge-

nous/bipartite networks, then learns the embeddings from different parts separately

via LINE[Tang et al., 2015b], a skip-gram based network embedding algorithm. LINE
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uses random edge, thus it only captures the basic structure (first order and second

order proximity) of the network. On the other hand, random walk based algorithms,

such as DeepWalk and Node2vec, capture more information of the networks. How-

ever, applying random walk directly on heterogeneous networks can be problematic.

[Balmin et al., 2004] and [Nie et al., 2005] point out that heterogeneous relationships

could affect the random walk. Thus, there are many works that try to design different

random walks to learn embeddings from heterogeneous networks. Meta-path is one

of the most popular approaches. Metapath2vec [Dong et al., 2017] is the first method

in this category. To learn network embeddings from heterogeneous networks, Metap-

ath2vec applies the mate-path based random walk in heterogeneous networks, which

preserves the relation of multiple types of nodes. Formally, a meta-path scheme is

defined as a path that has a specific form of V1
R1−→ V2

R2−→ ...Vt
Rt−→ Vt+1...

Rl−1−−−→ Vl,

where R = R1, R2, ..., Rl−1 is the relation between two types of nodes [Sun and Han,

2012]. After generating the meta-paths, SGNS is used to learn node embeddings,

which is similar to DeepWalk. Inspired by Metapath2vec, HIN2vec [Fu et al., 2017]

uses a single-hidden-layer feedforward neural network model to capture the relation

semantics in heterogeneous networks. The model learns node embeddings and uses

embeddings to predict the meta path relation. HeteSpaceyWalk [He et al., 2019]

is another meta-path based method that uses personalized spacey random walk to

generate walking paths. Then the embeddings are learned by SGNS model from the

paths. On the other hand, TapEm [Park et al., 2019] represents the heterogeneous

networks by combining node embedding pairs with meta path embeddings. Meta-

path is also used in HERec [Shi et al., 2018a], a heterogeneous information network

embedding algorithm build for recommendation. Node embeddings are learned from

different meta-paths and then integrated into an extended matrix factorization model,

which is further optimized for recommendation.

There are some other approaches in this area. Wang et al. [2018b] propose Signed

Heterogeneous Information Network Embedding (SHINE) that uses deep autoencoder

to extract node representations from signed heterogeneous networks. Shi et al. [2018c]

propose HEER to learn edge representation from heterogeneous networks. Li et al.
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[2019b] propose a semi-supervised algorithm called ActiveHNE. After dividing a het-

erogenous network into multiple homogeneous and bipartite graphs, it extends graph

convolution networks with labels to obtain node embeddings. Shi et al. [2018b] use

multiple aspects to represent nodes in the heterogeneous network. For each node

in the graph, its embedding is the concatenation of embeddings learned from differ-

ent aspects. Heterogeneous network embeddings have been widely applied to solve

real-world problems, such as recommendation Shi et al. [2018a], disease association

predictions Xiong et al. [2019], and question answering Li et al. [2019a].

2.3 Summary

In this chapter, we introduce some existing works that are related to this disserta-

tion. PageRank algorithm is the core method that will be used in the author rank-

ing part. Thus we first give some details about the PageRank. Then we list some

PageRank-based ranking methods and analyze the difference between count-based

and PageRank-based methods. Author embedding is another part of our research.

We use network embedding methods to learn the author representations. It is neces-

sary to give an overview of existing network embedding works. These works, especially

SGNS related methods, will be important as a guideline for us to build our own au-

thor embedding method. We hope this chapter could give readers a comprehensive

overview of academic ranking and network embedding areas.
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CHAPTER 3

Measuring Academic Influence

Using Heterogeneous Networks

3.1 Introduction

Academic influence is inherently difficult to measure. Citation count has been used

widely since 1927 [Gross and Gross, 1927]. H-index was introduced to simplify the

citation count by disregarding papers that are less cited [Hirsch, 2005]. However, H-

index treats papers equally once they pass a threshold value (the H-index), measures

unfavorably for authors who publish one or two very highly cited papers. G-index

ameliorates this problem by giving credits for citation counts of each paper that pass

a threshold value (the G-index) [Egghe, 2006].

Citations are not independent and acting alone. Instead, they form a complex

network in which papers and authors interact with each other. In such network, not

every citation is equal. A citation from an influential paper should have a higher

weight than others. Thus, Bonacich [1972] proposed that the principal Eigenvalues

of a citation matrix should be used for the importance of the papers. This idea also

inspired the well-known PageRank algorithm when applied on the Web network [Brin

and Page, 1998]. Intuitively, the influence of a node is proportional to the probability

of being visited in a random walk on the graph.

Despite the successful application of the PageRank algorithm in the Web domain,
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we have not seen a wide application of the algorithm in bibliometrics where the

very idea originated. This is due to two significant differences between the academic

network and the Web. Firstly, citation networks are mostly acyclic: papers only cite

papers in the past, not the ones to be published in the future. Although occasionally

there are loops due to the merge of different versions of a paper, most citations form

a chain chasing down to earlier papers. Secondly, academic networks are inherently

heterogeneous. In the Web network where PageRank is used, there is only one type

of node (web pages) and one type of links (hyperlinks). In the academic network,

there are at least two kinds of nodes, i.e., papers and authors.

To solve the first problem, Chen et al. [2007] proposed to employ a lower damper

factor (α) in the PageRank algorithm. It can be interpreted as a higher random jump

probability (1− α) in the random walk interpretation. They propose to use α = 0.5

in contrast to normal practice which is α = 0.85. A high random jump probability

implies that every node/paper will receive credits from random sources. Hence, author

ranking will be highly correlated with paper counts as we will demonstrate in the

Experiment section.

To solve the second problem, there are at least two approaches. One approach is

to work on an author network that is derived from the heterogeneous network. Then,

the PageRank algorithm is applied to the author network. The difference is how the

author network is induced. West et al. [2013] derived an author-citation network that

is induced from the paper citation network. In the induced author network, author A

has a weighted link to author B if A cites a paper written by B. The weight reflects

the division of credits to multiple authors and multiple references.

The second approach develops algorithms directly on the heterogeneous academic

network. Zhou et al. [2007] proposed Co-Ranking method to run random walks on

three different networks - a social network between authors, a citation network con-

necting papers, and a bipartite network between authors and papers. Sun et al.

[2009a] use a heterogeneous network to represent the academic network, where au-

thors, papers, and conferences are nodes in the graph. First, they apply their

RankClus framework to generate clusters based on conferences, then use the Au-
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thority Ranking rule on each conference cluster.

Regardless of the approach, there is no objective evaluation to compare the re-

sulting ranking. Evaluation of the existing methods is mostly anecdotal, citing a few

well-known authors being ranked high by their methods. The data is also fragmented,

consisting of small networks in a narrow area.

Based on the literature review in Chapter 2 Section 2.1.3, several works derive au-

thor’s importance from papers, without considering the impact between them, such as

[Fragkiadaki and Evangelidis, 2016]. Most researchers use co-authorship network and

author-citation network to rank authors without paper information, such as [Radicchi

et al., 2009] and [West et al., 2013]. This kind of network is also dense and cannot

be large scaled. The heterogeneous network proposed by Zhou et al. [2007] may be

a progress, but they treat citation and author ranking separately. In our work, we

believe that integrating authors and papers in a coherent network is a better attempt.

The importance of an author is determined by not only his/her published papers, but

also coauthors. Besides, papers with influential authors will attract more attention.

This paper thus aims to measure the academic influence on such an academic net-

work, and propose the APR method and make some comparison with some existing

methods.

We propose a new ranking method, called APR (Author-PageRank), which applies

to heterogeneous academic networks. Papers can only cite older papers, therefore

random walks can only go from older papers to newer ones. APR handles the acyclic

network problem by adding links between papers and authors. When a new paper

and an old paper are written by one author, the random walks can start from the

old paper to its author, then go to the new paper; thereby random walks can visit

newer papers. Different from the large jump probability used in [Chen et al., 2007]

that transfers much of the weight to random papers, it transfers only 15% weight of

random jump. It tackles the second problem (the heterogeneous network problem)

by combining the author and paper networks together. Instead of random walking on

different networks and aggregating the results [Zhou et al., 2007], one random walk

is performed on the entire network. Additionally, rather than working on an induced
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author network, the entire network is maintained so that information is not lost or

skewed during the network transformation as in [West et al., 2013].

We test our method on two large data sets. One is a large academic network

in health domain that is collected by us. It contains 15 million papers, 12 million

authors, about 500 million citations. The other is the well-known AMiner (Arnet-

Miner Academic Social Network) network in computer science developed by Tang

et al. [2008]. We evaluate our methods based on the number of Nobel Prize winners

for the Health data, and the number of Turing Award winners for the CS data. Our

method outperforms all other methods consistently for both datasets. Among the

top 50 CS authors ranked by APR, there are 16 Turing Award Winners. Our ranking

result is also very different from that of existing methods in terms of Spearman rank

correlation. One interesting result is that APR is negatively correlated with paper

count, H-index, and G-index among top authors.

3.2 APR Method

3.2.1 Problem Definition

Measuring academic influence is to evaluate authors quantitatively. We use a hetero-

geneous network to represent the academic data. Definition 1 gives a formal definition

of the heterogeneous network. Our network consists of two types of nodes, i.e., au-

thors and papers. There are two types of links – the citation link between papers,

and authorship link between a paper and an author. The heterogeneous author-

paper network is defined in Definition 2. Moreover, we define the importance of an

author as the probability of the author being visited by a long random walk in the

heterogeneous network.

Definition 1. (Heterogeneous Network ) Given a network G = (V,E), G is called

a heterogeneous network if the types of V > 1 or the types of E > 1. Otherwise, it is

a homogeneous network.

Definition 2. (Heterogeneous Author-citation Network )
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a1a2

a3

a4

a5

p1

p2 p3

p4 p5

p6

p7

FIGURE 3.1: An example of the heterogenous author-citation network structure.

Given a set of authors a = {a1, a1, . . . , am} and a set of papers p = {p1, p2, . . . , pn}.
Let EPP denote the citation links between papers; EPA denote the authorship relation

between a paper and an author. The heterogeneous author-citation network is a graph

G = (a ∪ p, EPP ∪ EPA).

For a network containing m papers and n authors, the graph can be represented

by a binary (m+ n)× (m+ n) adjacency matrix A:

A =

APP APA

AAP 0

 , (3.1)

where APP is the citation matrix between papers, APA and AAP represent paper-

author relations. APA = ATAP , since the relation between papers and authors are

symmetric. Note that in our graph, there are no direct relations between authors.

Given a heterogeneous author-citation network G = (a∪ p, EPP ∪EPA), our goal

is to obtain a vector r for the network G, where r can reflect the importance/influence

of authors a (and papers p).

Figure. 3.1 gives an example of a heterogeneous author-citation network. In

this network, isolated components (p6 and p7) would receive very low weight if they

were evaluated in citation network only. Now it is connected with the main citation

network via author a4. Besides, a random walk can also go up stream from p4 to p1

via author a1.

Our network differs other paper/author networks such as the networks proposed

in [Zhou et al., 2007],[Sun et al., 2009a], and [West et al., 2013]. In our heteroge-

neous graph, there are no edges between authors. Author relations can be induced
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from several sources, such as co-authoring a paper [Zhou et al., 2007], citation of one

author to another [West et al., 2013], or even publishing in the same conference [Sun

et al., 2009a]. Such induced relations lost information during the graph transforma-

tion. Moreover, the induced graph normally expands in size, sometimes in orders of

magnitude. For instance, if an author writes m papers, each cites n papers on average,

and each paper has k coauthors, then there will be m×n×k induced author-citation

edges. Direct links between authors may also make author social network dominating

the ranking system. Coauthors of a paper form a clique. Random walk traffic will

be directed to such cliques, especially when the size of cliques is large. The ranking

should be decided mainly by papers, not author relations. Therefore, we excluded

the edges between coauthors in the graph. Although direct edges are not presented,

coauthor relation still plays a major role in the ranking system: the weight of an

author is passed indirectly to his co-author via their papers.

3.2.2 APR

The adjacency matrix represented by A can be turned into a column stochastic ma-

trix B, where each column sums up to one. Now the network can be viewed as a

Markov chain, and the influence of authors are defined as the stationary distribution

of the Markov process. In other words, an author’s importance is interpreted as the

probability of a random surfer visiting the node. Because not every Markov chain

has a stationary distribution, it is necessary to modify the network so that stationary

distribution is guaranteed. We follow the normal practice, which is to add virtual

links to every pair of nodes with an equal but small transition probability, i.e., a

new stochastic matrix M is introduced by adding every cell with a small transition

probability:

M = αB + (1− α)
1

n
eeT , (3.2)

where e is a vector of 1’s, α is the damping factor that is normally chosen to be a value

around 0.85 [Brin and Page, 1998]. n is the length of the matrix. Now, the Markov
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a1

a2

a3

p1

p2

⇒ A =


0 0 1 1 0
1 0 0 1 1
1 0

01 1
0 1



⇒ B =


0 0 1 1/2 0

1/3 0 0 1/2 1
1/3 0

01/3 1/2
0 1/2



⇒ M = α


0 0 1 1/2 0

1/3 0 0 1/2 1
1/3 0

01/3 1/2
0 1/2

 + (1 − α)


1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5

 ⇒

r =


rp1
rp2
ra1
ra2
ra3

 =


0.20
0.32
0.09
0.22
0.17


FIGURE 3.2: An example of the APR method.

process represented by M is guaranteed to be strongly connected and aperiodic, and

its stationary distribution is guaranteed. The author (and paper) ranking is also the

principal Eigen vector r of the matrix M , which can be computed by the following

equation:

Mr = r. (3.3)

Figure 3.2 gives an example. In this network, there are two papers and three

authors. p1 cites p2. p1 is written by a1 and a2 and p2 is written by a2 and a3. We

first convert the network into the adjacency matrix A, then turn it into the column

stochastic matrix B. By adding virtual links to the network, a new stochastic matrix

M can be deduced. In this example, we set α = 0.85. The importance of authors

and papers is the principal Eigen vector of M . As expected, a2 is the most influential

author, who writes two papers and one paper has citation. Although a1 and a3 both

write only 1 paper and share a same coauthor, a3’s paper has citation. In this case,
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a3 will gain more importance.

In our work, the largest network contains 12 million authors and even larger

number of papers. Despite the large size of the matrix (107 × 107), fortunately, it

is sparse, and we do not actually store the virtual links during the computation.

Hence, we can use the ‘power iteration method’ [Brin and Page, 1998] to compute

the principal Eigenvector of matrix M . In our implementation, we iterate 100 times

to guarantee the convergence.

3.3 Datasets

Experiments are conducted on two large academic networks. The first dataset is from

Aminer academic social network, which is in the Computer Science (CS) domain The

second dataset is from our industry partener 1, which is in Health domain. Most

experiments in this dissertation will be conducted on these two datasets. The two

datasets can be found in http://zhao15m.myweb.cs.uwindsor.ca/datasets/.

3.3.1 Raw Data

CS Dataset

The Aminer academic social network [Tang et al., 2008] is extracted from ArnetMiner

website 2. Papers in Aminer are all in the Computer Science domain, so we name it as

CS dataset. Aminer integrates publications from DBLP and citation links from ACM

Digital Library, CiteSeer, and other sources. There are 2,092,356 papers, 8,024,869

citation links, and 1,712,433 distinct authors. The raw data contains paper informa-

tion, paper citation relations, author information and authorship relations. There are

three files:

AMiner-Paper.rar This file contains the information of papers and the citation

network. There are 8 entities for a paper:

• #index – index id of this paper

1https://www.meta.org/
2https://aminer.org/aminernetwork
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• #* – paper title

• #@ – authors

• #o – affiliations

• #t – year

• #c – publication venue

• #% – the id of references of this paper (The citation network can be generated

from here.)

• #! – abstract

AMiner-Author.zip This file contains the author information. Each author has

9 properties:

• #index – index id of this author

• #n – name

• #a – affiliations

• #pc – the count of published papers of this author

• #cn – the total number of citations of this author

• #hi – the H-index of this author

• #pi – the P-index with equal A-index of this author

• #upi – the P-index with unequal A-index of this author

• #t – research interests of this author

Although this file contains some indices that will be used in out later experiment,

such as paper count and H-index, we discard these information and only extract

author names. The number of papers, citations, H-index and P-index will be different

after we further clean the data. Thus in our experiment, we recalculate those indices.
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AMiner-Author2Paper.zip This file is the authorship relations between papers

and authors. Each line is an authorship relation. The first column is index, the second

column is author id, the third column is paper id, the fourth column is author’s

position.

Health Dataset

The Health data is provided by our industry partner. It contains research papers

in the area of biomedical and includes full coverage of PubMed and bioRxiv. In

total there are 26,812,984 papers, 17,070,652 authors, 479,358,572 citation links and

202,139,474 authorship links.

3.3.2 Data for Author Ranking

To do the author ranking, we need to build a heterogeneous network. In our research,

we combine the citation network and authorship relations together, then further re-

moving the isolated papers to generate the heterogeneous author-paper network. It

contains two types of nodes, which are papers and authors, and two types of edges,

which are citation relation and authorship relation. The induced heterogeneous au-

thor paper network in the CS dataset contains 1,286,254 papers, 1,004,536 authors,

8,024,869 citation links and 4,946,706 authorship links. In the Health dataset, there

are 15,441,064 papers, 12,680,628 authors, 479,358,572 citation links and 113,792,568

authorship links. The statistics of the two datasets are tabulated in Table 3.1.

TABLE 3.1: The academic networks for the Health and CS domains. Note that the
data size is reduced due to the removal of isolated nodes.

Node and Links Counts

CS

Paper 1,286,254
Author 1,004,536

Paper-Paper link 8,024,869
Author-Paper link 4,946,706

Health

Paper 15,441,064
Author 12,680,628

Paper-Paper link 479,358,572
Author-Paper link 113,792,568
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FIGURE 3.3: Reference and citation distributions of CS and Health dataset. The x-
axes represent the number of references or citations. The y-axes denote the frequency
of references or citations.

To evaluate the performance of different ranking methods, we use the number of

famous researchers among top ranked authors as the criteria. More specifically, we

use 60 Turing Award winners and 1028 ACM Fellows as famous authors in the CS

dataset. 352 Nobel Prize winners are detected in the Health dataset to evaluate the

ranking performance.

Figure 3.3 shows the reference and citation distributions of papers in CS and

Health dataset. As expected, both citations and references have a long tail that re-

sembles a power-law distribution. We use the maximum likelihood estimation [Clauset

et al., 2009] to estimate the power-law exponents. The probability density function

(PDF) is computed and plotted on the figure as α. Most papers have only less than

10 references and citations. Some survey papers contribute around 106 references in

Health data. Few papers can receive large amount of citations.

Figure 3.4 shows the citation generation in the CS citation network. All papers

are published between 1939 and 2014. Panel(a) is the number of published papers

each year. Panel(b) is the number of citations received each year. Panel(c) is the

number of citations made each year. Panel(d-g) show the citation year gap. There

are negative year gaps in Panel(d) and (e),which represents the abnormal citations.

The abnormal citation relations are deleted in Panel(f) and (g). The negative citation
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published in each year.
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(b) Total number of citations
received per year.
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(c) Total number of citations
made per year.
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(d) Citation year gap.
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FIGURE 3.4: Citation generation of the citation network in CS dataset.

year gaps, which is due to the data error in the dataset. Taking the largest negative

gap year as an example, ‘Dynamic programming treatment of the traveling salesman

problem’ was published in 1961, but its year in the dataset is 2003, leading to that all

citations containing this paper have abnormal gap years. In total, there are 61,195

abnormal citations, with the largest negative gap year is -44. We do not have the

publication year information in Health data, so we only list the citation generation

in CS data only.

3.4 Experimental Setup

Our experiments are carried out on two servers. Each one equips with 24-core CPU

and 256GB memory. The complexity of PageRank-based algorithms depends on the
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number of edges in the graph. The largest graph in our experiment contains about

600 million edges, which can be loaded into the memory easily. The code and data

can be accessed on our webpage3.

3.4.1 Compared Metrics

We compare our method with Co-Ranking[Zhou et al., 2007], P (paper count), C(citation

count)[Gross and Gross, 1927], H(H-index)[Hirsch, 2005], G(G-index)[Egghe, 2006],

SPR(summation of PageRank)[Fragkiadaki and Evangelidis, 2016], and their weighted

versions Cw and SPRw[Lindsey, 1982]. Weighted metrics split credits among co-

authors. For an author a, P is the total number of papers that an author has pub-

lished. Other indexes for a are defined as:

C(a) =
∑
p∈a

CitationCountp (3.4)

Cw(a) =
∑
p∈a

CitationCountp
AuthorCountp

(3.5)

SPR(a) =
∑
p∈a

PRp (3.6)

SPRw(a) =
∑
p∈a

PRp

AuthorCountp
(3.7)

Here PRp is the PageRank value for the paper p in citation network.

For SPR, two damping factors are tested (0.85 and 0.5). 0.85 is the empirically

best damping factor suggested by Brin and Page [1998] for web page ranking. α =

0.5 was suggested by Chen et al. [2007] to offset the acyclic problem in citation

network. Our APR method uses the default α = 0.85 since there are already loops

in our heterogeneous network. For the sake of simplicity, we adopt this parameter in

consistency with SPR0.85 method. Authority Ranking in [Sun et al., 2009a] is not

compared because it uses co-author and co-conference links. Citation information is

not included.

3http://zhao15m.myweb.cs.uwindsor.ca/apr/
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FIGURE 3.5: Number of award winners among top-k authors on CS dataset.

3.5 Results

3.5.1 How Good Is APR?

We evaluate the ranking results using the number of award winners within top-k

authors in Figure 3.5 and Figure 3.6. To quantify the difference among these methods,

we treat each line as a ROC(Receiver Operating Characteristic) curve [Hanley and

McNeil, 1982], then AUC(Area Under the Curve) can be calculated from each curve.

The AUC values of the ROC curves in Figure 3.5 Panel A and Figure 3.6 Panel A are

listed in Table 3.2. The awards are Nobel Prize for the health data and Turing Award

for the CS data. In the figure, Panel A is the global view of top authors. Panel B is a

zoom-in for the starting section that contains the top 500 for CS and top 10,000 for

the Health data. We can see that APR outperforms all other methods consistently

in both CS and Health data. Table 3.3 is the number of Turing and Nobel winners
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FIGURE 3.6: Number of award winners among top-k authors on Health dataset.

within top authors on two datasets. APR performs best almost within every range.

Table 3.4 and 3.5 list the top 40 authors ranking by APR and their indexes in other

metrics on CS and Health dataset.

From the plots, especially Panel B of the Health data, we can see that the methods

fall into roughly four groups. The baseline is P . Without question, it gives the lowest

performance. Above that, we see a group that contains of H,G and C, which are

citation-based methods. As expected, G-index is indeed an improvement of H-index.

Both G and H cannot compete with C in most cases, probably because they over-

simplified the citation data.

PageRank-based algorithms outperform citation-based algorithms with α = 0.85.

Sitting in between Citation-based and PageRank-based method are SPR0.5, which

is a special case of PageRank algorithm with high random jumping probability (α =

0.5). We shall understand that PageRank is a spectrum algorithm. When α is smaller,
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TABLE 3.2: AUC values of the ROC curves in Figure 3.5 Panel A and Figure 3.6
Panel A.

Methods
CS Health

AUC (1e3) Improvement AUC (1e6) Improvement
APR 246.8 – 114.8 –

P 91.8 169.07% 70.2 63.53%
C 170.1 45.10% 82.9 38.49%

Cw 195.1 26.51% 100.5 14.14%
H 135.0 82.90% 77.7 47.72%
G 163.4 51.13% 78.6 45.91%

SPR0.85 231.0 6.87% 99.0 15.87%
SPRw0.85 240.5 2.65% 110.4 3.93%
SPR0.5 198.6 24.30% 91.1 25.97%

SPRw0.5 216.9 13.83% 106.0 8.27%
Co-Ranking 238.1 3.66% 109.4 4.88%

there is a higher probability of random jump. Thus the algorithm favors more authors

with more papers or citations. For C, SPR0.5, and SPR0.85, their weighted versions

are consistently better.

Figure 3.7 shows the top-100 APR authors along with their rankings in terms of

citation count. It shows that 1) APR can identify many (20) Turing award winners;

2) Correlation between APR and C is low. For instance, Marvin Minsky is the 1461-st

most cited author, but our APR rank is 35. This prompts us to explore how different

APR is from other methods.

3.5.2 How Different Is APR?

Figure 3.8 shows the pair-wise Spearman’s rank correlation coefficient among 11 meth-

ods for the top 100 authors. The top authors are determined by their APR values.

When we extend the list to include more authors, the correlation coefficients will

increase, but the pattern discussed below is similar.

We can observe that the metrics differ with each other greatly, especially with

APR. APR differs from the other methods the most, probably because it is the only

method that includes authors in the heterogeneous network. For the Health data, the

highest positive correlation happens between APR and Eigen-vector based methods
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TABLE 3.3: Number of Turing/Nobel award winners within top authors.

Methods
CS Health

50 100 200 500 1,000 100 500 1,000 2,000 10,000
APR 16 20 29 45 48 15 55 67 90 143
PN 0 2 4 5 12 0 1 2 8 34
C 8 14 19 22 27 3 17 28 38 80

Cw 11 15 21 30 33 8 37 48 60 111
H 4 7 12 16 23 9 19 27 39 74
G 9 16 20 22 29 4 20 27 42 76

SPR0.85 13 20 27 35 41 12 34 43 61 110
SPRw0.85 16 20 30 41 44 15 48 67 86 139
SPR0.5 10 13 20 26 31 8 19 26 36 84

SPRw0.5 12 18 26 34 38 10 34 50 67 118
Co-Ranking 16 20 29 39 43 13 48 66 81 139

such as Co-Ranking (correlation coefficient ρ = 0.26) and SPRw0.50 (ρ = 0.45). It

is expected that APR correlates with these methods since all of them are based on

random walk interpretation. It is surprising that the closest correlation coefficient is

only 0.29(with SPRw0.85) for Health, and 0.55 for CS(with Co-Ranking). Both are

quite low, indicating that the ranking results are very different. What is even more

interesting is that in Health data, APR correlates with several indexes negatively,

including H-index (ρ = −0.17), G-index (ρ = −0.15), and Paper count ((ρ = −0.08).

Among the top authors, the more influential you are, the fewer papers you write.

This pattern also extends to the CS data.

Figure 3.6 illustrates the satisfied layers of the metrics. There are a few close-pairs.

For instance, Co-Ranking and SPRw0.85 correlate almost perfectly (ρ = 0.99). This

can be explained by the fact that Co-Ranking runs random walks on three disparate

networks. When they do the random walk on the citation network, it equals to

calculate the PageRank values for the citation matrix independent of the author

network. Their combination with the author network is merely summing up the

PageRank values for each author from the citation network. Another group includes

indexes H, G, and extends slightly to C. They are citation-based metrics.

Next, we look at the cause of the difference. In Figure 3.9 and 3.10, each subplot

is the rank value against the rank for each metric. The rank values are normalized so
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FIGURE 3.7: Top 100 APR vs. their citation rankings. Red names are Turing Award
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that they sum up to one. This way we can compare them on the same scale. APR

is plotted in every subplot as a reference (the red line). We can see that the weights

(ranking values) of authors have a long tail distribution that resembles a power-law.

That means that the top authors collect most of the weights, while a large majority

of the authors have very small weights. Although the pattern is the same across all

the metrics for both datasets, the slopes are different, indicating the in-equalities are

different. For the CS data, the coefficient of variation (CV) of weights is 23.61 for

APR, merely 1.13 for H, 2.25 for G, and 6.42 for P . When the variation of the

weights are small, it won’t be easy to tell the difference between the authors. That

may explain why those metrics are not good. Among the top 10,000 authors, the

Gini coefficient is 0.42 for APR, 0.36 for H, and 0.38 for G.

3.5.3 Weighted vs. Unweighted Methods

Weighted methods share credits between multiple authors of a paper. They reflect

authors’ contribution in a more accurate way. This is verified in both data sets as
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illustrated Figure 3.11. In the figure we can see that weighted methods outperform

the corresponding unweighted versions consistently along all the top authors.

3.6 Results of Paper Ranking

Since APR is running on the heterogeneous network, it also gives the ranking for

papers. Table 3.6 lists the 40 highly ranked papers in CS dataset, and Table 3.7

lists the 30 highly ranked papers in Health dataset. We also list the citation number

for each paper. Our evaluation rule is only valid for authors. It is hard to measure
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the quality of papers. While we still find that papers’ APR values and citation

numbers are highly positively correlated, with Pearson’s correlation coefficient 0.78

and Spearman’s correlation coefficient 0.49 in CS data; 0.82 and 0.72 in Health data.

3.7 Discussions and Conclusions

This paper proposes Author PageRank (APR) as a method for measuring academic

influence of authors in a heterogeneous author-citation network. We demonstrate

that it outperforms 10 other methods on two very large data sets. We also show that

the ranking results differ greatly with all the other methods.
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To the best of our knowledge, this is the first attempt in integrating authors and

papers in a coherent academic network. In the past, various approaches have been

tried to add author data into citation network. When treating citation and author

ranking separately in the case of Co-Ranking, we show that their result is actually

the same as the PageRank on the citation network alone. When transforming the

heterogeneous network into an author-citation network, the resulting graph can be

too large to be processed. There are computational challenges when carrying out

PageRank-based algorithms due to the very large size of the data. Some methods

based purely on author citation relations are not scalable (e.g., [Radicchi et al., 2009],

[West et al., 2013]), hence they can not deal with data sets of our size. In the

author-citation network, although the node number is reduced by containing authors

only, the number of links can increase in orders of magnitude, depending on the

average reference number and the average number of papers per author. We solve

this computational problem by replacing a dense author-author graph with a sparse

author-paper-author network, hence reducing the number of edges greatly. Probably

this is the reason why we never see PageRank-like algorithms run on a very large

author network.

Academic networks are not restricted with authors and papers. We can add other

entities, such as journals, conferences, and institutions into the ranking framework

[Wang et al., 2013]. Ranking is not limited to author’s overall influence. Better

ranking could be domain dependent [Yan, 2014], given that different areas have their

own style of the publication. In additional to measuring influence, there are other

aspects need to be reflected, such as an author’s potential and impact in the future.

We also plan to extend the ranking from authors to journal [Bergstrom et al., 2008]

and institutes [Liu and Cheng, 2005]. Those are the topics that we will continue to

work on.
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CHAPTER 4

Weighted Heterogeneous

Author-Paper Network

4.1 Introduction

This chapter proposes a weighted heterogeneous academic network, called APN (Author-

Paper Network), and identify influential authors by applying PageRank algorithm on

this network. We test our method on two large datasets. One is an academic network

in health domain that is collected by us. It contains 15 million papers, 12 million

authors, about 500 million citations. The other is the well-known AMiner network in

computer science developed by Tang et al. [2008]. Our contributions can be summa-

rized as follows: 1) We summarize and compare three widely used academic networks

in the author ranking area. 2) We find the self citation problem in author network and

mutual citation problem in paper network. 3) We propose a weighted heterogeneous

author-paper network. The above two problems can be avoided in our proposed net-

work. 4) We evaluate our methods based on the number of Nobel Prize winners for

the Health data, the number of Turing Award winners and ACM fellows for the CS

data. Our method outperforms other methods consistently for both datasets. 5) Our

ranking result is also very different from that of existing methods in terms of Spear-

man rank correlation. One interesting result is that APN is negatively correlated

with paper count, H-index, and G-index among top authors on Health dataset.
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(a) Original relation.
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(b) Paper network.

a1 a2

a5 a4 a3

a6

1
2

1
4

1
4 1

2

1
41

4

1

1
4

1
41

4
+ 1

2

1
4

1
2

(c) Author network.
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(d) Author Paper network.

FIGURE 4.1: Three different networks. Panel(a) is the original network, consisting
of 5 papers and 7 authors. Panel(b) is the paper network. Panel(c) is the author
network. weights on edges are the transferring ratio. Panel(d) is the heterogeneous
author paper network.

4.2 Three Different Networks

PageRank can be applied to author ranking on different kinds of networks [Amjad

et al., 2018], consisting of papers or/and authors. Figure 4.1 lists three basic academic

social networks. In this figure, there are five papers. p1, p2 and p4 has 2 authors

respectively. Blue lines are citation relations. p1 → p2 indicating that p1 cites p2.

According to this relation, three different networks can be derived:

• Paper network [Fragkiadaki and Evangelidis, 2016][Sidiropoulos and Manolopou-
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4. WEIGHTED HETEROGENEOUS AUTHOR-PAPER NETWORK

los, 2006] (Panel b).

It only contains citation links. GP = (VP , EP ) is the directed paper network,

where VP is the paper set, EP is the set of links, representing citations between

papers. When p1 cites p2 and p3, there exist two edges p1 → p2, p1 → p3 in the

network, and the weight of p1 transfers to p2 and p3 equally.

• Author network [Radicchi et al., 2009] (Panel c).

GA = (VA, EA) is the directed author network, where VA is the author set, EA

is the set of links, representing citations between authors. It is derived from

the original network. Consider the paper p1, written by two authors a1 and

a2, which cites a paper p3, written by two authors a4 and a5, 4 = 2 · 2 links

are created from each of the citing authors(a1,a2) to each cited authors(a4,a5),

where every link has the weight equal to 1/(2·2). The weight of a1 is transferred

to a4 and a5 proportionally to the weight. There exists self citation relation in

the network. p4 and p5 are both written by a7, and there is a citation relation

between these two papers, resulting in a self loop for a7.

• Author-paper network [Zhao et al., 2019] (Panel d).

G = (V,E) = (VA
⋃
VP , EPP

⋃
EPA

⋃
EAP ). VA is the author set. VP is the

paper set. EPP is the citation relation between papers, which is same as links

in the paper network in Panel(b). EPA and EAP are links between a paper and

its authors.

Paper network, illustrated in Figure 4.1 Panel b, is usually used to rank papers, but

the importance of authors can be derived from papers. [Fragkiadaki and Evangelidis,

2016] and [Sidiropoulos and Manolopoulos, 2006] both first rank papers on the paper

network, then the the rank value of authors are calculated by the average PageRank of

their papers. Gao et al. [2016] combine H-index and PageRank together to obtain an

objective evaluation criteria. They first rank papers by PageRank on Paper Network,

then replace the H-indexs citation component with the PageRank score to get the PR-

index values. Applying PageRank on paper network is useful and efficient to rank
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papers. While the importance of an author should be affected not only by his/her

papers, but also coauthors. Moreover, the importance of authors should affect papers.

Thus, paper network may be not good enough to produce objective ranking results.

Author network, illustrated in Figure 4.1 Panel c, is widely used to rank authors.

Yan and Ding [2011] use a weighted PageRank algorithm on author network to get the

importance of authors and compared their method with citation based algorithms.

A similar paper is proposed in [Radicchi et al., 2009]. They create a weighted au-

thor citation network(WACN) from paper citation network(PCN). The weight from

n citing authors to every of the m cited authors is 1/{nm}. A weighted PageRank

algorithm is then used to calculate the score of each author in the network. Another

method is proposed in [West et al., 2013]. They propose the Eigenfactor score on au-

thor network. Different from Eigenvector, they give more weight to the highly cited

authors. When ranking on author network, authors with more citations will obtain

more weights. Without the coauthor links, collaborating a paper will not contribute

to an author’s influence. While it is obvious that collaborating with a famous re-

searcher will attract more attentions. Another concern about author network is the

complexity issue. The complexity of most efficient PageRank algorithms depends on

the number of edges in the network. The author network is a dense network. It is

efficient to apply PageRank on a small dense network. While academic data is usually

large, containing millions of authors. PageRank is not expected to be executed on

such a network when the number of links explodes.

An effective way is to derive a heterogeneous network consisting of both papers

and authors. This kind of network is first used by Zhou et al. [2007]. There are

three networks in the framework, which are paper network, coauthor network and

authorship network. They apply two random walks on paper network and coauthor

network independently, then use the authorship relations to combine them together.

More recently, Zhao et al. [2019] integrate authors and papers in a coherent author-

paper network. With no direct links between coauthors, coauthors are connected

indirectly by their papers. Compared to the Co-ranking network in [Zhou et al.,

2007], their network is more efficient. Moreover, this kind of network has been tested
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to identify more influential authors comparing with many existing methods.

There are several other link analysis based methods. Liu et al. [2005] propose a

weighted PageRank algorithm, called AuthorRank, on a co-authorship network. If

any two authors co-authored a paper, an undirected edge with unit weight is created

between these two authors. They care more about the author centrality and results

show that AuthorRank is better than other similar index like closeness, degree and

centrality. Sun et al. [2009a] combine clustering and ranking together. They rank

authors within each conference cluster. The reputation of conference can affect an

author’s influence. Basically, they use paper-author and conference-author links, but

not paper-paper citation links.

There are several issues with the derived homogeneous Author network:

• The induced homogeneous network inevitably loses some information during

the transformation process. For example, in the Author-network, there is no

path to walk from one co-author to another. Most of the ranking algorithms,

including [Radicchi et al., 2009], [West et al., 2013], and our paper, are based on

PageRank, and can be explained by random walk model. The importance of a

node corresponds to the probability of visiting the node in a very long random

walk. In the homogeneous network, there is no possibility of an author to visit

his/her co-author. In other words, one author does not share any importance

with her/his co-authors. Our model as illustrated in Panel (c) will enable the

random walk among co-authors.

• The induced homogeneous network mostly directs downwards to older authors,

due to the fact that citation is always directed to older papers. It is mostly

an acyclic graph. That may explain why their ranking on older papers (before

seventies) can find many award winners. Our heterogeneous network introduce

links upwards through Author-Paper connections, thus can pass some of the

weights upwards.

• The induced homogeneous network is very large. People may mistakingly think

that the induced graph is smaller by eliminating all the paper nodes. On the
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contrary, it is actually much bigger in terms of the number of edges. We should

note that it is the edge count, not the node count, that dominates the complexity

of PageRank algorithms. In our health data, there are about 4.2 billion edges

in the homogeneous network, only about 600 million links in our heterogeneous

network. The network size exceeds the capacity of most commodity computer

servers.

In this chapter, we first find the self citation problem on author network and

mutual citation problem on paper network. To deal with these two problems, we use

a new heterogeneous author-paper network, based on the one in [Zhao et al., 2019]

to do author ranking. Add weights onto the network can efficiently control the flow.

Then we study the difference among these three networks and shows our method

can reduce the impact of the two problems. Another contribution of our paper is a

systematic comparison with 11 other ranking methods, and quantifies the difference

with each method by Spearman Correlation coefficient. We also tried to explain the

difference using their distributions of the ranking values. It is consistently better than

all those 11 methods.

4.3 Motivation

Among the three derived networks, paper network(PN) and author network(AN)

are widely used. We generate the PN and AN from Aminer dataset, which will

be described in the experiment section. Then two proposed ranking algorithms are

applied on the two networks.

4.3.1 Self Citation

We generate a weighted author network(AN) and use PageRank to rank authors,

which is proposed in [Radicchi et al., 2009]. In this method, an author transfers

his/her credit to the descending authors proportional to the weight on edges. From

the ranking results, we find AN has the self citation problem. Figure 4.2 shows an
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Author # Citation # Paper Weight(10−5) Rank
E. F. Codd (a1) 2,294 24 96.16 12

Robert E. Bleier (a2) 28 2 114.07 8

TABLE 4.1: Author weight and ranks on AN.

example of this problem. In this figure, Codd is an influential author, who writes

24 papers and has 2,294 citations, listed in Table tab:bleier-AN. One of his highly

cited paper, with 1497 citations and only 2 references, cites another paper, which is

written by Bleier. Bleier has only 2 papers, and one of them cites another. In this

case, Bleier will have a loop in the author network. This loop attracts large amount

of weight for Bleier, resulting to his larger credit and higher rank than Codd. While

considering both quality and quantity, Codd should be more influential than Bleier.

a2

a1

Bleier

Codd

27authors

2.14

9.27

102.66

FIGURE 4.2: An example of self citation problem on AN.

p1

p2 p3
Bjork Davies

Gray

14citations

592citations

32citations
3.26

24.56

24.30

FIGURE 4.3: Am example of mutual citation problem on PN.
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Paper #Citation Author Weight(10−5)
p1 592 James N. Gray 11.51
p2 15 Lawrence A. Bjork 28.58
p3 33 Charles T. Davies 28.89

TABLE 4.2: Authorship relations and paper weight on PN.

Author # Citation # Paper Weight(10−5) Rank
James N. Gray 5,725 89 26.54 61

Lawrence A. Bjork 16 2 28.62 52
Charles T. Davies 47 2 28.98 49

TABLE 4.3: Author weight and ranks on PN.

4.3.2 Mutual Citation

In PN, only papers and citation relations will be included into the network, as de-

scribed in section 4.2. Based on our previous work [Zhao et al., 2019], we can apply

the PageRank algorithm on the paper network to get the rank values for papers first,

then the rank value of a paper is allocated to its authors equally. Moreover, 0.85 is

experimented as a good damping factor. Thus we use the results of PNw0.85 (here

after PN), as described in [Zhao et al., 2019], to analyze the properties of paper net-

work. From the ranking results, we find PN suffers from the mutual citation problem.

Figure 4.3 shows an example. In this figure, Bjork has 2 papers and 16 citations, with

only one paper p2 has citations. Two of his citing papers p1 and p3 are written by

James N. Gray and Charles T. Davies respectively. p2 [Bjork, 1973] and p3[Davies Jr,

1973] cite each other, which truly happens. This citation circle gains large weights to

p2 and p3, in which p3 only cites p2. p2 also only cites p3, resulting in high weights

to Bjork and Davies. Bjork is ranked 52 and Davies is ranked 49 in PN. While p1 is

an important paper, with 592 citations, but gains less weight than p2 and p3 in PN,

resulting to Gray’s lower rank.

Besides the two problems on AN and PN, there are also several shortcomings.

• PN contains only papers and citation relations, lacking authorship relations.

The weight of an author is only determined by the importance of his/her pa-

pers. While in real world, a paper and its authors should affect each other. More

67



4. WEIGHTED HETEROGENEOUS AUTHOR-PAPER NETWORK

influential authors will gain more attraction for their papers. Another short-

coming is that PN does not contain the coauthor relations, while collaborating

with a famous researcher will attract more attention.

• AN contains only authors and author citation relations, which makes one author

does not share any importance with her/his co-authors. Another concern is that

AN is a large and dense network. The complexity of PageRank based algorithm

is dominated by the number of edge, not node, resulting to AN’s scalability

issue.

In this chapter, we will introduce a weighted heterogeneous author-paper network.

The mutual citation, self citation problem will also be avoided.

4.4 Our Weighted APN Network

We use a heterogeneous author-paper network to represent the academic data. We

define the importance of an author to be the probability of the author being visited

by a long random walk in the heterogeneous network. Edges between two papers

represent the citation relationship, and edges between papers and authors are the

authorship relation.

Definition 3. (Author-Paper Network )

Given a set of authors a = {a1, a2, . . . , am} and a set of papers p = {p1, p2, . . . , pn}.
Let EPP denotes the citation links between papers; EPA denotes the authorship rela-

tion from a paper to an author; EAP denotes the authorship relation from an author

to a paper. The author-paper network is a graph G = (a ∪ p, EPP ∪ EPA ∪ EAP ).

Consider for a paper pi, written by the n coauthors ai1, ai2, ..., ain, which cites a paper

pj, written by m coauthors aj1, aj2, ..., ajm. A citation link will first be created from pi

to pj. Then n authorship links are created from the n citing authors to their paper pi

and m authorship links are created from pj to the m cited authors.

For an author-paper network contains m papers and n authors, the graph can be
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(a) Unweighted Author-Paper network.
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1 − β

(b) Weighted Author-Paper network.

FIGURE 4.4: An example of author-paper network. Derived from Figure1 Panel (a).

represented by a binary (m+ n)× (m+ n) adjacency matrix A:

A =

APP AAP

APA 0

 , (4.1)

where APP is the adjacency matrix for citation relations between papers, APA is the

adjacency matrix for links from papers to authors, AAP is the adjacency matrix for

links from authors to papers. 0 means there is no direct links between authors.

The adjacency matrix represented by A can be turned into a new matrix A′, in

which each submatrix(A′PP , A
′
AP , A

′
PA) is a column stochastic matrix.

A′ =

A′PP A′AP

A′PA 0

 , (4.2)

Figure 4.4 Panel (a) shows an example of our proposed heterogeneous author-

paper network, which is derived from Figure 4.1 Panel (a). Consider for a citation

link from p1 to p3, two links are created from citing authors a1 and a2 to the citing

paper p1. One more link is also created from the cited paper p3 to the cited author

a3.
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M =

 β ·MPP MAP

(1− β) ·MPA 0
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To achieve the PageRank weight for authors, the simplest way is to apply the

original PageRank algorithm on this network. While we observed this network suffers

from the long reference issue, similar to the one proposed in [Zhao et al., 2019]. Figure

4.5 gives am example of this issue. In this example, p1 is written by a1, and it has 9

references. p2 is written by a2, and it has only 2 references. In this case, a1 receives 1
10

of p1’s weight. a2 receives 1
3

of p2’s weight. if p1 and p2 achieve the same importance,

a2 will be more influential than a1, which does not make sense. Especially for survey

papers with several hundred references, the authors will receive few weight. To avoid

this issue, we use a ratio β to control the weight from a paper to its descending papers

and authors. To be specifically, β weight of a paper is transferring to its descending

papers, and 1− β goes to its authors. We do not control the weight from authors to

papers since authors’ descending nodes can only be papers. The induced weighted
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a1

p1

1 2 ... 8 9

(a) Long reference.

a2

p2

1 2

(b) Short reference.

FIGURE 4.5: Long Reference Issue.

author-paper network is shown in Figure 4.4 Panel(b).

By adding the ratio β, we can derive another column stochastic matrix B, where

each column sums up to one.

B =

 β · A′PP A′AP

(1− β) · A′PA 0

 (4.3)

Now the network can be viewed as a Markov chain, and the influence of authors

are defined as the stationary distribution of the Markov process. In other words, an

author’s importance is interpreted as the probability of a random surfer visiting the

node. Because not every Markov chain has a stationary distribution, it is necessary

to modify the network so that stationary distribution is guaranteed. We follow the

normal practice, which is to add virtual links to every pair of nodes with an equal but

small transition probability, i.e., a new stochastic matrix M is introduced by adding

every cell with a small transition probability:

M = αB + (1− α)
1

n
eeT , (4.4)

where e is a vector of 1’s, α is the damping factor that is normally chosen to be a

value around 0.85 [Brin and Page, 1998]. n is the length of the matrix.

Now, the Markov process represented by M is strongly connected because eeT

represents a complete network. Brin and Page [1998] also point out that M is aperi-

odic, and its stationary distribution is guaranteed. The author (and paper) ranking
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is also the principal Eigen vector r of the matrix M , which can be computed by the

following equation:

Mr = r. (4.5)

This network has the following properties:

• Paper can go upwards by random jump and co-author link. For example, al-

though p2 cites p4, the weight of p4 can still transfer to p2 through their author

a5.

• The importance of a paper depends not only on citations, but also the impor-

tance of its authors.

• The long reference issue can be avoided.

• Adding the transferring ratio β is expected to avoid the self citation problem

and mutual citation problem.

It differs from other paper/author networks such as the one proposed in [Zhao

et al., 2019], [Zhou et al., 2007],[Sun et al., 2009a], [West et al., 2013]. In our hetero-

geneous author-paper graph, there are no edges between authors. Author relations

can be induced from several sources, such as co-authoring a paper [Zhou et al., 2007],

citation of one author to another [West et al., 2013], or even publishing in the same

conference [Sun et al., 2009a]. Such induced relations lost information during the

graph transformation. Moreover, the induced graph normally expands in size, some-

times in orders of magnitude. For instance, if an author writes m papers, each cites n

papers on average, and each paper has k coauthors, then there will be m× n× k in-

duced author-citation edges. Direct links between authors may also let author social

network dominate the ranking system. Coauthors of a paper form a clique. Random

walk traffic will be directed to such cliques, especially when the cliques size is large.

The ranking should be decided mainly by papers, not author relations. Therefore,

we excluded the edges between authors in the graph. Although direct edges are not
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TABLE 4.4: The relation between weights in Figure 4.6.The random jump weight is
not considered here.

AN α = 0.9
Bleier 29(1 of 29 is himself) authors cite Bleier.
114.07 114.07 = 9.27 + 102.66 + 2.14(weight from other 27 authors).
102.66 102.66 = 114.07 ∗ 0.9.

APN α = 0.9, β = 0.3
p1− > p2 0.91 = 6.73 ∗ 0.9 ∗ 0.3 ∗ 1

2
p1− > a1 4.24 = 6.73 ∗ 0.9 ∗ 0.7, Codd is p1’s only author.
p2− > a2 1.20 = 1.91 ∗ 0.9 ∗ 0.7, Bleier is p2’s only author.
p2 has no reference papers 1.91 ∗ 0.9 ∗ 0.3 will be added into the random jump.
p3− > p1 0.69 = 2.55 ∗ 0.9 ∗ 0.3
p3− > a2 1.61 = 2.55 ∗ 0.9 ∗ 0.7
a2− > p3 2.54 = 2.82 ∗ 0.9

a2

a1

Bleier

Codd

27authors

2.14

9.27

102.66

(a) Author network.

a1

a2

Codd

Bleier

p1

p2

p3
1ref

1citation1497citations

25citations

0.594.24

1.20

2.54
1.61

0.91 0.69

(b) Author paper network.

FIGURE 4.6: The self citation problem in APN. Weights on links are multiplied by
105.

present, author relation still plays a major role in the ranking system: the weight of

an author is passed indirectly not only to his cited authors through citation links, but

also co-author via their papers.

4.5 Self Citation and Mutual Citation Problems

As we discussed in the motivation section, PN suffers from the mutual citation prob-

lem and AN has the self citation problem. Our previously proposed author-paper

network has the long reference issue. By adding the ratio β, the long reference issue

can be addressed. In this section, we will show that our APN can reduce the impact

of the self citation and mutual citation problems.

Figure 4.6 and Table 4.5 show the comparison between AN and APN for the self
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TABLE 4.5: The weights of nodes in Figure 4.6.

AN(10−5) AN rank APN (10−5) APN rank
E. F. Codd(a1) 96.16 12 9.18 21

Robert E. Bleier(a2) 114.07 8 2.82 402
p1 - - 6.73 -
p2 - - 1.91 -
p3 - - 2.55 -

p1

p2 p3
Bjork Davies

Gray

14citations

592citations

32citations
3.26

24.56

24.30

(a) Paper network.

a1

a2 a3

p1

p2 p3
Bjork Davies

Gray

14citations

592citations

32citations0.19

0.45

0.29

0.69

0.31

0.10
0.34

0.96

1.04

(b) Author paper network.

FIGURE 4.7: The mutual citation problem in APN. Weights on links are multiplied
by 105.

citation problem. The weights transferred between nodes is illustrated in the figure

and weights of nodes are in Table 4.4. In AN, Bleier attracts large amount of weight

due to his self citation. In APN, although there is still a cycle between p2, a1 and p3,

the transfer ratio properly control the weight within the cycle.

Figure 4.7 and Table 4.6 show the comparison between PN and APN for the

mutual citation problem. The weights transferred between nodes are listed in Table

4.7. Bjork is ranked extraordinary high in PN due to his mutual citation with Davies.

In real world, an author(Bjork) with only 2 papers and 16 citations should not be

ranked higher than that(Gray) with 89 papers and 5725 citations. In APN, weight

in this small loop is weakened. Gray’s rank remains almost the same, but Bjork and

Davies are ranked much lower than before as expected.

Next we look at the difference of these three networks. Figure 4.8 illustrates the

comparisons. In each subfigure, we list 100 top authors ranked by the index on x-axis,

and their corresponding ranks by the index on y-axis. Each dot is an author, where
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TABLE 4.6: The weights of nodes in Figure 4.7.

PN(10−5) PN rank APN (10−5) APN rank
James N. Gray(a1) 26.54 61 5.76 62

Lawrence A. Bjork(a2) 28.62 52 0.70 4734
Charles T. Davies(a3) 28.98 49 1.07 2361

p1 11.51 - 2.14 -
p2 28.58 - 1.09 -
p3 28.89 - 1.65 -

TABLE 4.7: The relation between weights in Figure 4.7. The random jump weight
is not considered here.

PN α = 0.85
p2 28.58 = 3.26 + 24.56 + 0.76. 0.76 is from other 13 citations.
p3 28.89 = 24.30 + 4.59. 4.59 is from other 32 citations.
p1− > p2 3.26 = 11.51 ∗ 0.85 ∗ 1

3
, p1 has 3 references.

p2− > p3 24.30 = 28.58 ∗ 0.85
p3− > p2 24.56 = 28.89 ∗ 0.85

APN α = 0.9, β = 0.3
p1− > a1 0.34 = 2.14 ∗ 0.9 ∗ 0.7 ∗ 1

4
,p1 has 4 authors.

p1− > p2 0.19 = 2.14 ∗ 0.9 ∗ 0.3 ∗ 1
3

, p1 has 3 references.
p2− > a2 0.69 = 1.09 ∗ 0.9 ∗ 0.7
a2− > p2 0.31 = 0.70 ∗ 0.9 ∗ 1

2
, Bjork has 2 papers.

p2− > p3 0.29 = 1.09 ∗ 0.9 ∗ 0.3
p3− > p2 0.45 = 1.65 ∗ 0.9 ∗ 0.3
p3− > a3 1.04 = 1.65 ∗ 0.9 ∗ 0.7
a3− > p3 0.96 = 1.07 ∗ 0.9
p2 1.09 = 0.19 + 0.31 + 0.45 + 0.14, 0.14 is from other 14 citations.
p3 1.65 = 0.29 + 0.96 + 0.4, 0.4 is from other 32 citations.
a2 0.70 = 0.69. 0.01 difference may because of the rounding.
a3 1.07 = 1.04 + 0.03, 0.03 is from Davies’s other paper.

red ones are Turing Award winners and green ones are ACM fellows. From Panel(A)

and Panel(C), we can see that there are no outliers for APN , compared with PN

and AN . While when ranking by PN in Panel(B), there are two outliers, Charles-T.-

Davies and Lawrence-A.-Bjork, which is caused by mutual citation problem. Same

for AN , there are still several outliers. One of them, Robert-E.-Bleier, is caused by

his self citation problem, as we discussed before.

They also perform quite different in identifying new rising gems. Figure 4.9 shows

the performance of three networks in different years. X-axis is the top authors’ ranks.

Y-axis is the number of ACM fellows within top authors. It is clear that APN

outperforms other two in most years. AN can obtain good results in early years,

especially in 1994. ACM fellows in 1994 are all old authors, such as John McCarthy,

Edsger W. Dijkstra and Donald E. Knuth. This is obviously a limitation for AN ,

because people care about not only old authors, but also some recent active ones.
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FIGURE 4.8: Several outlier authors ranking by PN and AN vs. APN. The top 100
authors in Panel (A) and (C) are ranked by APN. The top 100 authors in Panel (B)
is ranked by PN. The top 100 authors in Panel (D) is ranked by AN.

APN performs well both in early and recent years. Overall, AN is the best one in

the first four years. After that, especially after 2005, APN is consistently the best

one, while PN performs not well enough to identify influential authors.

4.6 Performance and Comparisons

For PN and PNw, two damping factors are tested (0.85 and 0.5). 0.85 is the empir-

ically best damping factor suggested by Brin and Page [1998] for web page ranking.

α = 0.5 was suggested by Chen et al. [2007] to offset the acyclic problem in citation

network. For our APN method, we grid search the damping factor α and ratio β,

then set α = 0.9, β = 0.3 for CS dataset and α = 1.0, β = 0.9 for Health dataset.

For the Health dataset, we fail to obtain the results of AN , because there will be

more than 4 billion edges on the weighted author network, and generating such a

huge network is too time and space consuming.

To evaluate the performance, we extract some well-known famous researchers

and evaluate each method by comparing the number of identified famous researchers
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FIGURE 4.9: Number of ACM fellows among top 1000 authors in different years.
ROC curves for three methods APN, AN and PN over are listed in each plot. APN
performs better for more recent ACM fellows.
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FIGURE 4.10: The comparison between APN and APR. Panel (a) is the performance
on Turing Award winners, Panel (b) is ACM Fellows, Panel (c) is Nobel Prize winners.

among top-k ranked authors. Health data contains papers and authors working in the

domain of biomedical science. We first get official full names for Nobel Prize Winners

in Chemistry and Physiology or Medicine from the Nobel website1. Then for each

full name, we match it with all names in the dataset and generate some candidates,

whose last name and first name initial are the same as the full name. Last we get

the best candidate for each full name by choosing the most highly ranked candidate

identified by Zhao et al. [22]. 315 Nobel Award Winners are finally matched. In CS

dataset, we crossmatched 1028 ACM fellows and 61 Turing Award winners using the

same method as we did for the Health dataset.

As we discussed before, APN avoids the long reference issue of APR. First, we

want to compare APN with APR. In APR, we do not control the weight between

papers and authors. Since a paper usually has more references than authors, more

weight will go to its citing papers. Large amount of weight will transfer to old papers,

because a paper can only cite papers that have been published and eventually the

citation link will end on old papers. Thus, APR is good at identifying “old” influential

authors. APN, differently, uses β to control the weight between papers and authors,

making less weight transfer to references. Therefore, APN can identify more young

influential authors. In Figure 4.10, we evaluate them using three kinds of famous

authors. Some Turing Award winners and Nobel Prize winners are nominated in

1970s and 1910s, so we can see that APR performs better in Panel (a) and slightly

better in Panel (c). While when identifying ACM Fellows, who are relatively young

1https://www.nobelprize.org/
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FIGURE 4.11: The comparison between APN and other ranking methods by identi-
fying the number of award winners among top-k authors on CS and Health datasets.

and mostly nominated after 2000, APN performs much better than APR. It is hard

to say which method is better or worse. The only conclusion we can draw is that

APR and APN are capable of different scenarios.

Next, we compare APN with other ranking methods, which are introduced in

Chapter 3. Figure 4.11 shows the overall performance of identifying the number

of ACM Fellows and Nobel Prize winners in top ranked authors. Panel (a) and

(b) are from CS dataset and Panel (c) and (d) are from Health dataset. In CS

dataset, although APN is not the best in top 1500, it is better than others in the

middle and rear range in Panel (b). In Health data, APN consistently performs

best among all methods. Similarly as the observation in Chapter 3, there are four

groups in Health data, indicating the effectiveness of ranking authors using PageRank

algorithm. Since it is hard to distinguish more than 10 lines in the figure, we still

use the AUC values to quantify the performance. Table 4.8 lists the AUC values
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TABLE 4.8: The AUC values of the ROC curves in Figure 4.11 Panel (a) and (c).
APN is used as the baseline for calculating the improvement.

Methods
CS Health

AUC (104) Imp(%) AUC (104) Imp(%)
APN 710 — 113 —

P 568 25.01 19 498.53
C 655 8.29 56 104.29

Cw 668 6.27 82 39.12
H 650 9.18 52 116.20
G 655 8.32 53 114.07

PN0.85 698 1.64 83 36.86
PNw0.85 704 0.82 108 5.19
PN0.5 674 5.31 56 101.12

PNw0.5 689 2.96 86 32.32
Co-Ranking 692 2.60 106 6.88

AN 709 0.08 - -

and corresponding improvements. APN is slightly better than other PageRank-based

methods in CS dataset and significantly better in Health dataset.

To further study the difference between APN and other ranking methods, we cal-

culate their Spearman’s Correlation [Myers et al., 2010]. The Spearman’s Correlation

of two variables x and y can be computed as:

ρX,Y =
1
n

∑n
i=1(R(xi)−R(x)) · (R(yi)−R(y))√

( 1
n

∑n
i=1(R(xi)−R(x))2) · ( 1

n

∑n
i=1(R(yi)−R(y))2)

, (4.6)

where xi if the i-th variable in X and R(xi) is the rank of xi in X. R(x) and R(y) are

the mean value of R(x) and R(y). The range of ρ is from −1 to 1. ρX,Y = 1 means

the rank of X and Y are the same. Here we list the correlation on top 100, 500, 1000

ranked authors on both datasets. First, we calculate the Spearman’s Correlation

between two ranking methods, then use 1 − ρ as distance and apply Hierarchical

Agglomerative Clustering (HAC) [Rokach and Maimon, 2005] to split 12 methods

into clusters. In HAC, each method starts in its own cluster, then pairs of clusters

are merged as one until there is only one cluster. Complete linkage [Defays, 1977] is
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used to calculate the distance between two clusters A and B:

d(A,B) = max{d(x, y) : x ∈ A, y ∈ B}. (4.7)

Figure 4.12 show the heatmaps of HAC and the corresponding dendrograms. We

apply HAC on top 100, 500, 1000 ranked authors respectively. The values on the

heatmap is the Spearman’s correlation between two methods on the specific row and

column. Basically, count-based methods are close to each other, same for PageRank-

based methods. PN0.5 and several count-based methods are merged together, such as

C, Cwand G. The similarity would be as large as 0.94. The reason is that in PN0.5,

more than 50% weight is random jump, and the weight of papers will transfer to

citing papers. Thus large amount of weight goes to highly cited papers, then authors

achieve all weight from papers, leading to the high similarity with C. G considers

more about citation count, so it is not surprising to see that PN0.5 and G are also

similar. H and G sit close in Figure 4.12, since they both combine paper count and

citation count together. The similarity is 0.96 in top 100. While they have difference.

H considers more about paper count and G gives more weight to citation count. Thus

P and H are first merged. Another observation is that P is negatively related to our

method, especially in Figure 4.12 top 100, where the value is −0.22. It shows that

publishing more papers does not mean getting more influence. While C is positively

related to almost all other methods, indicating that publishing papers with more

citations is essential to be influential. APN is unique and has small similarity with

other methods, especially in Health data top 100. It even has negative similarities

with most count-based methods. This maybe due to the heterogeneous network APN

is using. Unlike PN and AN , APN contains more information, making it considers

more relations. From the overview, count-based and PageRank-based methods are

separated in two main clusters, as expected. Compared with top 100, similarities in

top 1000 become more positive.

Similar to Chapter 3, here we still list the top ranked authors in Table 4.9 and

4.10. In the first table, red names are Turing Award winners and bold names are
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ACM Fellows. Our method can identify 5 Turing Award winners in top 10 and 16

ACM Fellows in top 20, which is impressive. Overall, there are 15 Turing winners

and 40 ACM Fellows in top 50 authors. This table shows that APN can efficiently

identify more influential authors, not only the “old” influential people, but also some

rising stars in recent years.

4.7 Discussions and Conclusions

In this chapter, we propose a new method that applies PageRank algorithm on a

new weighted heterogeneous author-paper network, which is named as APN . Based

on the previous work in Chapter 3, we improve APR by reducing the impact of the

long reference issue. By adding the weight β to the network, we can balance the

weight transfer from one paper to its references and authors. Another contribution

we made is that we find the self citation problem of author network (AN) and mutual

citation problem of paper network (PN). To the best of our knowledge, this is the

first work discussing the impact of self citation and mutual citation problems when

measuring academic influence. We illustrate that how our APN reduces the impact of

the two problems in the heterogeneous network. Another finding is that our method

can identify not only “old” influential people, but also more ACM Fellows, who are

mostly rising stars in recent years. Besides AN and PN , we later compare our method

with other 9 existing ranking methods. The experiments are conducted on two large

datasets in the domain of Computer Science and Health. The experiment results

show that our method is superior among all methods. The later similarity analysis

show that our method performs differently from citation based methods. The HAC

heatmap and dendrograms could help readers have a better understanding about

different kinds of ranking methods.
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FIGURE 4.12: The Spearman’s Correlation similarity between 11 ranking methods in
Health dataset. HAC is used to generate clusters. The right side is the corresponding
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CHAPTER 5

SEHN: Stratified Embedding for

Heterogeneous Networks

5.1 Introduction

Network (or graph) embedding aims to find dense and short latent representations for

network nodes. It is crucial for graph mining and analyses. Once a latent embedding is

obtained, off-the-shelve machine learning algorithms can be applied on the network.

Therefore, network embedding has been studied extensively, as reflected in recent

review papers such as [Wang et al., 2019] [Cai et al., 2018] [Goyal and Ferrara, 2018]

[Chen et al., 2018].

A heterogeneous network (HN) is a network that has more than one node types

or edge types. In real applications, most networks are heterogeneous. Naturally, sub-

stantial research has shifted the focus from homogeneous network embedding [Perozzi

et al., 2014, Grover and Leskovec, 2016] to heterogeneous network embedding [Dong

et al., 2017, Fu et al., 2017, He et al., 2019, Park et al., 2019, Dong et al., 2020, Yang

et al., 2020].

Similar to embedding algorithms for homogeneous graphs, many HN embedding

algorithms are also induced from Skip-Gram Negative Sampling (SGNS) [Mikolov

et al., 2013]. The overall idea is to generate Random Walk traces, then the traces are

used as the input of SGNS. Directly applying existing graph embedding algorithms
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Author Paper

(a) DeepWalk.

Author Paper

(b) Metapath2vec.

FIGURE 5.1: Embeddings of top 200 top-ranked authors and papers. The dimen-
sion of embedding vectors is reduced from 128 to 2 by t-SNE. Both DeepWalk and
Metapath2vec can not distinguish authors and papers.

to HN is doable – we can simply disregard the types of the nodes, and treat the HN

as a homogeneous graph. The results of this kind of naive approach failed as reported

in Dong et al. [2017]. Now it is commonly accepted that, instead of choosing the

next node to visit indiscriminately as in a normal Random Walk, we should choose

the next node restricted to some trace patterns. Dong et al. [2017] used the term

MataPath, which was originally coined in Sun and Han [2012], to denote such path

schemes or patterns. Lots of efforts have been spent on identifying MetaPaths for

a variety of machine learning tasks, such as node classification [Fu et al., 2017, Shi

et al., 2018b], link prediction[Wang et al., 2018b, He et al., 2019] and recommendation

Zhao et al. [2017], Hou et al. [2017], Shi et al. [2018a]. Most of them have different

types of nodes mixed along the Random Walk path.

Let us look at an author-paper citation network as illustrated in Figure 5.2. There

are two types of nodes, i.e., author and paper, and two types of edges, i.e., paper

citation and authorship. When we run DeepWalk and Metapath2vec on AMiner

author-paper citation network, we have embeddings as shown in Figure 5.1 when they

are projected into two-dimensions. Authors are mingled with papers. It is impossible

to delineate the boundary between the two. Intuitively, papers and authors are two
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a2a1

a3a4

a5

a6

p1

p2 p3

p4 p5

Matapath
a1 p1 a2 p1 p2 a4 p2 p4 a6 ...

Stratified

a1 a2 a4 a6 ...

FIGURE 5.2: An example of how to generate a walking path. We first use Random
Walk to achieve a walking path with some MetaPath patterns, then stratify the path
by keeping one node type.

different objects. We should not compare authors directly with papers, just as we

do not compare apple with orange. Technically, along the MetaPath traces that are

taken in SGNS, the dominant training pairs are the pairs between author and paper,

not between author and author. Every time an (author, paper) pair is encountered,

an author vector is updated so that it can resemble the paper. Author nodes are never

adjacent to each other, always separated by at least one paper node. The connection

between authors is reflected indirectly through papers.

To solve this problem, we propose Stratified Embedding for Heterogeneous Net-

works (SEHN). It trains embeddings from a single type of traces that are obtained

from MetaPath. We also show that stratification not only works for Metapath2vec,

which is a generic strategy that can be used to improve other embedding algorithms.

As a demonstration, we construct two stratified versions of DeepWalk and Node2vec,

denoted as DeepWalkS and Node2vecS. Experiments show that DeepWalkS and

Node2vecS outperform the unstratified ones significantly.

SEHN also outperforms the embedding of the homogeneous author network that

is induced from the heterogeneous network. The stratified traces seem to be the

same as those obtained from the corresponding homogeneous author citation graph.

One question arises is whether it is better to obtain embedding directly from the

homogeneous graph. When a heterogeneous graph is transformed into a homogeneous

one, some information is lost. For instance, two authors can be connected by multiple

paper citation traces. Then we need to transform the heterogeneous network into a
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weighted homogeneous network.

5.2 SEHN: Stratified Embedding for Heterogeneous

Networks

Learning heterogeneous network embeddings is to apply the network embedding

strategies on a heterogeneous network to generate the vector representation for nodes.

In this problem, there are two major components. The first one is the heterogeneous

network, which is defined in Definition 4. In our work, we use the heterogeneous

author-citation network. Figure 5.2 illustrates an example. There are five papers.

p1, p2 and p4 has 2 authors respectively. p3 and p5 have one author. Blue lines are

citation relations. Red lines are authorship relations. p1 → p2 indicates that p1 cites

p2. The network integrates authors and papers in a coherent author-paper network.

With no direct links between coauthors, where coauthors are connected indirectly by

their papers.

Definition 4. (Heterogeneous Network [Shi et al., 2016]) Given a network G =

(V,E), G is called a heterogeneous network if the types of V > 1 or the types of E

> 1. Otherwise, it is a homogeneous network.

The second component is the MetaPath based Random Walk. MetaPath is first

introduced in [Sun and Han, 2012]. In our work, we capture the author relations

using two MetaPaths: APPA and APA. APPA represents the author citation and

APA is the coauthor. Then we stratify the Random Walk paths by only keeping

author nodes A. Right part of Figure 5.2 illustrates this procedure. The procedure

of generating walking paths is illustrated in Algorithm 4 The next step is to feed

the paths into SGNS to learn efficient node embeddings. The algorithm is illustrated

in Algorithm 5. We first generate paths as shown in Line 2 and 3. Then for each

node ni on a walking path, we first get a random integer number as the window size

in the range of (0, C]. The training samples for this node will be c nodes left to it

and c nodes right to it. For each node in the window, the training pair is (ni, nj).
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Equation 5.4 is used to update the output vector vnj
. Besides nodes in the window,

we also generate K negative samples for node ni and update the output vector for

each negative sample. Then the embedding vector for ni is updated. After scanning

all walking paths, we will get a trained model, consisting of the embedding vectors of

all nodes.

Algorithm 4 Stratified RW
1: function RW(G, LENGTH.)
2: Generate P2Adict from G.
3: Random.shuffle(G.nodes())
4: PATHS = [ ]
5: for node in G.nodes() do
6: if node is an author then . Generate a path for each author.
7: cur = node
8: path = [cur], pathwithP = [cur]
9: pathwithP.append(cur.neighbor) . cur is an author. Its neighbor must be a paper

10: while len(path) < LENGTH do
11: step1 = pathwithP [−2]
12: step2 = pathwithP [−1]
13: if step1 is a paper and step2 is a paper then
14: if len(PAdict[step2]) = 0 then . If the second papers has no author
15: Break . Break this path.
16: end if
17: while True do
18: step3 = a random neighbor of step2
19: if step3 is an author then
20: path.append(step3)
21: pathwithP.append(step3)
22: end if
23: end while
24: else . Decide the next node after AP . It could be A or P .
25: step3 = a random neighbor of step2
26: if step3 is an author then
27: path.append(step3) . Only append authors to path.
28: pathwithP.append(step3)
29: else
30: pathwithP.append(step3)
31: end if
32: end if
33: end while
34: PATHS.append(path)
35: end if
36: end for
37: return h
38: end function
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Algorithm 5 SEHN
Input: The heterogeneous network G, walking path length l, window size C
Output: Vector representation v

1: Initialize v ← uniform(− 0.5
d , 0.5

d )
2: PATHS ← StratifiedRW (G, l) .
3: Keep Author nodes A from PATHS.
4: for each path in PATHS do
5: for node ni on path do
6: window c ← random integer ∈ (0, C]
7: for each node nj in window c do
8: Update output vector unj

according to Eq. 5.4
9: Draw K negative samples according to the noise distribution Pn

10: for each negative sample nk do
11: Update output vector unk

according to Eq. 5.4
12: end for
13: Update embedding vector vni

according to Eq. 5.4
14: end for
15: end for
16: end for
17: return v

The objective function is the same as in SGNS [Mikolov et al., 2013]:

J =
∑
ni∈V

∑
nj∈N+(ni)

[log σ(uj · vi) +
K∑
k=1

Enk∼Pn log σ(−uk · vi)], (5.1)

whereK is the number of negative samples, Enk∼Pn is to randomly select a negative

sample nk according to noise distribution Pn. The noise distribution is derived from

the node degree distribution [Mikolov et al., 2013], which is defined in Equation 5.2.

Pn(ni) =
P (ni)

0.75∑
nj∈V P (nj)0.75

(5.2)

σ(·) is the Sigmoid function, which is defined in Equation 5.3.

σ(x) =
1

1 + exp(−x)
(5.3)

N+(ni) is the sampling strategy used to generate the training pairs for ni. In our

work, we use Random Walk as N+.

The update equations in SGNS are:
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vni
← vni

+ η[(1− σ(unj
· vni

)) · unj
+

K∑
k=1

Enk∼Pn − σ(unk
· vni

) · unk
]

unj
← unj

+ η[t− σ(unj
· vni

) · vni
].

(5.4)

In the update equation, t = 1 when nj is a output word, and t = 0 when nj is a

negative sample. η is the learning rate, which decays linearly from 0.025 to 0.0001 in

most related works and implementations [Rehurek and Sojka, 2010, Mikolov et al.,

2013, Tang et al., 2015b, Goyal and Ferrara, 2018].

5.3 Experiments

5.3.1 Experimental Setup

The experiments are designed to demonstrate the efficacy of stratification. Hence,

we compared several algorithms side by side with their stratified counterparts. The

comparison methods are:

1. DeepWalk. DeepWalk treats the heterogeneous network as homogeneous net-

work. It uses original RandomWalk with fixed length to generate walking paths.

We set the length to 100.

2. DeepWalkS: The walking strategy is the same as DeepWalk. It only keeps

authors on the walking oaths and remove all papers.

3. Node2vec. Node2vec uses a biased Random Walk to generate walking paths.

There are two parameters in Node2vec to control the walker. The return pa-

rameter p controls the probability of revisiting a node on the existing path. The

in-out parameter q determines how far the walker will go.

4. Node2vecS: The walking strategy is the same as Node2vec. It only keeps authors

on the walking oaths and remove all papers.
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5. Metapath2vec. Metapath2vec, the state of the art in HN embedding, specifies

a meta-path scheme when generating walking paths from heterogeneous net-

works. Based on the property of our network, we set the scheme as ‘APA’

and ‘APPA’. ‘APA’ indicates the coauthor relation and ‘APPA’ represents the

citation relation. Thus the walking path will be ‘...APAPPAPPAPAPA...’.

6. SEHN. Same as Metapath2vec, we also specify two meta-path schemes. While

we stratify the paths by removing all papers.

The experiments are replicable by running the code and data from our webpage 1.

We reimplemented DeepWalk, Node2vec, and Metapath2vec using Gensim [Re-

hurek and Sojka, 2010] in the same framework so that the comparison is fair. The

hyper-parameters are set as follows. The trace length in DeepWalk is 100, a commonly

used length for better performance [Grover and Leskovec, 2016]. The dimension of

embedding vectors is 128. The number of negative samples for each training sample

is 5. The learning rate decays linearly from 0.025 to 0.0001. For window size, we

choose 10 instead of 5 that is normally used in word and network embedding. This

is because, to have roughly 5 authors in a trace, we need to have a trace of length 10

or more that is a mix of authors and papers.

In order to have a fair comparison, we generate the same length of traces for

DeepWalk, Node2vec, and Metapath2vec. i.e., we generate a waking path with a

length of 100 for each author. In total, there are #author×100 nodes on the walking

paths. When doing this, there is a dead-end problem in MetaPath Random Walk.

Due to the in-completeness of the data, not every paper has an author. If this kind

of paper is the second paper on the MetaPath APPA, the walking path will have no

place to go and have to be terminated before reaching the length of 100. In this case,

we do a random restart of the Random Walk to make up for the lost length.

1http://zhao15m.myweb.cs.uwindsor.ca/sehn
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5.3.2 Evaluation

We test our embeddings in the classification task. The classifier is the off-the-shelve

Logistic Regression [Nelder and Wedderburn, 1972] implemented in the scikit-learn

toolkit [Pedregosa et al., 2011] with default parameters. The input of the classifier is

the embedding vector of an author, then it predicts the corresponding label of this

author. In CS data, there are 9 classes and we want to analyze each class. Thus,

we use one-vs-all [Bishop, 2006] and 10-fold cross-validation, then calculate the micro

average F1 score as the performance for each class. Due to the randomness of the

embedding algorithms and randomness in Random Walks, each run produces different

embeddings. To reduce the variance of the results, we train five independent models

and report the average on these five models. Due to the relatively small size of the

labeled data, there is also variation caused by the split of the test data and training

data. Hence we train 20 classifiers using different random splits. In total, there will

be 100 evaluations per algorithm and per dataset. For each classifier, we calculate the

macro and micro average F1 score of all classes as the performance. By doing so, we

can get 100 performance for each dataset. The average score of the 100 performance is

finally reported as the final performance. The micro and macro F1 scores are defined

as:

micro-F1 = 2 ∗ p× r

p+ r

macro-F1 =

∑
l∈L F1(l)

|L| ,

(5.5)

where L is the set of classes, F1(l) is the F1 score for class l, p is the precision and r

is the recall. The precision and recall in the formula are defined as

p =

∑
l∈L tp(l)∑

l∈L(tp(l) + fp(l))

r =

∑
l∈L tp(l)∑

l∈L(tp(l) + fn(l))
.

(5.6)
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TABLE 5.1: Statistics of two datasets.

DBLP CS

#Author 992,874 999,940
#Paper 1,755,623 1,283,369
#Edge 16,967,820 12,963,509

#Labeled authors 3,982 784
#Classes 4 9

Avg. degree 6.17 5.68

The micro-F1 is the weighted average score of all classes. While the macro-F1 value

is the unweighted mean of all classes.

5.3.3 Datasets

We focus on author-citation HN in this study. Although there are many such net-

works, not many of them are labeled so that the classification task can be evaluated.

We use one such network (named as DBLP) that is often used for HN embedding

evaluation such as in [Shi et al., 2018b, Ji et al., 2018, Shi et al., 2018c]. The original

data contains five types of nodes: author (A), paper (P), term (T), venue (V), and

year (Y). There are five types of relations in the data: paper-paper, paper-author,

paper-term, paper-venue, paper-year. In our experiment, we only keep papers, au-

thors, paper-paper relation and paper-author relation. We also construct another

network in Computer Science domain, called CS. Their statistics for WCC (weakly

connected components) are summarized in Table 5.1. The two datasets are HN in

the real world. The data in the Metapath2vec paper is not used because it is not an

author-citation network–it does not have citation links.

In DBLP dataset, Sun et al. [2009b] manually labeled 3,982 authors in four re-

search areas, including 975 authors in information retrieval, 1169 authors in database,

740 authors in data mining, and 1098 authors in artificial intelligence.

We conduct the author embedding experiments on the CS dataset. The details

can be found in Section 3.3. We first build the heterogeneous author-paper network

and further clean the data by taking the largest WCC(weakly connected component)
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in our experiment. There are 999,940 authors and 1,283,369 papers. It also consists

12,963,509 edges, including 4,940,418 authorship links and 8,023,091 citation links.

The average degree in the CS dataset is 5.68. We manually label 784 ACM fellows

using the 9 areas from CCF conference and journal categories 2:

• Architecture. 133 authors. Include computer Systems, Parallel and Distributed

Systems, Computer Storage.

• AI. 68 authors. Include Pattern Recognition, Machine Learning, Artificial Intel-

ligence, Fuzzy Systems, Neural Networks, Computational Linguistics, Computer-

Human Interaction.

• Network. 71 authors. Include Network Communication, Mobile Network Ad

Hoc, Sensors, Wireless Communications, Computer Security, Cryptography.

• Graphics. 54 authors. Include Image Processing, Visualization and Computer

Graphics, Multimedia Computing, Video Technology.

• Theory. 133 authors. Include Information Theory, Algorithmica, Mathematical

Structures, Complexity, Symbolic Logic, Discrete Mathematics, Virtual Reality.

• SE. 171 authors. Include Programming Language, Software Engineering, Sys-

tem Software, Software Quality, Image Processing.

• DB. 101 authors. Include Database Management, Information Science, Data

Mining, Knowledge Discovery, Web Semantics, Information Retrieval.

• Security. 31 authors. Include Secure Computing, Cryptography, Computer

Security, System Security, Privacy.

• HCI. 22 authors. Humane-Computer Interaction.

2http://faculty.neu.edu.cn/swc/guogb/docs/ccf-2015.pdf
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FIGURE 5.3: Multi-class author classification performance on DBLP and CS
datasets.

5.3.4 Results

The overall results are summarized in Table 5.2 and Figure 5.3. SEHN outper-

forms Metapath2vec, the state-of-the-art HN embedding algorithm, consistently in

two datasets. DeepWalk and Node2vec also improve greatly with stratification. The

highest improvement observed is 24% when the training size is 5% for macro-F1

in CS dataset. It tapers off with the increase of training size, but still have 9.6%

improvement when training size is 90%.

To highlight the importance of stratification, we shall take notice that stratifica-

tion plays a bigger role than MetaPath in the improvement. All stratified algorithms

perform better than the un-stratified versions. Even the stratified Node2vec outper-

forms Metapath2vec.

This also draws our attention to the difference in the performance of DeepWalk

and Node2vec from what is reported in Dong et al. [2017]. In Dong et al. [2017],
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DeepWalk and Node2vec underperform by a much bigger margin compared with

Metapath2vec, especially when the training data is small. This is mainly because

the network is different. Our network uses citations to connect authors, while their

network does not have citation information.

As a side-by-side comparison of stratified algorithms and their un-stratified coun-

terparts, Figure 5.4 shows the average micro F1 scores when training ratio is 90%.
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FIGURE 5.4: Multi-class author classification performance on DBLP and CS
datasets. Stratification outperforms the heterogeneous counterparts on DeepWalk,
Node2vec, and Metapath2vec. Training ratio = 90%.

5.3.5 Visual Inspection

We plot ACM Fellows from CS dataset in Figure 5.5. The dimension of embedding

vectors is reduced from 128 to 2 by t-SNE [Van Der Maaten, 2014]. Each color

represents a class. Each dot is an ACM Fellow. We can see that SEHN outperforms

other methods visibly–the boundary between the classes are more clear, and the

clusters are tighter. It is especially visible for areas Graphics, HCI, AI, Theory, and

DB. Another observation is that AI and DB are hard to set apart, which reflects

the nature of these two research areas. In addition to SEHN, we also see a clear

improvement of stratified versions over their un-stratified DeepWalk and Node2vec

algorithms.
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Architecture HCI Security AI Graphics SE Theory DB Network

Architecture HCI Security AI Graphics SE Theory DB Network

(a) DeepWalk.

Architecture HCI Security AI Graphics SE Theory DB Network

(b) DeepWalkS.
Architecture HCI Security AI Graphics SE Theory DB Network

(c) Node2vec.

Architecture HCI Security AI Graphics SE Theory DB Network

(d) Node2vecS.
Architecture HCI Security AI Graphics SE Theory DB Network

(e) Metapath2vec.

Architecture HCI Security AI Graphics SE Theory DB Network

(f) SEHN.

FIGURE 5.5: 2D plots of ACM Fellows in CS dataset.
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DeepWalk DeepWalkS Node2vec Node2vecS Metapath2vec SEHN
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FIGURE 5.6: The performance of DB and AI on Aminer dataset. Each box is 100
evaluations. DeepWalk: 0.90, DeepWalkS: 0.92, Node2vec: 0.89, Node2vecS: 0.92,
Metapath2vec: 0.91, SEHN: 0.95.

As a case study, we plot the ACM Fellows in areas DB and AI in Figure 5.7. It

is obtained from 6 embedding methods with 128 dimensions, then reduced to two

dimensions using T-SNE. The orange color represents DB class and the blue color

is AI class. Overall, SEHN can efficiently split the two classes apart. Moreover,

the authors in the same class are located closer. Figure 5.6 shows the side-by-side

comparisons. One interesting author is C-Faloutsos. Without stratification, he is

located deep in the DB area. After stratification, he is moved towards AI, sitting

on the boundary between DB and AI. Obviously, this describes better the research

area of Professor Faloutsos. Another obvious observation can be found on J-Han.

J-Han is working on both database management and artificial intelligence. While his

recent research is focusing on AI. All three methods can effectively put him in the

junction area. J-Han sits alone in DeepWalk in the central part. He is close to J-Pei

in Metapath2vec. While he is in the middle of a small group in SEHN. We argue that

SEHN put him in a better place that other two methods. J-Pei is J-Han’s highest

coauthored people in Google Scholar. Thus they should be the closest. Similar for

C-Aggarwal, who is J-Han’s 8th highly coauthored author. P-Yu, although he is

in DB group, is J-Han’s 3rd highly coauthors people and they are colleagues in the

University of Illinois. They published lots of papers together in the cross domain.
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(c) Node2vec.
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(d) Node2vecS.
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(e) Metapath2vec.
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FIGURE 5.7: 2D plot of authors in DB and AI classes. Orange dots are database.
Blue dots are authors in artificial intelligence.
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TABLE 5.3: Performance of all methods. 5 independent models for each algorithm.
Evaluate 20 times for each model. 100 evaluations for each algorithm.

Dataset Class DeepWalk DeepWalkS Node2vec Node2vecS Metapath2vec SEHN

DBLP

DM 0.7018 0.7503 0.6725 0.7171 0.6950 0.7601
DB 0.8329 0.8748 0.8403 0.8578 0.8454 0.8800
IR 0.7746 0.8144 0.7491 0.7825 0.7820 0.8195
AI 0.7862 0.8558 0.8181 0.8303 0.8090 0.8603

Micro-F1 0.7814 0.8316 0.7806 0.8056 0.7919 0.8375

CS

Architecture 0.5725 0.6208 0.5831 0.6196 0.5934 0.6407
HCI 0.6758 0.7570 0.7218 0.7758 0.6428 0.7369

Security 0.6435 0.6573 0.6596 0.6866 0.6153 0.6790
AI 0.6254 0.6833 0.6576 0.6803 0.6305 0.7090

Graphics 0.6886 0.7303 0.6915 0.7331 0.7130 0.7561
SE 0.5984 0.6258 0.6000 0.6207 0.6017 0.6333

Theory 0.6155 0.6571 0.6347 0.6626 0.6165 0.6697
DB 0.7661 0.7887 0.7695 0.7819 0.7586 0.7962

Network 0.6752 0.6861 0.6963 0.6939 0.6688 0.6994
Micro-F1 0.6380 0.6738 0.6506 0.6749 0.6410 0.6875

TABLE 5.4: Improvement. 5 independent models for each algorithm. Evaluate 20
times for each model. 100 evaluations for each algorithm.

Dataset Class DeepWalkS v.s. DeepWalk Node2vecS v.s. Node2vec SEHN v.s. Metapath2vec

DBLP

DM 6.91 6.63 9.37
DB 5.03 2.08 4.09
IR 5.14 4.46 4.80
AI 8.85 1.49 6.34

overall 6.42 3.20 5.76

CS

Architecture 8.44 6.26 7.97
HCI 12.02 7.48 14.64

Security 2.14 4.09 10.35
AI 9.26 3.45 12.45

Graphics 6.06 6.02 6.04
SE 4.58 3.45 5.25

Theory 6.76 4.40 8.63
DB 2.95 1.61 4.96

Network 1.61 -0.34 4.58
overall 5.61 3.74 7.25

SEHN can efficiently merge these authors together, although they may have different

labels.

5.3.6 Class-wise Classification and Variation Analysis

To have a microscopic view on the performance of the classification tasks, we also

plot some class-wise results. The evaluation is one-against-all remaining data. The

repetition is the same as before. In Figure 5.8, the x-axis represents each class and

y-axis is the average F1 scores. The shaded area shows the standard deviation of

100 F1 scores. We can see that our result is consistent for each individual class.

In addition, the variance is small, indicating that the improvements are statistically
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significant.
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FIGURE 5.8: Performance of each class on DBLP and CS datasets. 5 independent
models for each algorithm. Evaluate 20 times for each model. 100 evaluations for
each algorithm.

In class-wise classifications, we observe even larger improvements. For example in

the CS dataset, SEHN improves by 5.0% on DB class. DeepWalkS, Node2vecS and

SEHN can achieve 5.61%, 3.74%, 7.25% overall improvement. SEHN is consistently

the best among all classes. Our best performance is on DB class with 0.80 F1 score.

The largest improvement is 14.64% on HCI class compared with Metapath2vec. Ar-

chitecture and SE are the most difficult to be classified. All three methods get low

F1 scores. It may because many authors work in these two large areas, but they

focus on some specific small research domains, making them are not similar to each

other. Unlike DB and AI, which are small areas and works in these areas are close

to each other. Another reason is that Architecture, Security and Network are usually

close. Someone may work on the security of architecture. Some focus on network

architecture. The boundary of these three research areas are relatively more blur

than DB, AI Graphics and HCI. Theory is also not easy to be classified. It makes

sense that most theoretical work are proposed early and have been used in most areas,

such as complexity theory and some fundamental mathematical theory. All methods

can get high performance on DB, AI, Graphics and HCI classes. Figure 5.8 shows
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the performance of all methods on 9 classes. Since the evaluation data is small, the

standard deviation area is large. All stratified versions are consistently better, except

for Node2vecS on network class, which is only 0.34% worse. There is no big difference

between DeepWalk and Metapath2vec. Although the number of papers between two

authors is smaller in Metapath2vec, both of them learn embeddings for papers and

authors simultaneously.

5.4 Comparison with Homogeneous Network

Since the Stratified Random Walk trace retains the author nodes only, it resembles

Random Walk traces that are obtained from a homogeneous author network. Such

an author network can be induced from the heterogeneous graph as illustrated in

Figure 5.9. We follow the transformation defined in [Radicchi et al., 2009], i.e., we

first generate an unweighted undirected author citation network, then add coauthor

links into the network.

a2a1

a3a4

a5

a6

p1

p2 p3

p4 p5

a1a2

a5 a4 a3

a6

FIGURE 5.9: Induced homogeneous network from heterogeneous network.

To compare embeddings on these two networks, we apply DeepWalk on homoge-

neous networks and apply our SEHN on heterogeneous networks. Table 5.5 lists the

performance. We use the same evaluation as discussed in the evaluation section, i.e.,

we train 5 models for each embedding method, then evaluate each model 20 times.

The final performance is the average of 100 micro F1 scores. We also list the standard

deviation of 100 evaluations in the table. As expected, SEHN outperforms Random
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TABLE 5.5: The F1 scores and standard deviation of homogeneous and heterogeneous
networks in CS and DBLP datasets. Each F1 score is the average of 100 evaluations.

Dataset DeepWalk on induced network SEHN
DBLP 0.61 (± 0.004) 0.84 (± 0.003)

CS 0.68 (± 0.007) 0.69 (± 0.010)

TABLE 5.6: The statistics of the homogeneous author network in CS and DBLP
datasets.

Dataset # node # edge Avg. degree
DBLP 992,874 406,694,612 409.6

CS 999,940 43,456,456 43.5

Walk on homogeneous networks. This can be explained by the loss of information

when the homogeneous author network is obtained from the heterogeneous network.

For example, the multiple author citation relation is lost during the transformation.

One interesting phenomenon is the big difference in terms of improvement margin

in two datasets. One improves 37.7% while the other is merely 1.5%. To understand

such a difference, let’s check the difference in the datasets. For both datasets, the

induced author network is much larger than the original heterogeneous network in

terms of the edge count, although the node count is reduced. Table 5.6 lists the

statistics of the author network in CS and DBLP datasets. Although the number

of authors in the two datasets is similar, the homogeneous network in DBLP is ten

times larger than in CS data. On average, each author is linked with 409 authors in

the DBLP dataset, making the network denser than its heterogeneous counterpart.

Because of the higher density of the citation links in DBLP data, its induced

network loses more information, i.e, the weight on the edge that reflects the flow

between the author. Hence the homogeneous network underperforms more. In an

extreme case when every author had only one paper and made only one citation, we

project that SEHN would perform the same as the Random Walk on homogeneous

networks.
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5. SEHN: STRATIFIED EMBEDDING FOR HETEROGENEOUS NETWORKS

5.5 Discussions and Conclusions

This paper proposes to stratify Random Walk traces to improve the embedding of

heterogeneous networks. The evaluation is very successful using academic citation

networks: it improves the corresponding un-stratified traces significantly on both

networks. The evaluation is the commonly used classification task.

Stratification is not a panacea that works for all networks. It needs to be applied

with care. As a rule of thumb, we only throw away another type of node when they

do not add much information. For instance, in the author-paper-venue network in

Dong et al. [2017], one MetaPath is Author-Paper-Venue-Paper-Author, akaAPV PA.

Suppose that we are only interested in the embedding of authors. We can not stratify

the path APV PA to AA in this case. We have conducted experiments and find that

the stratified version is inferior. The reason is that the MetaPath APV PA represents

a co-attendance relation that encompasses many authors. Each author connects with

hundreds of other authors, for different reasons (i.e., their papers). In this case,

the papers in the MetaPath APV PA are important to distinguish the connection

between authors. If we remove the papers in between, we lose the meaning as for

why they are connected. All the authors are connected in the same way as if they

had written the same paper. On the other hand, in our author-citation network, the

MetaPath APPA has much less variations in the papers in between. For any given

authors Ai and Aj, when there is a MetaPath AiPPAj, there are not many different

paper citations between Ai and Aj. Therefore, they can be removed, and embedding

is consequently improved. This guideline can help us identify types of heterogeneous

networks that can use stratification.
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CHAPTER 6

Conclusions and Future Directions

Heterogeneous academic networks have been studied for decades. More and more

researchers are trying to extract information and build some useful applications from

such networks. In this chapter, we will summarize what we have done to study

the heterogeneous academic networks. We will also introduce some potential future

directions in this research area.

6.1 Discussions and Conclusions

A heterogeneous network is a network that has more than one node type or edge

type. In real applications, most networks are heterogeneous. Naturally, substantial

researchers have shifted the focus from homogeneous networks to heterogeneous net-

works. Academic networks are derived from scholarly data. They are heterogeneous

in the sense because different types of nodes are involved, such as papers and authors.

This dissertation starts with the introduction of two problems we are studying.

More specifically, we give an overview as well as the challenges of academic ranking

and heterogeneous network embeddings. Chapter 2 give a comprehensive overview of

the academic ranking and network embeddings. PageRank algorithm has been widely

applied to academic ranking. Thus we use the PageRank algorithm and propose a new

heterogeneous author paper network to measure the academic influence for authors

in Chapter 3. The academic influence of scholars is hard to measure. To concur this
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problem, we propose to use the number of award winners among top-ranked authors

to do the evaluation. We also introduce two datasets. The first one is in the Computer

Science domain, which is collected by us from the AMiner dataset. Another is in the

Health domain. The raw data is provided by our industry partner, then cleaned by

us. Some analyses are made to help readers to have a comprehensive understanding

of the two datasets. During our research, we further improve the method by finding

and avoiding the long reference issue. Besides the heterogeneous network, we also

noticed two phenomenons of the other two widely used networks. The paper citation

network has the mutual citation issue, which will highly rank some low productive

authors. The author citation network, on the other hand, tends to prefer old authors.

Thus, in Chapter 4, we improve our previous method by restricting the authorship

directions and adding a proper weight ratio between papers and authors. Our new

method can efficiently address the above three issues. Experiments indicate that we

can achieve better performance in terms of the number of award winners among top-

ranked authors. More importantly, our method can identify not only old influential

authors but also more rising stars. The experiments also demonstrate some interesting

phenomenons. For instance, among the top authors, our ranking negatively correlates

with citation ranking and paper count ranking.

The second main part of this dissertation is to learn the vector representations of

authors from the heterogeneous networks. In Chapter 5, we propose a new embedding

method called Stratified Embedding for Heterogeneous Networks (SEHN). Similar to

embedding algorithms for homogeneous graphs, many heterogeneous network embed-

ding algorithms are also induced from Skip-Gram Negative Sampling (SGNS). The

overall idea is to generate Random Walk traces, then the SGNS model takes the

traces as input and learns the vector representations for nodes on traces. MetaP-

ath is widely used to generate traces from heterogeneous networks. The MetaPath

traces consist of mixed node types, and different node types are projected into one

single low-dimensional space. In many applications, there is no need to compare dif-

ferent types of nodes, hence there is no need to embed them in one space. In this

scenario, we propose that different types of nodes should be projected into differ-

109



6. CONCLUSIONS AND FUTURE DIRECTIONS

ent spaces. More specifically, we first generate MetaPath based walking traces, then

further separate the traces into different layers, where each layer contains only one

type of node. By testing on two datasets, our SEHN outperforms the state-of-the-art

method. Moreover, the efficacy of stratification is also demonstrated on two classic

network embedding algorithms DeepWalk and Node2vec. We also show that SEHN

can learn better embeddings than the corresponding homogeneous author networks.

6.2 Future directions

This dissertation studies the heterogeneous academic networks. The complex struc-

ture and rich information can give us a comprehensive overview of such data. Despite

the topics in this dissertation is limited, there are many other possible directions

worth exploring in the future:

• This dissertation focuses on authors in academic networks. It is natural to see

we expand our methods for other types of entities, such as papers, institutions,

venues, etc. For example, our ranking method is running on heterogeneous

academic networks. It also gives the ranking for papers. Similar to author

ranking, it is hard to obtain ground truths for paper rankings. Thus, one

possible direction is to design and obtain the evaluation criteria for other entities

in academic networks and compare our methods with others. We also study the

embeddings of heterogeneous academic networks. Our methods are validated

on two datasets where authors are labeled into different domains. Similarly, we

can also study and evaluate the embeddings for other entities.

• There are many possible applications that can be built on top of this disserta-

tion. For instance, after we get the rank and embeddings of the authors, we

can predict the future raising stars and make a collaboration recommendation

system for different fields. We can also track the evolution of the author rank-

ing to predict the trend of science. For example, we can extract the influential

authors in the past few months or years, then the largest community among
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them are most likely to be the hot research topic.

• We only focus on academic data in this dissertation. Thus, another possible

direction is to apply our methods on other kinds of heterogeneous networks, such

as Twitter and Movie Review data. In fact, most of the real-world networks are

heterogeneous naturally. Our ranking method can identify the most important

entities in other networks. We can also use our embedding method to learn node

embeddings for such networks so that out-of-box machine learning toolkits can

be applied.
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