

Neutral OptiMS Cartridge

Instruction Guide

This document is provided to customers who have purchased SCIEX equipment to use in the operation of such SCIEX equipment. This document is copyright protected and any reproduction of this document or any part of this document is strictly prohibited, except as SCIEX may authorize in writing.

Software that may be described in this document is furnished under a license agreement. It is against the law to copy, modify, or distribute the software on any medium, except as specifically allowed in the license agreement. Furthermore, the license agreement may prohibit the software from being disassembled, reverse engineered, or decompiled for any purpose. Warranties are as stated therein.

Portions of this document may make reference to other manufacturers and/or their products, which may contain parts whose names are registered as trademarks and/or function as trademarks of their respective owners. Any such use is intended only to designate such products as those manufacturers' products and does not imply any right and/or license to use or permit others to use such manufacturers' and/or their product names as trademarks.

SCIEX warranties are limited to those express warranties provided at the time of sale or license of its products and are the sole and exclusive representations, warranties, and obligations of SCIEX. SCIEX makes no other warranty of any kind whatsoever, expressed or implied, including without limitation, warranties of merchantability or fitness for a particular purpose, whether arising from a statute or otherwise in law or from a course of dealing or usage of trade, all of which are expressly disclaimed, and assumes no responsibility or contingent liability, including indirect or consequential damages, for any use by the purchaser or for any adverse circumstances arising therefrom. (GEN-IDV-09-10816-E)

For Research Use Only. Not for use in Diagnostic Procedures.

Trademarks and/or registered trademarks mentioned herein, including associated logos, are the property of AB Sciex Pte. Ltd., or their respective owners, in the United States and/or certain other countries (see sciex.com/trademarks).

AB Sciex[™] is being used under license.

© 2024 DH Tech. Dev. Pte. Ltd.

EC Authorized	AB Sciex Netherlands B.V.
Person	1e Tochtweg 11,
	2913LN Nieuwerkerk aan den ljsse
	Netherlands

AB Sciex Pte. Ltd. Blk33, #04-06 Marsiling Industrial Estate Road 3 Woodlands Central Industrial Estate, Singapore 739256

Contents

1 Operational Precautions and Limitations	5
2 Neutral OptiMS Cartridge	6
3 Prepare the Reagents	9
Initial Sample Concentrations	
Prepare the 50 mM AmAc Buffer, pH 3.0	10
Prepare the 100 mM AmAc Buffer, pH 3.0	11
Prepare the 10 mM AmAc Buffer, pH 3.0	11
Prepare the 10% HAc Solution	11
Prepare the 20% HAc Solution	
Prepare the 200 mM AmAc LE Buffer, pH 4.0	
Reconstitute the Protein Test Mix	12
Prepare the Protein Test Mix Sample	13
Prepare the Peptide Test Sample	
Prepare the PepCalMix Test Sample	
4 Prenare the Travs	14
About Vials	14
Fill a CESI Vial	
Fill a Microvial	16
Fill a nanoVial	17
Prenare the Buffer Travs	18
5 Dronoro the System	20
Condition the Conjugate	
Establish a Stable Sprov	20 22
Optimize the ESI Voltage	
Cine Tupe the Desition of the Spreyer Tip	20
Manual Calibratian	
Manual Calibration	
Create a Deference Table	
Ureate a Reference Table	
Ivianually Calibrate in Product Ion Mode	
6 Methods for the Neutral OptiMS Cartridge	45

Contents

7 Do a Cartridge Performance Test 50 Analyze the Data (Protein Test Mix Sample) 50 8 Separation of Peptide Mixtures 53 9 About Autocalibration 55 Create a Reference Table 56 Create the MS Acquisition Method for Autocalibration 59 Add Autocalibration to the Sequence 63 Analyze the Autocalibration Data 64 10 Shut Down and Disconnect 70 Remove the Cartridge 70 Stow the Cartridge 70 Stow the Cartridge 70 Stow the Cartridge 70 Conductive Liquid Capillary Contamination 82 Conductive Liquid Capillary Contamination 82 Conductive Liquid Capillary Contamination 83 Clean Blockage from the Sprayer Tip 84 Contact Us 86 Customer Training 86 Online Learning Center 86 Purchase Supplies and Reagents 86 Cybersecurity 86 Documentation 86	Initial Conditions Tab Time Program Tab	45 46
Analyze the Data (Frotein rest Mix Sample) 50 8 Separation of Peptide Mixtures 53 9 About Autocalibration 55 Create a Reference Table 56 Create the MS Acquisition Method for Autocalibration 59 Add Autocalibration to the Sequence 63 Analyze the Autocalibration Data 64 10 Shut Down and Disconnect 70 Remove the Cartridge 70 Stow the Cartridge 70 Stow the Cartridge 71 11 Add Capillary Cartridge Coolant 75 12 Troubleshooting 77 Troubleshoot an Autocalibration Failure 82 Conductive Liquid Capillary Contamination 82 Conductive Liquid Capillary Contamination 83 Clean Blockage from the Sprayer Tip 84 Contact Us 86 Customer Training 86 Online Learning Center 86 Purchase Supplies and Reagents 86 Sole Cybersecurity 86 Ocumentation 86 Ocumentation 86	7 Do a Cartridge Performance Test	50
8 Separation of Peptide Mixtures 53 9 About Autocalibration 55 Create a Reference Table 56 Create the MS Acquisition Method for Autocalibration 59 Add Autocalibration to the Sequence 63 Analyze the Autocalibration Data 64 10 Shut Down and Disconnect 70 Remove the Cartridge 70 Stow the Cartridge 70 11 Add Capillary Cartridge Coolant 75 12 Troubleshooting 77 Troubleshooting 77 Troubleshooting 77 Conductive Liquid Capillary Contamination 82 Conductive Liquid Capillary Contamination 83 Clean Blockage from the Sprayer Tip 84 Contact Us 86 Customer Training 86 Online Learning Center 86 Purchase Supplies and Reagents 86 SUEX Support 86 Ocumentation 86 Documentation 86	Analyze the Data (Protein Test Mix Sample)	50
9 About Autocalibration 55 Create a Reference Table 56 Create the MS Acquisition Method for Autocalibration 59 Add Autocalibration to the Sequence 63 Analyze the Autocalibration Data 64 10 Shut Down and Disconnect 70 Remove the Cartridge 70 Stow the Cartridge 70 Stow the Cartridge 70 I Add Capillary Cartridge Coolant 75 12 Troubleshooting 77 Troubleshooting 77 Troubleshoot an Autocalibration Failure 82 Conductive Liquid Capillary Contamination 82 Conductive Liquid Capillary. 83 Clean Blockage from the Sprayer Tip 84 Contact Us 86 Customer Training 86 Online Learning Center 86 Purchase Supplies and Reagents 86 SCIEX Support 86 Cybersecurity 86 Documentation 86	8 Separation of Peptide Mixtures	53
Create a Reference Table 56 Create the MS Acquisition Method for Autocalibration 59 Add Autocalibration to the Sequence 63 Analyze the Autocalibration Data 64 10 Shut Down and Disconnect 70 Remove the Cartridge 70 Stow the Cartridge 70 Stow the Cartridge 70 11 Add Capillary Cartridge Coolant 75 12 Troubleshooting 77 Troubleshooting 77 Troubleshoot an Autocalibration Failure 82 Conductive Liquid Capillary Contamination 82 Conductive Liquid Capillary Contamination 82 Conductive Liquid Capillary. 83 Clean Blockage from the Sprayer Tip 84 Contact Us 86 Customer Training 86 Outine Learning Center 86 Purchase Supplies and Reagents 86 SCIEX Support 86 Opcumentation 86	9 About Autocalibration	
Create the MS Acquisition Method for Autocalibration 59 Add Autocalibration to the Sequence 63 Analyze the Autocalibration Data 64 10 Shut Down and Disconnect 70 Remove the Cartridge 70 Stow the Cartridge 70 11 Add Capillary Cartridge Coolant 75 12 Troubleshooting 77 Troubleshooting 77 Troubleshooting 77 Troubleshooting 77 Conductive Liquid Capillary Contamination 82 Condition the Conductive Liquid Capillary. 83 Clean Blockage from the Sprayer Tip 84 Contact Us 86 Customer Training 86 Online Learning Center 86 Purchase Supplies and Reagents 86 SCIEX Support 86 Opcumentation 86 Documentation 86	Create a Reference Table	
Add Autocalibration to the Sequence 63 Analyze the Autocalibration Data 64 10 Shut Down and Disconnect 70 Remove the Cartridge 70 Stow the Cartridge 70 11 Add Capillary Cartridge Coolant 75 12 Troubleshooting 77 Troubleshoot an Autocalibration Failure 82 Conductive Liquid Capillary Contamination 82 Conductive Liquid Capillary Contamination 82 Conductive Liquid Capillary 83 Clean Blockage from the Sprayer Tip 84 Contact Us 86 Customer Training 86 Online Learning Center 86 Purchase Supplies and Reagents 86 SCIEX Support 86 Cybersecurity 86 Documentation 86	Create the MS Acquisition Method for Autocalibration	59
Analyze the Autocalibration Data 64 10 Shut Down and Disconnect 70 Remove the Cartridge 70 Stow the Cartridge 74 11 Add Capillary Cartridge Coolant 75 12 Troubleshooting 77 Troubleshooting 77 Troubleshoot an Autocalibration Failure 82 Conductive Liquid Capillary Contamination 82 Condition the Conductive Liquid Capillary 83 Clean Blockage from the Sprayer Tip 84 Contact Us 86 Customer Training 86 Online Learning Center 86 Purchase Supplies and Reagents 86 SCIEX Support 86 Cybersecurity 86 Documentation 86	Add Autocalibration to the Sequence	63
10 Shut Down and Disconnect	Analyze the Autocalibration Data	64
Remove the Cartridge 70 Stow the Cartridge 74 11 Add Capillary Cartridge Coolant 75 12 Troubleshooting 77 Troubleshoot an Autocalibration Failure 82 Conductive Liquid Capillary Contamination 82 Conductive Liquid Capillary Contamination 82 Conductive Liquid Capillary Contamination 83 Clean Blockage from the Sprayer Tip 84 Contact Us 86 Customer Training 86 Purchase Supplies and Reagents 86 SCIEX Support 86 Cybersecurity 86 Documentation 86	10 Shut Down and Disconnect	
Stow the Cartridge 74 11 Add Capillary Cartridge Coolant	Remove the Cartridge	
11 Add Capillary Cartridge Coolant	Stow the Cartridge	74
12 Troubleshooting. 77 Troubleshoot an Autocalibration Failure. 82 Conductive Liquid Capillary Contamination 82 Condition the Conductive Liquid Capillary. 83 Clean Blockage from the Sprayer Tip. 84 Contact Us. 86 Customer Training. 86 Online Learning Center. 86 Purchase Supplies and Reagents 86 SCIEX Support. 86 Cybersecurity. 86 Documentation 86	11 Add Capillary Cartridge Coolant	75
Troubleshoot an Autocalibration Failure 82 Conductive Liquid Capillary Contamination 82 Condition the Conductive Liquid Capillary 83 Clean Blockage from the Sprayer Tip 84 Contact Us 86 Customer Training 86 Online Learning Center 86 Purchase Supplies and Reagents 86 SCIEX Support 86 Cybersecurity 86 Documentation 86	12 Troubleshooting	
Conductive Liquid Capillary Contamination 82 Condition the Conductive Liquid Capillary 83 Clean Blockage from the Sprayer Tip 84 Contact Us 86 Customer Training 86 Online Learning Center 86 Purchase Supplies and Reagents 86 SCIEX Support 86 Cybersecurity 86 Documentation 86	Troubleshoot an Autocalibration Failure	
Condition the Conductive Liquid Capillary. 83 Clean Blockage from the Sprayer Tip. 84 Contact Us. 86 Customer Training. 86 Online Learning Center. 86 Purchase Supplies and Reagents. 86 SCIEX Support. 86 Cybersecurity. 86 Documentation. 86	Conductive Liquid Capillary Contamination	
Clean Blockage from the Sprayer Tip	Condition the Conductive Liquid Capillary	
Contact Us86Customer Training86Online Learning Center86Purchase Supplies and Reagents86SCIEX Support86Cybersecurity86Documentation86	Clean Blockage from the Sprayer Tip	
Customer Training86Online Learning Center86Purchase Supplies and Reagents86SCIEX Support86Cybersecurity86Documentation86	Contact Us	
Online Learning Čenter	Customer Training	86
Purchase Supplies and Reagents	Online Learning Center	
SCIEX Support	Purchase Supplies and Reagents	
Cybersecurity	SCIEX Support	86
Documentation	Cybersecurity	
	Documentation	

Operational Precautions and Limitations

WARNING! Electrical Shock Hazard. To prevent a shock, do not touch an adapter on a mass spectrometer that is connected to the CESI 8000 Plus system when the separation voltage is on.

CAUTION: Potential System Damage. Use the lowest ESI voltage possible. If the ion source is exposed to high temperatures, then blockage in the emitter and damage can occur.

CAUTION: Potential System Damage. To prevent capillary blockage, use volatile buffers such as phosphate and borate buffers.

CAUTION: Potential System Damage. Do not expose the cartridge to temperatures that are < 2 °C. For storage, keep the cartridge at 2 °C to 8 °C.

CAUTION: Potential System Damage. Do not rinse the separation capillary with solutions that have a pH < 2 or > 9. The capillary is stable in the pH range from 2 to 9. Exposure to solutions with a pH that is < 2 and > 9 can cause damage to the neutral coating. The result of damage to the neutral coating can be poor separation and a shorter run life.

CAUTION: Potential System Damage. Do not use buffers that let the separation current become > 5 μ A. A separation current that is > 5 μ A can cause permanent damage to the coating of the separation capillary.

For instructions about how to use the CESI 8000 Plus system safely, refer to the document: *CESI 8000 Plus High Performance Separation-ESI Module User Guide*.

The cartridge assembly has a conductive liquid capillary and a separation capillary that ends in an ESI sprayer tip. The separation capillary and the conductive liquid capillary are different capillaries. The contents of the separation capillary never touch or mix with the contents of the conductive liquid capillary. Each capillary is inside a liquid-cooling tube.

The internal surface of the separation capillary is covalently coated with a neutral polymer to prevent the interaction between protein samples and the capillary surface, and to minimize electroosmotic flow. The separation of sample components (analytes) occurs in the separation capillary.

The conductive liquid capillary is filled with a conductive solution. The distal end of the capillary is porous, to let ion flow and electric contact occur.

Protective sleeves prevent damage to the inlet tips of the capillaries. The protective sleeves retract when the cartridge is installed in the system. When the cartridge is not installed in the system, locking mechanisms prevent the retraction of the protective sleeves.

Figure 2-1 OptiMS Cartridge

ltem	Description
1	Cartridge body

ltem	Description
2	Separation capillary in liquid-cooling tube
3	Conductive liquid capillary in liquid-cooling tube
4	Protective sleeves that retract when the cartridge is installed
5	Sprayer housing
6	Sprayer tip
7	Protective sleeve shown retracted
8	Exposed capillary when protective sleeve is retracted
9	Inlet end of separation capillary
10	Outlet end of cartridge body

The sprayer tip is made of polyether ether ketone (PEEK), and holds the ESI needle.

Figure 2-2 Conceptual View of Inside the Sprayer Tip

ltem	Description
1	ESI needle
2	Conductive liquid
3	Separation capillary
4	Etched segment of separation capillary
5	Plume

Neutral OptiMS Cartridge

The sprayer locks into an adapter that is made for the NanoSpray ion source on the mass spectrometer. The ESI needle in the sprayer tip closes the circuit between the CESI 8000 Plus system and the mass spectrometer to cause electrospray ionization. During the separation step, the spray of analytes goes into the mass spectrometer.

Figure 2-3 Adapter for the NanoSpray Ion Source

ltem	Description
1	High-voltage input cable
2	High-voltage output cable

Note: Adapters for other mass spectrometers are available from SCIEX. For more information, go to store.sciex.com.

The following reagents are used with the neutral OptiMS cartridge.

Note: The preparation of every reagent is not required. Different experiments require different reagents. Prepare the reagents that are applicable to the experiment.

Reagent	Purpose
50 mM ammonium acetate (AmAc) buffer, pH 3.0	Used as the background electrolyte (BGE) and conductive liquid
100 mM AmAc buffer, pH 3.0	Used to make the 50 mM AmAc buffer, pH 3.0
10 mM AmAc buffer, pH 3.0	Used to make the Protein Test Mix sample
10% acetic acid, glacial (HAc)	Used as the BGE separation solution and conductive liquid
20% HAc	Used to adjust the pH for the 200-mM AmAc leading electrolyte (LE) buffer
200 mM AmAC LE buffer, pH 4.0	Used to make the sample become a concentrate during separation
Reconstituted Protein Test Mix	Used to make the Protein Test Mix sample
Protein Test Mix sample	Used to make sure that the cartridge operates correctly
Peptide test sample	Used to optimize the position of the capillary tip in front of the mass spectrometer to get the best signal intensity
PepCalMix test sample	Used to prepare for manual calibration and autocalibration

Table 3-1 Required Reagents for the Neutral OptiMS Cartridge

Table 3-2 Required Supplies from SCIEX

Material	Part Number
CE Grade water	C48034
cIEF Peptide Marker Kit	A58481

Table 3-2 Rec	uired Supplies	from SCIEX	(continued)
			(oonanaoa)

Material	Part Number
CESI Vials (100 Pack)	B11648
CESI Vial caps (100 Pack)	B24699
MS Synthetic Peptide Calibration Kit	5045759
nanoVials (100 Pack)	5043467
Neutral OptiMS Cartridge	B07368
PCR Microvials (100 Pack)	144709
Protein Test Mix	477436

Table 3-3 Other Required Reagents or Supplies

Reagent	Vendor	Part Number
Acetic acid, glacial (HAc)	Sigma-Aldrich	A6283
7.5 M Ammonium acetate (AmAc)	Sigma-Aldrich	A2706
Ammonium hydroxide (NH ₄ OH) (30%)	Sigma-Aldrich	05002
0.1 M Hydrochloric acid (HCl)	Sigma-Aldrich	1.09060

Initial Sample Concentrations

Use the following sample concentrations as initial conditions.

If required, then remove the salt from the sample to optimize the concentration for the sensitivity of the mass spectrometer and injection parameters.

Sample Type	Concentration
Protein Test Mix or intact proteins in pH 3.0 buffer	0.1 mg/mL in 10 mM AmAc buffer, pH 3.0
Peptide mixtures	3 μg/μL or 1.5 μM in 100 mM LE buffer, pH 4.0

Prepare the 50 mM AmAc Buffer, pH 3.0

- 1. In a 50 mL Falcon tube, add 10.0 mL of 100 mM AmAc buffer, pH 3.0, and 10.0 mL of CE Grade water.
- 2. To mix the contents, invert the Falcon tube three times.

- 3. Attach a label with the name 50 mM AmAc buffer, pH 3.0 and the preparation date to the Falcon tube.
- 4. When it is not in use, keep the buffer at 2 °C to 8 °C for as long as 3 months after preparation.

Prepare the 100 mM AmAc Buffer, pH 3.0

- 1. In a 500 mL volumetric flask, add 2.9 mL of HAc, and then add CE Grade water to make 500 mL of 100 mM HAc.
- 2. Transfer the solution to a 500 mL Nalgene bottle.
- 3. In a 50 mL volumetric flask, add 0.7 mL of 7.5 M AmAc, and then add CE Grade water to make 50 mL of 100 mM AmAc.
- 4. Use a calibrated pH meter to measure the initial pH of the 100 mM HAc solution.
- 5. At the same time, use a magnetic stirrer to mix the 100 mM HAc solution and add aliquots of 100 mM AmAc solution until the pH is 3.0 ± 0.1 .
- 6. Attach a label with the name 100 mM AmAc buffer, pH 3.0 and the preparation date to the bottle.
- 7. When it is not in use, keep the buffer at 2 °C to 8 °C for as long as 1 year after preparation.

Prepare the 10 mM AmAc Buffer, pH 3.0

- 1. In a 15 mL Falcon tube, add 1.0 mL of 100 mM AmAc buffer, pH 3.0, and 9.0 mL of CE Grade water.
- 2. To mix the contents, invert the Falcon tube three times.
- 3. Attach a label with the name 10 mM AmAc buffer, pH 3.0 and the preparation date to the Falcon tube.
- 4. When it is not in use, keep the buffer at 2 °C to 8 °C for as long as 3 months after preparation.

Prepare the 10% HAc Solution

Use this solution as the background electrolyte (BGE). Prepare new 10% HAc solution every day.

- 1. In a clean 20 mL glass vial, add 18 mL of CE Grade water.
- 2. Inside a fume hood, add 2 mL of HAc to the vial.
- 3. Invert the vial three times to mix the contents.
- 4. Keep the 10% HAc solution at room temperature.

5. At the end of the day, discard the solution that was not used.

Prepare the 20% HAc Solution

Only prepare new 20% HAc solution when the 200 mM AmAC LE buffer, pH 4.0 is prepared.

- 1. In a 100 mL glass bottle, add 80 mL of CE Grade water.
- 2. Inside a fume hood, add 20 mL of HAc to the bottle.
- 3. Invert the bottle three times to mix the contents.
- 4. Attach a label with the name 20% HAc solution and the preparation date to the bottle.
- 5. Keep the 20% HAc solution at room temperature.
- 6. At the end of the day, discard the solution that was not used.

Prepare the 200 mM AmAc LE Buffer, pH 4.0

- 1. To prepare 50 mL of 400 mM AmAc LE buffer, pH 4.0, do this:
 - a. In a 50 mL glass volumetric flask, add 20 mL of CE Grade water.
 - b. Inside a fume hood, add 2.7 mL of 7.5 M AmAc to the flask.
 - c. To increase the volume to 50 mL, add CE Grade water.
 - d. Invert the flask three times to mix the contents.
- 2. Pour the 50 mL of 400 mM AmAc solution into a 100 mL beaker.
- 3. Use a calibrated pH meter to measure the initial pH of the solution.
- 4. Add aliquots of newly prepared 20% HAc solution until the pH of the solution is 4.0.
- 5. Transfer the solution to a 100 mL volumetric flask.
- 6. To increase the volume to 100 mL, add CE Grade water.
- 7. Invert the flask three times to mix the contents.
- 8. Attach a label with the name 200 mM AmAC LE buffer, pH 4.0 and the preparation date to the flask.
- 9. When it is not in use, keep the buffer at 2 °C to 8 °C for as long as 2 years after preparation.

Reconstitute the Protein Test Mix

- 1. Add 2.0 mL of CE Grade water to a vial of Protein Test Mix.
- 2. Use a vortex mixer to mix the solution until all of the solid material is dissolved.
- 3. Divide the Protein Test Mix into aliquots of 20 μ L.

4. When it is not in use, keep the reconstituted Protein Test Mix frozen at –35 °C to –15 °C for up to 1 year after preparation.

Prepare the Protein Test Mix Sample

- 1. If required, then let the vial of reconstituted Protein Test Mix thaw to ambient temperature.
- 2. In a 0.5 mL centrifuge tube, add 20 μL of reconstituted Protein Test Mix and 80 μL of 10 mM AmAc buffer, pH 3.0.
- 3. Attach a cap to the tube.
- 4. Use a vortex mixer to mix the sample for 3 seconds.
- 5. When it is not in use, keep the sample at 2 °C to 8 °C for as long as 1 year after preparation.

Prepare the Peptide Test Sample

- 1. In a centrifuge tube, add 100 µL of BGE and 5 µL of a peptide marker, such as pl 9.5.
- 2. Attach a cap to the tube.
- 3. Use a vortex mixer to mix the sample for 3 seconds.
- 4. Keep the sample at 2 °C to 8 °C.
- 5. At the end of the day, discard the solution that was not used.

Prepare the PepCalMix Test Sample

- 1. In a 0.5 mL centrifuge tube, add 10 μL of PepCalMix and 90 μL of 200 mM AmAC LE buffer, pH 4.0.
- 2. Mix the solution in a vortex mixer for 10 seconds.
- 3. To remove any precipitant, use a centrifuge to spin the solution at $12,000 \times g$ for 5 minutes.

Use only CESI vials and caps in the CESI 8000 Plus system buffer and sample trays.

Make sure that each buffer and sample vial is in the location identified in the tray layout. The locations of the buffer and sample vials are related to the method in the 32 Karat software. If a vial is put in a different position, then the position must be identified in the method in the 32 Karat software or manually in the sequence table.

About Vials

CAUTION: Potential System Damage. Do not overfill the vials. If the vials are too full, then liquid can go into the pressure system and cause damage.

CAUTION: Potential System Damage. Do not underfill the vials or let the liquid level get too low. If the liquid level in the vials is too low, then the separation capillary can fill with air and cause the vials to break if voltage is applied.

Three types of vials are used with the CESI 8000 Plus system:

- CESI vials are used for buffer and as holders for microvials and nanoVials.
- Microvials are used for sample volumes from 50 μ L to 100 μ L. These vials must be put in a CESI vial and then put in the sample tray.
- nanoVials are used for sample volumes from 5 μL to 50 $\mu L.$ These vials are put in the sample tray.

Note: Always use a CESI vial cap.

Note: Do not use any vial or cap more than once.

Fill a CESI Vial

Note: To prevent splashing, put the empty vials in the tray, and then add liquid and attach the caps.

1. Fill the CESI vial to the maximum fill line.

Note: Do not put more than 1.5 mL in a CESI vial.

ltem	Description
1	CESI Cap
2	Maximum fill line
3	CESI Vial

2. Attach a CESI cap.

Note: When filling the vials, do not make air bubbles. If there are air bubbles in the vial, then spin the vial in a centrifuge for a few seconds to remove the bubbles.

Fill a Microvial

Note: To prevent splashing, put the empty vials in the tray, and then add liquid and attach the caps.

1. Fill the microvial with at least 50 μ L of sample.

Figure 4-2 Microvial

ltem	Description
1	CESI Cap
2	Microvial
3	CESI Vial
4	Microvial inside CESI vial

- 2. Put the microvial inside the CESI vial.
- 3. Attach a CESI cap.

Note: When filling the vials, do not make air bubbles. If there are air bubbles in the vial, then spin the vial in a centrifuge for a few seconds to remove the bubbles.

Fill a nanoVial

For sample volumes between 5 μL and 50 $\mu L,$ use a nanoVial.

Note: To prevent splashing, put the empty vials in the tray, and then add liquid and attach the caps.

1. Use a thin pipette tip to transfer the sample to the deeper well of a nanoVial.

When the tab points to the user, the deeper well is on the left side of the nanoVial.

Figure 4-3 nanoVial

ltem	Description
1	nanoVial inside the CESI vial with the thin pipette tip transferring sample
2	nanoVial inside the CESI vial with the cap attached

- 2. Attach a CESI cap.
- 3. Put the sample vial in the applicable position in the inlet sample tray.

Note: Make sure that the tab on the outside of the nanoVial points to the front of the sample tray.

Figure 4-4 Orientation of the nanoVial Tab in the Sample Tray

ltem	Description
1	Electrode at the left side of the nanoVial
2	Capillary at the right side of the nanoVial (for use in loading sample)
3	Tab outside of the nanoVial
4	Sample tray

Note: If the number of sample vials will not fill the tray, then keep every second column in the sample tray empty. This will make it easier to remove the nanoVials from the tray.

Note: When filling the vials, do not make air bubbles. If there are air bubbles in the vial, then spin the vial in a centrifuge for a few seconds to remove the bubbles.

Prepare the Buffer Trays

CAUTION: Potential System Damage. Use low-concentration buffers for separations with pH values > 7. High-concentration buffers can cause blockage in the separation capillary.

1. Use the following table to prepare the required reagents in CESI vials. Refer to the section: Fill a CESI Vial.

Sample Type	Position							
	BI:A1	BI:B1	BO:A1					
Protein Test Mix or intact proteins in pH 3.0 buffer	50 mM AmAc buffer, pH 3.0	50 mM AmAc buffer, pH 3.0	50 mM AmAc buffer, pH 3.0					
Peptide mixtures	10% HAc solution	10% HAc solution	10% HAc solution					

Table 4-1 Buffer Vial Contents by Sample Type

2. Use the following figure to put each reagent vial in the correct position in the buffer inlet and outlet trays.

Figure 4-5 Buffer Tray Layout

To make sure that the system operates correctly, do the following procedures.

Condition the Capillaries

CAUTION: Potential System Damage. To prevent the sprayer tip from breaking, make sure that the sprayer tip is immersed in CE Grade water when the neutral CESI washing method is run. Remove the sprayer from the CE Grade water, and then install the sprayer in the adapter on the mass spectrometer before the neutral CESI electrical conditioning method is started.

Condition the capillaries before a new cartridge is used for the first time and before a cartridge that has been in storage is used again.

Use both the neutral CESI washing method and the neutral CESI electrical conditioning method to condition the neutral capillaries.

- The neutral CESI washing method rehydrates the neutral coating of the capillaries.
- The neutral CESI electrical conditioning method establishes the electrical connection in the sprayer tip.

Refer to the section: Methods for the Neutral OptiMS Cartridge.

If both methods are not used, then earlier migration times, poor separation performance, loss of electrospray, and different electrical currents during separations can occur.

- 1. Remove the protective sleeve from the sprayer tip.
- 2. To make sure that the flow of liquid through the separation capillary is sufficient, do this:
 - a. Do a forward rinse with CE Grade water at 100 psi for 3 minutes.
 - b. When a liquid droplet shows at the end of the sprayer tip, stop the application of pressure.
- 3. To make sure that the flow of liquid through the conductive liquid capillary is sufficient, do this:
 - a. Do a reverse rinse with CE Grade water at 100 psi for 5 minutes.
 - b. When a liquid droplet shows at the end of the stainless steel needle, stop the application of pressure.
- 4. Install the protective sleeve on the sprayer.

- 5. Put 5 mL of CE Grade water in a 50 mL Falcon tube, and then put the Falcon tube in the holster on the side of the system.
- 6. Carefully immerse the sprayer tip in the Falcon tube.

Figure 5-1 Sprayer Immersed in Liquid

- 7. Run the neutral CESI washing method.
- 8. When the method is complete, remove the sprayer from the Falcon tube.
- 9. Use lint-free wipes to dry the sprayer carefully.

Figure 5-2 Dry the Sprayer

CAUTION: Potential System Damage. To prevent the sprayer tip from breaking, do not move the retractable protective guard during drying.

10. Make sure that the ESI voltage on the mass spectrometer is off.

- 11. Install the sprayer in the adapter on the mass spectrometer.
- 12. Run the neutral CESI electrical conditioning method. When the method is complete, the cartridge is ready to set a stable spray.
- 13. Remove the Falcon tube from the holster, and discard the contents.

Establish a Stable Spray

- 1. Make sure that the sprayer tip is in the correct position for the inlet on the mass spectrometer.
- 2. In the Analyst TF software, make sure that the ESI voltage is zero.
- 3. To fill the conductive liquid capillary with BGE, do this:
 - a. In the 32 Karat software, go to the Direct Control window.
 - b. Click the **Pressure** field.

Figure 5-3 Pressure Settings Dialog to Fill the Conductive Liquid Capillary

Pressure Settings									
Pressure 100 psi Duration: 2 min	Direction C Forward C Reverse	OK Cancel							
Tray positions Inlet: BI:A1 Outlet: BO:A1	Pressure type	Help							

- c. In the **Pressure** field, type 100.
- d. In the **Duration** field, type 5.
- e. Click Reverse.
- f. Click Pressure.
- g. Click OK.

To identify the direction of the pressure being applied, in the Direct Control window, look at the **Rinse Direction** icon (a blowing face identified by a red arrow in the following figure). The reverse direction refers to rinsing the conductive liquid capillary, and the blowing face shows on the right side of the window.

Figure 5-4 Rinse Direction (Blowing Face) Icon

When the conductive liquid capillary is filled with BGE, a droplet will show at the end of the stainless steel needle.

Figure 5-5 Droplet at the End of the Stainless Steel Needle

4. When the rinse is complete, to fill the separation capillary with BGE, do this:

- a. Go to the Direct Control window.
- b. Click the **Rinse** field.

Figure 5-6 Pressure Settings Dialog to Fill the Separation Capillary

Pressure Settings								
Pressure 100 psi Duration: 2.00 min Tray positions	Direction Forward Reverse Pressure type Pressure Vacuum	OK Cancel Help						

- c. In the **Pressure** field, type 100.
- d. In the **Duration** field, type 5.
- e. Click Forward.
- f. Click Pressure.
- g. Click OK.

When the separation capillary is filled with BGE, a droplet will show at the end of the sprayer tip.

Figure 5-7 Droplet at the End of the Sprayer Tip

Note: If the separation capillary is empty, then the first droplet of solution might not show at the sprayer tip for as long as 7 minutes.

5. To find the minimum ESI voltage, refer to the section: Optimize the ESI Voltage.

Optimize the ESI Voltage

- 1. Fill the capillary with Protein Test Mix.
- 2. Make sure that the separation capillary and conductive liquid capillary are filled with BGE.
- 3. To set the values for voltage in the 32 Karat software, do this:
 - a. Go to the Direct Control window, and then double-click the Voltage field.

Figure 5-8 Voltage Settings Dialog

Voltage 30	kV	Voltage max:	30.0	- kV		OK
Duration: 60.00	min	Current max:	10.0	μA		Cancel
Ramp time: 1.00	min					Help
Tray positions Inlet: BI:A1 Outlet: BO:A1 Trays	Pressure With pre With var Pressure: 1	essure cuum .5 psi	Direction Forw Revu Both	ard erse	Polarity	1

- b. In the Voltage field, type 30.
- c. In the **Duration** field, type 60.
- d. In the **Ramp time** field, type 1.
- e. Select the With pressure check box.
- f. In the **Pressure** field, type 1.5.
- g. Click Normal.
- h. Click OK.

Note: If the BGE used is 10% HAc solution, then the electrical current should be 2 μ A to 3 μ A. If the BGE used is 50 mM AmAc buffer, pH 3.0, then the electrical current should be 0.5 μ A to 1 μ A.

- 4. In the Analyst TF software, in the Navigation bar, under Tune and Calibrate, double-click **Manual Tuning**.
- 5. On the Source/Gas tab, do this:

a. In the Curtain Gas (CUR) field, type 10.

Note: In the Analyst TF software, the minimum value for curtain gas is 10. CESI-MS runs use a value of 5 for curtain gas. To change the setting for gas for the Curtain Gas interface, use the Curtain Gas patch application that is available on the computer for the mass spectrometer.

- b. In the lonSpray Voltage Floating (ISVF) field, type 1.0.
 The lonSpray Voltage Floating (ISVF) parameter sets the ESI voltage.
- c. In the Interface Heater Temperature (IHT) field, type 50.0.
- 6. On the MS tab, do this:
 - a. In the Scan type field, select TOF MS.
 - b. In the Accumulation time field, type 500.
 - c. In the TOF Masses (Da) Min field, type 200.
 - d. In the TOF Masses (Da) Max field, type 2000.
 - e. In the Period **Duration** field, type 10.
- 7. Click Start.
- 8. If a non-SCIEX mass spectrometer is in use, then do this on the mass spectrometer acquisition computer:
 - a. Set the ESI voltage to zero.
 - b. Set the scan range from m/z 200 to m/z 2000.
 - c. Click Start.
- 9. Increase the value in the **IonSpray Voltage Floating (ISVF)** field in increments of 0.1 kV until a continuous signal shows in the mass spectrum window.

Note: This is the minimum ESI voltage.

Figure 5-9 Typical Spray Profile of a Cartridge that Uses 10% HAc Solution as the BGE

- 10. In the Direct Control window, click Stop.
- 11. On the Source/Gas tab, in the **IonSpray Voltage Floating (ISVF)** field, type 0.0, and then click **OK**.

Make sure that there is no spray or background mass spectrum.

Note: If there is still spray when **IonSpray Voltage Floating (ISVF)** is **0.0**, then there might be an issue with the connection. Refer to the section: Fine-Tune the Position of the Sprayer Tip.

12. In the **IonSpray Voltage Floating (ISVF)** field, type the minimum ESI voltage, and then click **OK**.

Make sure that electrospray starts again.

- 13. In the **IonSpray Voltage Floating (ISVF)** field, increase the value by 100 V.
- 14. To find the best position for the sprayer in relation to the inlet on the mass spectrometer, use the XYZ-axes adjustment knobs to get a maximum total ion current signal.

Note: Keep the sprayer tip at least 2 mm away from the curtain gas plate.

- 15. To check the stability of the spray, continue to apply 20 kV (normal polarity) for 20 minutes.
- 16. In the Analyst TF software, do this:
 - a. Open the Advanced MS tab, and then click **MCA**.
 - b. Open the MS tab.
 - c. In the Scan type field, select TOF MS.
 - d. In the Accumulation time field, type 1.
 - e. In the TOF Masses (Da) Min field, type 70.
 - f. In the TOF Masses (Da) Max field, type 2000.
 - g. In the Period **Duration** field, type 5.

- 17. Click Acquire, and then type a file name (for example, Baseline).
- 18. If a non-SCIEX mass spectrometer is in use, then do this on the mass spectrometer acquisition computer:
 - a. Set the ESI voltage to 1.0 kV and continue to acquire data.
 - b. Increase the ESI voltage in increments of 0.1 kV until there is a continuous signal in the mass spectrum window.
 - c. To find the best position for the sprayer in relation to the inlet on the mass spectrometer, maximize the XIC (eXtracted Ion Electropherogram) signal for the pI 7.0 or pI 10 marker in use while minimizing its fluctuations.
 - d. When the position of the sprayer is optimized, decrease the ESI voltage in increments of 0.1 kV until the spray stops.
 - e. Increase the ESI voltage in increments of 0.1 kV until continuous spray is detected.
 - f. Record this value as the minimum ESI voltage.
 - g. Increase the minimum ESI voltage by 0.2 kV.
- 19. Use the Y-axis alignment knob to maximize the baseline fluctuations.

Figure 5-10 Find the Baseline Fluctuation

- a. If the baseline fluctuation is < 40% within 2 minutes to 5 minutes, then make a note of the ESI voltage for the mass spectrometer methods (ion collection ESI voltage): Baseline fluctuation (%) = [(highest value average value)/average value] x 100.
- b. If the baseline fluctuation is > 40%, then do this procedure again until a good baseline is set. If a good baseline cannot be set, then refer to the section: Fine-Tune the Position of the Sprayer Tip.

- 20. If a non-SCIEX mass spectrometer is in use, then do this:
 - a. Monitor the spray stability for 20 minutes to 30 minutes to make sure that the baseline fluctuation is ≤ 40%.
 If the baseline fluctuation is > 40%, then condition the capillaries. Refer to the section: Condition the Capillaries.
 - b. Turn off the electrospray voltage on the mass spectrometer.

Fine-Tune the Position of the Sprayer Tip

CAUTION: Potential System Damage. Make sure that the sprayer tip is in position outside of the curtain gas plate. If the sprayer tip is too close, then rinse solution can drip onto the curtain gas plate and cause damage.

Before a separation is run, it is critical to optimize the position of the sprayer tip in front of the curtain gas plate to get the correct ESI voltage. If the sprayer tip is too far away from the curtain gas plate, then a high ESI voltage can be required, which causes analyte fragmentation. For intact proteins, electrochemical reactions such as oxidation can occur. The green area in the following figure shows the recommended distance of the sprayer tip and the recommended ESI voltage values. Avoid the red area.

Figure 5-11 Sprayer Tip Distance and ESI Voltage Correlation

Use this procedure to adjust the position of the sprayer tip and find the required ESI voltage for mass spectrometer acquisition:

- After installing a cartridge
- If the signal separation voltage is changed
- If a different BGE is used
- 1. Fill the separation capillary and the conductive liquid capillary with BGE.

- 2. Use the XYZ-axes adjustment knobs to move the sprayer tip 3 mm from the curtain gas plate.
- 3. In the 32 Karat software, use the Direct Control window to apply 30 kV voltage and 1.5 psi forward pressure with a ramp of 1 minute.
 - Make sure that the cartridge does not spray when the ESI voltage is 0 V during mass spectrometer scanning.
 - Monitor the Direct Control window to make sure that the electrical current is stable.
- 4. Set the ESI voltage to 1,000 V and then increase the value in increments of 100 V until electrospray is detected.
- 5. Increase the ESI voltage by 200 V.
- Use the XYZ-axes adjustment knobs to move the sprayer tip and maximize the signal intensity of the mass spectrometer.
 Make sure that the sprayer tip is approximately 3 mm from the curtain gas plate.
- 7. When the position of the sprayer is optimized, set the ESI voltage to zero.
- 8. Set the ESI voltage to 1,000 V and then increase the value in increments of 100 V until electrospray is detected.

Note: This is the minimum ESI voltage. This voltage is not high enough to maintain an effective spray during separation.

9. Increase the minimum ESI voltage by 200 V.

Note: This is the optimal ESI voltage. Use this voltage with the mass spectrometer method to provide a stable electrospray during separation.

- 10. Set the ESI voltage to zero.
- 11. Turn off the separation voltage.

Manual Calibration

To get the most accurate mass determination, manually calibrate the mass spectrometer.

Note: The following procedures were made for the SCIEX 6600 system. For other SCIEX mass spectrometers or mass spectrometers from other manufacturers, use the manufacturer's recommendations.

After the mass spectrometer has been manually calibrated, include autocalibration in the sequence when data is acquired for samples. Refer to the section: About Autocalibration.

For more information about calibration, refer to the document: *AB SCIEX Mass Calibration Tutorial*. To open the document, click **Start Menu > All Programs > AB SCIEX > Analyst TF 1.7 > Hardware and Software Guides**.

Prepare for Manual Calibration

- 1. In a sample vial, add 90 µL of PepCalMix and 10% HAc solution to make a 1:1 solution.
- 2. Put the vial in position A1 (SI:A1) in the sample tray.
- 3. In the 32 Karat software, go to the Direct Control window, and then click **Inject**.

Figure 5-12 Inject Parameters Dialog

Inject Parameters		x
Injection type C Voltage © Pressure C Vacuum	Values Pressure 100 psi Duration: 180 sec I For Capillary Fill	OK Cancel Help
Tray positions Inlet: SEA1 Outlet: B0:A1 Trays	Polarity © Normal © Reverse Pressure direction © Forward © Reverse	Uncheck the For Capillary Fill box for low pressure, high-precision injections.

4. Select the injection parameters.

Note: To inject at 100 psi for 180 seconds, make sure that the **For Capillary Fill** check box is selected.

5. When the capillary is filled, go to the Direct Control window, and then click **Voltage**.

Figure 5-13 Voltage Settings Dialog

Voltage 30	kV	Voltage max:	30.0	kV		OK
Duration: 60	.00 min	Current max:	10.0	μA	(Cancel
Ramp time: 1.0	00 min					Help
Tray positions Inlet: BI:A1 Outlet: BO:A1 Trays	Pressure With With Pressure:	pressure vacuum 1.5 psi	Direction Forw C Rev C Both	n vard erse	Polarity • Normal	n

Prepare the System

- 6. In the **Voltage** field, type 30.
- 7. In the **Duration** field, type 20.
- 8. Select the **With pressure** check box.
- 9. In the **Pressure** field, type 1.5.
- 10. Make sure that the capillary inlet is in position BI:A1 and the outlet is in position BO:A1.
- 11. Click OK.

Create a Reference Table

- 1. In the Analyst TF software, in the Navigation bar, click **Acquire**.
- 2. Click **Tools > Settings > Tuning Options**, and then click **Reference**.

Figure 5-14 Reference Table Editor Window

Reference Table Editor X												
Name: MixSCIEX-Agl V New Copy Delete Positive O Negative Calibration Valve Position: A V												
Reference Ions for TOF MS Calibration: Reference Ions for MS/MS Calibration: (Product of 609, 28066 Da)												
	Use	Compound Name	Precursor m/z (Da)	Use for MS/MS	CE for MS/MS	DP for MS/MS	Retention Time (min)	^		Use	Fragment Name	Fragment m/z 🔺 (Da)
6		amino-dPEG 8-acid	442.26467		20.000	50.000	0.00		1		y1	174.09130
7		Reserpine	609.28066	\leq	20.000	50.000	0.00		2	\sim	y3	195.06520
8		lon 3	622.02896		42.000	80.000	0.00		3		y5	236.12810
9		ALILTLVS	829.53933		20.000	50.000	0.00		4			365.18600
10		lon 4	922.00980		42.000	80.000	0.00		5	\checkmark	y8	397.21220
11	\checkmark	ALILTLVS + Cs	961.43696		20.000	50.000	0.00		6	\leq	y10	448.19660
12		lon 5	1221.99064		42.000	80.000	0.00		7	\leq	y12	609.28070
13		Heptakis(2,3,6-tri-O-	1446.73224		20.000	50.000	0.00		8	\sim		609.28066
14		lon 6	1521.97148		42.000	80.000	0.00		9			
15		Heptakis(2,3,6-tri-O-	1561.60332		20.000	50.000	0.00		10			
16	\checkmark	lon 7	1821.95231		42.000	80.000	0.00		11			
17	\checkmark	Tryaceyl-b-cyclode	2034.62545		20.000	50.000	0.00		12			
18		Ion 8	2121 03315		42.000	80.000	0.00	× .	12		1	×
<							>		<			>
Retenti	on time is on	ly used for non-CDS co	nfiguration.	Retentio	n Time Toler	ance: +/-	30.000 sec	:				
				OK		Cancel	H	elp				

3. To open a new, empty reference table, click **New**.

Referen	ce Table Ed	itor										×
Name:				✓ New	v Сору	Delete	e	0	legative	Calibrati	on Valve Position:	~
Refer	ence Ions	for TOF MS Calibratio	on:						Refere (Product	nce Ions fo t of Da)	or MS/MS Calibrati	on:
	Use	Compound Name	Precursor m/z (Da)	Use for MS/MS	CE for MS/MS	DP for MS/MS	Retention Time (min)	^		Use	Fragment Name	Fragment m/z A (Da)
6									1			
8									3			
10		-						-	5			
11								-	6			
12									8			
14								-	9			
16									11			
17								~	12	╏─┝╡─┤		~
<							>		<			>
Retent	ion time is or	nly used for non-CDS co	nfiguration.	Retention	n Time Toler	rance: +/-	30.000 se	c				
				OK		Cancel	H	Help				

Figure 5-15 New Reference Table in the Reference Table Editor Window

- 4. In the **Name** field, type a name that identifies the calibration solution (in this example, PepCalMix).
- 5. Make sure that **Positive** is clicked.
- 6. In the Reference lons for TOF MS Calibration table, type the following values.

Table 5-1 Reference lons for TOF MS Calibration

Compound Name	Precursor <i>m/z</i> (Da)	CE for MS/MS	DP for MS/MS
AETSELHTSLK	408.55010	40	80
GAYVEVTAK	473.26020	40	80
IGNEQGVSR	485.25302	40	80
LVGTPAEER	491.26559	40	80
LDSTSIPVAK	519.79969	40	80
AGLIVAEGVTK	533.32333	40	80
LGLDFDSFR	540.27342	40	80
GFTAYYIPR	549.28633	40	80
SGGLLWQLVR	569.83398	40	80
AVGANPEQLTR	583.31360	40	80

Tablo 5-1	Poforonco	lone for		MS	Calibration	(continued)
	Reference	10115 101	IUF	1113	Campration	(continueu)

Compound Name	Precursor <i>m/z</i> (Da)	CE for MS/MS	DP for MS/MS
SAEGLDASASLR	593.80053	40	80
VFTPLEVDVAK	613.34955	40	80
VGNEIQYVALR	636.35273	40	80
YIELAPGVDNSK	657.34499	40	80
DGTFAVDGPGVIAK	677.85827	40	80
YDSINNTEVSGIR	739.36148	40	80
SPYVITGPGVVEYK	758.91050	40	80
ALENDIGVPSDATVK	768.90340	40	80
AVYFYAPQIPLYANK	883.47380	40	80
TVESLFPEEAETPGSAVR	964. 97741	40	80

- 7. For each compound, click the **Use** check box.
- 8. In the Reference lons for MS/MS Calibration table, type the following values.

Table 5-2 Reference lons for MS/MS Calibration

Fragment Name	Fragment <i>m/z</i> (Da)
b2	185.09207
b3	348.15540
b4	560.30788
b5	661.35555
N/A	758.91050
у7	799.44398
у8	856.46544
у9	957.51312
y10	1070.59719
y11	1169.66560
y12	1332.72893

9. For each fragment, click the **Use** check box.

- 10. In the **Use for MS/MS** column, select the check box for the applicable compound in the calibration solution (in this example, the peptide at m/z 758.91).
- 11. Make sure that the value in the **Retention time tolerance +/-** field is **30**.
- 12. Click **OK**.

Figure 5-16 Tuning Options Dialog

Tuning Options		?	Х
Calibration Resolution			
Standard: PPGs Pos.	New		
✓ Positive			
Reference: PepCalMix ~			
✓ Negative			
Reference: CESI Negative Calib Solution (X500) ~			
Update Std. Delete Std. Reference			
OK Canc	el	Help	>

- 13. Make sure that the name of the new reference table (in this example, **PepCalMix**) shows in the **Positive Reference** field.
- 14. Click **OK**.

Manually Calibrate in TOF MS Mode

1. In the Analyst TF software, in the Navigation bar, under Tune and Calibrate, double-click **Manual Tuning**.

Figure 5-17 Tune Method Editor Window

Acquire Start Ramp Parameter	Edit Ramp MS Method V Use
Source/Gas Compound Resolution Detector	MS Advanced MS
Ion Source: Nanospray Ion Source Temperature Reached √ Ion Source Gas 1 (GS1) 0 🙀	Scan type: TOF MS TOF Masses (Da) TOF Masses (Da) Min: 350 Max: 1500
Ion Source Gas 2 (GS2)	Polarity Ostive Ostar (Center/Width
Interface Heater Temperature (IHT)	Negative
	Period Duration: 5.005 (mins) Cycles: 293 Delay Time: 0 (secs)

- 2. On the Source/Gas tab, do this:
 - a. In the Ion Source Gas1 (GS1) field, type 0 (zero).
 - b. In the Ion Source Gas1 (GS2) field, type 0 (zero).
 - c. In the Curtain Gas (CUR) field, keep the default value, or type 10.

Note: To change the setting for gas for the Curtain Gas interface, use the Curtain Gas patch application that is available on the computer for the mass spectrometer.

- d. In the Interface Heater Temperature (IHT) field, type 50.
- 3. On the MS tab, do this:
 - a. In the Scan type list, select TOF MS.
 - b. In the Accumulation time field, type 1.000.
 - c. In the TOF Masses (Da) Min field, type 350.
 - d. In the TOF Masses (Da) Max field, type 1000.
 - e. In the Period Duration field, type 1000.
- 4. Open the Advanced MS tab.
| Acquire Start Ramp Parameter | Edit Ramp MS Method 🗸 🗸 U | lse |
|--|--|--|
| Source/Gas Compound Resolution Detector | MS Advanced MS | |
| on Source: Nanospray
Ion Source Temperature Reached √
on Source Gas 1 (GS1) 0 ↔
on Source Gas 2 (GS2) 0 ↔
Curtain Gas (CUR) 10 ↔ | MCA ✓ Auto Adjust with mass Q1 Transmission Window 100.0000 Mass (Da) % 1 330.000 2 100.0000 | DF Extraction Parameters
Pulser Frequency (KHz): 17.479
Pulse 1 Duration (us): 2.753 |
| onSpray Voltage Floating (ISVF) | Acquisition Parameters Sett | Suggest 0 |
| | ADC channels | e between mass ranges (ms): 1.03 |

Figure 5-18 Tune Method Editor Window: Advanced MS Tab

- 5. Make sure that the **MCA** check box is cleared.
- In the IonSpray Voltage Floating (ISVF) field, type a value.
 The IonSpray Voltage Floating (ISVF) parameter sets the ESI voltage.
- 7. Adjust the position of the sprayer until the spray is stable.
- 8. Click Start.

After approximately 1 minute, windows open to show the total ion chromatogram (TIC) and mass spectrum.

Figure 5-19 TIC and Mass Spectrum Windows

9. To open windows that show the TIC and mass spectrum for the data file that was acquired, right-click the TIC window, and then click **Open File**.

Figure 5-20 TIC and Mass Spectrum Windows from the Acquired Data File

- 10. To delete the mass spectrum pane, click the pane, and then on the toolbar, click the **Delete** icon.
- 11. To get an average mass spectrum, click and drag the cursor to highlight the TIC window, and then double-click the TIC window.

Figure 5-21 Average Mass Spectrum Pane

12. Right-click the mass spectrum pane, and then click **Re-Calibrate TOF**.

Fiaure	5-22	TOF	Calibration	Window
iguio	~		Sansiation	

TOF Calibra	tion				×
Referenc	e Table PepCalM	ix v toleran	nce 0.2	Da	
	Experimental N	Mass Theoretical Mass	^ C	alculate new calibrations	Average Error: 0.317107 ppm
2	473.260049	473.260200		External Calibration	
4	491.265683	405.255020 491.265590 519.799690	-		
- SAVE CI	1 532 222044 IBBENT CALIBBAT	E22 222220		BATION VALUES	
Sele	ected Range	Calibration is applied to selected range of scans	Current	a 7.02161077082593320e	t0 -004 .1 3857∡153765218070⇔+001
Wł	nole Sample	Calibration is applied to all scans in current sample	New		
E	Entire File	Calibration is applied to all samples in the file			Calibrate spectrum
🗹 Set /	As Instrument Defaul	t		Close	Help

13. From the **Reference Table** list, select the reference table that was created for the calibrant (in this example, **PepCalMix**).

Note: If the correct reference file does not show in the list, then the reference table has not been created. Refer to the section: Create a Reference Table.

- 14. In the **Tolerance** field, type 0.2.
- 15. To calculate the average error for this new calibration, click **Calculate new calibrations**.
- 16. Make sure that the value for the Average Error is within the routine operating standards for the mass spectrometer being calibrated.
- 17. Click **Calibrate spectrum**. The new calibration values show.
- 18. Make sure that the Set As Instrument Default check box is selected.

Note: If an ion is not found during calibration, then right-click the missing ion in the reference table, and then click **Delete**. Click **Calculate new calibrations**.

- 19. To apply this calibration to all samples in the file, click **Entire File**.
- 20. Click Save.
- 21. Click OK twice.
- 22. To close the TOF Calibration window, click **Close**.
- 23. Close the TIC and mass spectrum panes.

Manually Calibrate in Product Ion Mode

1. In the Analyst TF software, in the Navigation bar, under Tune and Calibrate, double-click **Manual Tuning**.

Acquire Start Ramp Parameter	Edit Ramp MS Method V Use
Source/Gas Compound Resolution Detector	MS Advanced MS
Declustering Potential (DP) 100.0 Collision Energy (CE) 42 Collision Energy Spread (CES) 5.0 Ion Release Delay (IRD) 67 Ion Release Width (IRW) 25	Scan type: Product Ion TOF Masses (Da) Product Of: 758.91 (Da) Accumulation time : [D.999985] (secs) Polarity
Enhance Apply Mass to Enhance (Da)	Period Duration: 5.000 (mins) Cycles: 300 Delay Time: 0 (secs)

Figure 5-23 Tune Method Editor Window: Compound Tab

- 2. Open the Compound tab, and then do this:
 - a. In the Collision Energy field, type 42.
 - b. In the Collision Energy Speed (CES) field, type 5.
- 3. On the MS tab, do this:
 - a. In the Scan type list, select Product Ion.
 - b. In the Product Of field, type 758.91.
 - c. In the TOF Masses (Da) Min field, type 100.
 - d. In the TOF Masses (Da) Max field, type 1500.
 - e. Make sure that **High Sensitivity** is selected.
- 4. Click Start.

Windows open to show the total ion chromatogram (TIC) and mass spectrum generated during the product ion calibration.

Figure 5-24 TIC and Mass Spectrum Windows

5. Right-click the TIC window, and then click **Open File**. Windows open to show the TIC and mass spectrum for the product ion calibration data file that was acquired.

Figure 5-25 TIC and Mass Spectrum Windows from the Product Ion Calibration Data File

Note: The spectrum that is shown cannot be used for calibration.

- 6. Click the mass spectrum window, and then on the toolbar, click the **Delete** icon.
- 7. To get an average mass spectrum, click and drag the cursor to highlight the TIC window, and then double-click the TIC window.

8. Right-click the mass spectrum window, and then click **Re-Calibrate TOF**.

Figure 5-27 TOF Calibration Window

	Experimenta	l Mass	Theoretical Mass	^	Cal	culate new calibrations	Avera	age Error: 1.884388 ppm
1	185.091436		185.092070	-			,	
2	560.306908		560.307880		E	External Calibration		
3	759.044622		758 040500	-				
4	700 444954		700 442020	-				
0	799.441001		950 465 440	×				
AVE C Se	CURRENT CALIBR	ATION Calibra range (tion is applied to selected of scans		- CALIBF	ATION VALUES 7.02190561584214680e-	004	t0 -1.39487387759138710e+001
W	/hole Sample	Calibra in curre	tion is applied to all scans ent sample		New			
		Calibra	tion is applied to all				Calibrate	e spectrum

9. From the **Reference Table** list, select the reference table that was created for the calibrant (in this example, **PepCalMix**).

Note: If the correct reference file does not show in the list, then the reference table has not been created. Refer to the section: Create a Reference Table.

- 10. In the **Tolerance** field, type 0.2.
- 11. To calculate the average error for this new calibration, click **Calculate new calibrations**.
- 12. Make sure that the Average Error is within the routine operating standards for the mass spectrometer being calibrated.
- 13. Click **Calibrate spectrum**. The new calibration values show.
- 14. Make sure that the Set As Instrument Default check box is selected.
- 15. To apply this calibration to all samples in the file, click Entire File.
- 16. Click Save.
- 17. Click **OK** twice.
- 18. To close the TOF Calibration window, click **Close**.
- 19. Close the TIC and mass spectrum windows.

Methods for the Neutral OptiMS Cartridge

The methods and sequences for the neutral OptiMS cartridge have been updated for robustness. Save the methods to the C:\32karat\projects\CEMS\Methods folder.

File Name	Method Description
Neutral CESI electrical conditioning method	Used to create the electrical path in the sprayer of a new cartridge or a cartridge that has been in long-term storage.
Neutral CESI peptide separation method	Used to inject and separate a peptide mixture.
Neutral CESI protein separation method	Used to inject and separate a protein sample.
Neutral CESI rest method	Used to clean the separation capillary and the conductive liquid capillary at the end of a sequence before the cartridge is removed for long-term storage.
Neutral CESI washing method	Used to rehydrate the neutral coating of a new cartridge or a cartridge that has been in long-term storage.
CLC conditioning method	Used to condition the conductive liquid capillary

 Table 6-1 Methods for the Neutral OptiMS Cartridge

If the methods are missing, then use the following parameters on the Initial Conditions and Time Program tabs to create them manually.

Initial Conditions Tab

All of the methods for the neutral OptiMS cartridge use the initial conditions in the following figure.

Figure 6-1 Initial Conditions Tab

Auxiliary data channels	Temperature Peak detect parameters					
✓ Voltage max: 30.0 kV	Cartridge: 20.0 °C Threshold 2					
V Current max 5 μA	Sample storage: 10.0 °C Peak width: 9 💌					
Power	Trigger settings					
Pressure	Wait for external trigger					
Mobility channels	Wait until cartridge coolant temperature is reached					
🗖 Mobility	Wait until sample storage temperature is reached					
Apparent Mobility	I walt until sample storage temperature is reached					
Plot trace after voltage ramp	Inlet trays Outlet trays					
Analog output scaling	Buffer: 36 vials					
Factor: 1	Sample: 48 vials Sample: No tray					

Time Program Tab

Each of the methods for the neutral OptiMS cartridge uses a different time program.

Figure 6-2 Neutral CESI Washing Method

🚑 Init	ial Conditions	s 🛞 Time Program						
	Time (min)	Event	Value	Duration	Inlet vial	Outlet vial	Summary	Comments
1	8	Rinse - Pressure	100.0 psi	5.00 min	BI:D1	BO:A1	forward	0.1 M HCI Separation capillary rinse
2		Rinse - Pressure	100.0 psi	10.00 min	BI:A1	BO:A1	forward	BGE-Separation capillary fill
3		Rinse - Pressure	100.0 psi	5.00 min	BI:C1	BO:C1	reverse	DDI water-Conductive Liquid Capillary fill
4		Rinse - Pressure	100.0 psi	30.00 min	BI:C1	BO:C1	forward	DDI water-Separation capillary rinse
5								

For the neutral CESI electrical conditioning method, use the following parameters:

- In steps 1 and 2, use 50 mM AmAc buffer, pH 3.0 for the BGE.
- In steps 3 and 4, use a pressure of 5 psi at both ends.

Figure 6-3 Neutral CESI Electrical Conditioning Method

	Time (min)	Event	Value	Duration	Inlet vial	Outlet vial	Summary	Comments
1		Rinse - Pressure	100.0 psi	3.00 min	BI:A1	BO:A1	reverse	Fill CLC with BGE.
2		Rinse - Pressure	100.0 psi	5.00 min	BI:A1	BO:A1	forward	Fill separation capillary with BGE.
3	0.00	Separate - Voltage	30.0 KV	60.00 min	BI:B1	BO:A1	1.00 Min ramp, normal polarity, both	30 kV voltage application with 5 psi pressure at both ends.
4	60.00	Separate - Voltage	1.0 KV	5.00 min	BI:B1	BO:A1	5.00 Min ramp, normal polarity, both	Ramp down with 5 psi pressure at both ends.
5	65.00	End						

For the neutral CESI protein separation method, use the following parameters:

• In step 7, use a forward pressure of 0.5 psi and a reverse pressure of 0.5 psi to prevent the conductive line needle from drying.

- In step 9, use a forward pressure of 1.5 psi and a reverse pressure of 1.5 psi to prevent the conductive line needle from drying.
- In step 10, use a forward pressure of 50 psi and a ramp time of 5 minutes to decrease the voltage.

Note: The ramp down in step 10 can be omitted. Line 11 would be at time 21.

Figure 6-4 Neutral CESI Protein Separation Method

	Time (min)	Event	Value	Duration	Inlet vial	Outlet vial	Summary	Comments
1		Rinse - Pressure	100.0 psi	3.00 min	BI:D1	BO:A1	forward, In / Out	0.1M HCI rinse
2		Rinse - Pressure	75.0 psi	3.00 min	BI:A1	BO:A1	reverse, In / Out	BGE Conductive Liquid Capillary fill
3		Rinse - Pressure	100.0 psi	10.00 min	BI:A1	BO:A1	forward, In / Out	BGE separation capillary fill
4		Inject - Pressure	2.5 psi	15.0 sec	SI:A1	BO:A1	Override, forward	Hydrodynamic injection of sample
5		Wait		0.00 min	BI:C1	BO:A1	In / Out vial inc 1	Water dip
6		Inject - Pressure	2.5 psi	10.0 sec	BI:B1	BO:A1	No override, forw	Hydrodynamic injection of BGE plug
7	0.00	Separate - Voltage	30.0 KV	10.00 min	BI:B1	BO:A1	1.00 Min ramp, n	Separation at low flow
8	1.00	Relay On					1: 0.10 2: 0.10	Trigger MS
9	10.00	Separate - Voltage	30.0 KV	11.00 min	BI:B1	BO:A1	1.00 Min ramp, n	Separation at high flow
10	21.00	Separate - Voltage	1.0 KV	5.00 min	BI:B1	BO:A1	5.00 Min ramp, n	voltage ramp down to 1kV with 50 psi FWD pressure
11	26.00	End						
12						1		

For the neutral CESI peptide separation method, use the following parameters:

- In step 7, use a forward pressure of 0.5 psi and a reverse pressure of 0.5 psi to prevent drying.
- In step 9, use a forward pressure of 2.0 psi and a reverse pressure of 2.0 psi to prevent drying.
- In step 10, use the values in the Separate dialog to decrease the voltage. This step is mandatory for the method.

Note: The ramp down in step 10 can be omitted.

Separation Type	Values			Pressure Direction	
Voltage	Voltage	1.0	КV	Forward	UK
C Current	Pressure:	50.0	psi	C Reverse	Cancel
C Power	Duration:	5.00	min	C Both	Help
C Pressure	Ramp Time:	5.00	min		
C Vacuum	Tray Position	s		At Time:	
Options:	Inlet: BI:B1	1		80.00 min	
Vith Pressure	Outlet: BO:4	1			
☐ With Vacuum	Increment				
Polarity	🗹 In	let 🔽 O	utlet		
Normal	Increment Eve	ery 6	Cycles		
		Trees			

Figure 6-5 Neutral CESI Peptide Separation Method: Separate Dialog

Figure 6-6 Neutral CESI Peptide Separation Method

	Time (min)	Event	Value	Duration	Inlet vial	Outlet vial	Summary	Comments
1		Rinse - Pressure	100.0 psi	5.00 min	BI:D1	BO:A1	forward, In / Out	0.1M HCI rinse
2		Rinse - Pressure	75.0 psi	3.00 min	BI:A1	BO:A1	reverse, In / Out	BGE Conductive Liquid Capillary fill
3		Rinse - Pressure	100.0 psi	10.00 min	BI:A1	BO:A1	forward, In / Out	BGE separation capillary fill
4		Inject - Pressure	5.0 psi	60.0 sec	SI:A1	BO:A1	Override, forward	Hydrodynamic injection of sample with LE
5		Wait		0.00 min	BI:C1	BO:A1	In / Out vial inc 6	Water dip
6		Inject - Pressure	2.5 psi	15.0 sec	BI:B1	BO:A1	No override, forw	Hydrodynamic injection of BGE
7	0.00	Separate - Voltage	30.0 KV	25.00 min	BI:B1	BO:A1	1.00 Min ramp, n	Separation at low flow
8	1.00	Relay On			1	1	1: 0.10 2: 0.10	Trigger MS
9	25.00	Separate - Voltage	30.0 KV	56.00 min	BI:B1	BO:A1	1.00 Min ramp, n	Separation at high flow
10	81.00	Separate - Voltage	1.0 KV	5.00 min	BI:B1	BO:A1	5.00 Min ramp, n	Voltage ramp down to 1kV with 50 psi FWD pressure
11	86.00	End			1	1		
12					· · · · · · · · · · · · · · · · · · ·			

Figure 6-7 Neutral CESI Peptide Separation Method: Separate Dialog with Parameters to Ramp Down the Separation Voltage

If the cartridge will be used again within 24 hours, then to prevent blockage in the sprayer tip, in step 3 of the neutral CESI rest method, change the rinse pressure to 5 psi and the duration to 999 min.

Figure 6-8	Neutral	CESI	Rest	Method
------------	---------	------	------	--------

🗳 Initia	I Conditions	🕥 Time Program 🛛						
	Time (min)	Event	Value	Duration	Inlet vial	Outlet vial	Summary	Comments
1		Rinse - Pressure	100.0 psi	5.00 min	BI:D1	BO:F1	forward	0.1 M HCI rinse
2		Rinse - Pressure	75.0 psi	5.00 min	BI:C1	BO:C1	reverse	Conductive Liquid Capillary water rinse
3		Rinse - Pressure	100.0 psi	10.00 min	BI:C1	BO:C1	forward	Separation line water rinse
4						ļ		

After the mass spectrometer and CESI 8000 Plus system are set up, do the following procedure to make sure that the neutral OptiMS cartridge operates correctly.

- 1. In a microvial, add 100 µL of Protein Test Mix sample.
- 2. Put the sample vial in the inlet sample tray in position S1:A1.
- 3. If required, then update the sample location in the sequence, and then save the sequence.
- 4. Do a check of the coolant level in the CESI 8000 Plus system. If required, then add coolant. Refer to the section: Add Capillary Cartridge Coolant.
- 5. Start the mass spectrometer batch.
- 6. Make sure that the mass spectrometer is ready to acquire.
- 7. Start the neutral CESI protein separation method.

Analyze the Data (Protein Test Mix Sample)

When the separation of the Protein Test Mix is complete, look at the detection times to make sure that all three proteins are in the 8 minute to 15 minute range.

If the proteins are not separated, then refer to the section: Troubleshooting.

The following figure shows a total ion electropherogram (TIE) for a typical separation of Protein Test Mix and 50 mM AmAc buffer, pH 3.0.

Figure 7-1 TIE of Protein Test Mix in 50 mM AmAc, pH 3.0 Buffer

The following figure shows the mass spectrum for each protein in the Protein Test Mix.

Figure 7-2 Mass Spectra of Cytochrome C, Lysozyme, and Ribonuclease A Protein Test Mix

For a separation run with the neutral OptiMS cartridge, do this:

- Use the neutral CESI peptide separation method with 10% HAc solution.
- If required, then optimize the neutral CESI peptide separation method.
- Make sure that the sample has 100 mM LE buffer, pH 4.0.

The following figure is an example of a total ion electropherogram (TIE) for a separation of an E. coli cell lysate digest. The protein concentration was $3 \mu g/\mu L$. The sample was injected at 5 psi for 60 seconds, and then separated with the neutral CESI peptide separation method.

Figure 8-1 TIE of E. coli Cell Lysate Digest

The following figure is an example of a TIE for a separation of beta-galactosidase digest. The protein concentration was 1 μ M.

Figure 8-2 TIE of 1 μ M Beta-Galactosidase Digest Diluted 50:50 in 200 mM AmAC LE buffer, pH 4.0 with 10% HAc Solution as the BGE

Small variations in temperature that occur during usual operation can cause incorrect masses to be reported. To increase the mass accuracy, we recommend that autocalibration be done every 5 hours of data acquisition.

Note: Do manual calibration before autocalibration is done. If the reference ions are outside of the 100 ppm tolerance for peak identification, then autocalibration will not be successful.

Note: The following procedures are for the SCIEX 5600 and 6600 systems. For other SCIEX mass spectrometers or mass spectrometers from other manufacturers, use the manufacturer's recommendations.

The following figure shows the sample tray layout for autocalibration.

Figure 9-1 Sample Tray Layout for Autocalibration

Autocalibration uses the CESI-MS autocalibration method and the following time program.

Figure 9-2 Time Program for Autocalibration

🚑 Init	ial Conditions	3 🛞 Time Program						
	Time (min)	Event	Value	Duration	Inlet vial	Outlet vial	Summary	Comments
1		Rinse - Pressure	100.0 psi	3.00 min	BI:A1	BO:A1	reverse	BGE Conductive Liquid Capillary fill
2		Rinse - Pressure	100.0 psi	1.00 min	BI:A1	BO:A1	forward	BGE rinse
3		Inject - Pressure	100.0 psi	120.0 sec	SI:F1	BO:A1	Override, forward	Separation line fill with calibration mixture
4	0.00	Separate - Pressure	10.0 psi	1.70 min	BI:A1	BO:A1	forward	Infusion of the calibration mixture into the MS
5	0.20	Relay On					1: 0.10 2: 0.10	Contact closure trigger
6	1.70	End						
7		•						

Analyze the autocalibration data to make sure that the peaks were identified and their calculated masses are satisfactory. Refer to the section: Analyze the Autocalibration Data.

Create a Reference Table

- 1. In the Analyst TF software, in the Navigation bar, click Acquire.
- 2. Click **Tools > Settings > Tuning Options**, and then click **Reference**.

Figure 9-3 Reference Table Editor Window

Reference	e Table Edi	tor										×
Name:	MixSCIEX-4	lgl		~ Nev	v Сору	Delete	Positive (egative	Calibrat	ion Valve Position:	~
Refere	ence Ions f	or TOF MS Calibratio	on:						Refere (Product	nce Ions f of 609.280	or MS/MS Calibration 166 Da)	on:
	Use	Compound Name	Precursor m/z (Da)	Use for MS/MS	CE for MS/MS	DP for MS/MS	Retention /	^		Use	Fragment Name	Fragment m/z A (Da)
6	\sim	amino-dPEG 8-acid	442.26467		20.000	50.000	0.00		1	\sim	y1	174.09130
7	\sim	Reserpine	609.28066	\leq	20.000	50.000	0.00		2		у3	195.06520
8	\checkmark	lon 3	622.02896		42.000	80.000	0.00		3	\checkmark	y5	236.12810
9	\sim	ALILTLVS	829.53933		20.000	50.000	0.00		4			365.18600
10	\sim	lon 4	922.00980		42.000	80.000	0.00		5		y8	397.21220
11	\sim	ALILTLVS + Cs	961.43696		20.000	50.000	0.00		6		y10	448.19660
12	\sim	lon 5	1221.99064		42.000	80.000	0.00		7	\sim	y12	609.28070
13	\sim	Heptakis(2,3,6-tri-O-	1446.73224		20.000	50.000	0.00		8			609.28066
14	\checkmark	lon 6	1521.97148		42.000	80.000	0.00		9			
15	\sim	Heptakis(2,3,6-tri-O-	1561.60332		20.000	50.000	0.00		10			
16	\checkmark	lon 7	1821.95231		42.000	80.000	0.00		11			
17	\checkmark	Tryaceyl-b-cyclode	2034.62545		20.000	50.000	0.00		12			
18		lon 8	2121 03315		42.000	80.000	0.00	× .	12		1	×
<							>		<			>
Retentio	on time is on	ly used for non-CDS co	nfiguration.	Retentio	n Time Toler	ance: +/-	30.000 sec					
				OK		Cancel	He	lp				

3. To open a new, empty reference table, click **New**.

Refe	ence	Table Ed	itor										×
Nan	ne:				✓ Nev	v Copy	Delete	• OPositive	0	legative	Calibrati	on Valve Position:	~
Re	feren	ce Ions f	for TOF MS Calibratio	on:						Refere (Produc	e nce Ions fo t of Da)	or MS/MS Calibrati	on:
		Use	Compound Name	Precursor m/z (Da)	Use for MS/MS	CE for MS/MS	DP for MS/MS	Retention Time (min)	^		Use	Fragment Name	Fragment m/z A (Da)
6	-									1			
8									-	3			
10										5			
11	2								-	6 7			
13									-	8			
15										10			
17										12			v
<		1 1	1					>		<			>
Ret	ention	time is or	nly used for non-CDS co	nfiguration.	Retentio	n Time Tolei	rance: +/-	30.000 se	c				
					ОК		Cancel	H	Help				

Figure 9-4 New Reference Table in the Reference Table Editor Window

- 4. In the **Name** field, type a name that identifies the calibration solution (in this example, PepCalMix).
- 5. Make sure that **Positive** is clicked.
- 6. In the Reference lons for TOF MS Calibration table, type the following values.

Table 9-1 Reference lons for TOF MS Calibration

Compound Name	Precursor <i>m/z</i> (Da)	CE for MS/MS	DP for MS/MS
AETSELHTSLK	408.55010	40	80
GAYVEVTAK	473.26020	40	80
IGNEQGVSR	485.25302	40	80
LVGTPAEER	491.26559	40	80
LDSTSIPVAK	519.79969	40	80
AGLIVAEGVTK	533.32333	40	80
LGLDFDSFR	540.27342	40	80
GFTAYYIPR	549.28633	40	80
SGGLLWQLVR	569.83398	40	80
AVGANPEQLTR	583.31360	40	80

	•		
Compound Name	Precursor <i>m/z</i> (Da)	CE for MS/MS	DP for MS/MS
SAEGLDASASLR	593.80053	40	80
VFTPLEVDVAK	613.34955	40	80
VGNEIQYVALR	636.35273	40	80
YIELAPGVDNSK	657.34499	40	80
DGTFAVDGPGVIAK	677.85827	40	80
YDSINNTEVSGIR	739.36148	40	80
SPYVITGPGVVEYK	758.91050	40	80
ALENDIGVPSDATVK	768.90340	40	80
AVYFYAPQIPLYANK	883.47380	40	80
TVESLFPEEAETPGSAVR	964. 97741	40	80

 Table 9-1 Reference lons for TOF MS Calibration (continued)

- 7. For each compound, click the **Use** check box.
- 8. In the Reference lons for MS/MS Calibration table, type the following values.

Table 9-2 Reference lons for MS/MS Calibration

Fragment Name	Fragment <i>m/z</i> (Da)
b2	185.09207
b3	348.15540
b4	560.30788
b5	661.35555
N/A	758.91050
у7	799.44398
у8	856.46544
у9	957.51312
y10	1070.59719
y11	1169.66560
y12	1332.72893

9. For each fragment, click the **Use** check box.

- 10. In the **Use for MS/MS** column, select the check box for the applicable compound in the calibration solution (in this example, the peptide at m/z 758.91).
- 11. Make sure that the value in the **Retention time tolerance +/-** field is **30**.
- 12. Click **OK**.

Figure 9-5 Tuning Options Dialog

Tuning Options		?	×
Calibration Resolution			
Standard: PPGs Pos.	New		
✓ Positive			
Reference: PepCalMix ~			
☑ Negative			
Reference: CESI Negative Calib Solution (X500) 🗸			
Update Std. Delete Std. Reference			
OK Cancel		Help	

- 13. Make sure that the name of the new reference table (in this example, **PepCalMix**) shows in the **Positive Reference** field.
- 14. Click **OK**.

Create the MS Acquisition Method for Autocalibration

- 1. In the Analyst TF software, in the Navigation bar, under Acquire, double-click **Build Acquisition Method**.
- 2. In the Acquisition method pane, click **TOF MS (+)**.

	Figure 9-6 Acc	uisition	method	Pane:	TOF	MS
--	----------------	----------	--------	-------	-----	----

Acquisition Method	Experiment: 1 V DA Experiment Create IDA Exp
🥌 🥙 Mass Spectrometer 1.000 min	Scan type: TOF MS V TOF Masses (Da)
TOF MS (+) Product Ion (+) 758.9 CTC PAL Autosampler	Accumulation time : 0.999985 (secs) Min: 400 Max: 1000
Beckman CE Driver (1.0.48)	Polarity Positive
	◯ Negative
	Edit Parameters
	Period Duration: 1 (mins) Cycles: 29 Delay Time: 0 (secs) Start Time Stop Time Cycles: 29 Delay Time: 0 (secs)
	Cycle time: 2.0500 (secs) Period: 1 ~ (min) 0 (min)

- 3. On the MS tab, click **Edit Parameters**. The Parameter Settings dialog opens.
- 4. On the Source/Gas tab, do this:
 - a. In the Curtain Gas (CUR) field, type 10.
 - b. In the **IonSpray Voltage Floating (ISVF)** field, type 1500 or the optimized voltage. The ISVF parameter sets the ESI voltage.
 - c. In the Interface Heater Temperature (IHT) field, type 50.0.

		-
Ion Source: Nanospray		Î
lon Source Gas 1 (GS1)	0 +	
lon Source Gas 2 (GS2)	0 +	
Curtain Gas (CUR)	10 ÷	
lonSpray Voltage Floating [(ISVF)	1500	
Interface Heater Temperature	50 +	
		_
		~
Apply the following parame	eters to all other experime	ents:
☐ Source/Gas	Compound	

Figure 9-7 TOF MS (+) Parameter Settings Dialog: Source/Gas Tab

5. Open the Compound tab, and then do this:

Parameter Settings	ן ון
Source/Gas Compound	
Declustering Potential (DP) 100.0	
Collision Energy (CE)	
Apply the following parameters to all other experiments:	
OK Cancel	

Figure 9-8 TOF MS (+) Parameter Settings Dialog: Compound Tab

- a. In the **Declustering Potential (DP)** field, type 100.
- b. In the Collision Energy (CE) field, type 10.
- 6. In the Acquisition method pane, click **Product Ion (+) 758.9** (item 1).

Figure 9-9 Acquisition method Pane: Product Ion

- 7. On the MS tab, click **Edit Parameters**. The Parameter Settings dialog opens.
- 8. On the Source/Gas tab, do this:
 - a. In the Curtain Gas (CUR) field, type 10.

- b. In the **IonSpray Voltage Floating (ISVF)** field, type 1600. The ISVF parameter sets the ESI voltage.
- c. In the Interface Heater Temperature (IHT) field, type 50.0.
- 9. Open the Compound tab, and then do this:
 - a. In the Declustering Potential (DP) field, type 100.
 - b. In the Collision Energy (CE) field, type 42.
 - c. In the Collision Energy Spread (CES) field, type 5.
 - d. In the Ion Release Delay (IRD) field, type 67.
 - e. In the Ion Release Width (IRW) field, type 25.

Add Autocalibration to the Sequence

Use this procedure to edit the sequence table to include autocalibration.

Note: The sequences in the 32 Karat software and on the mass spectrometer must be the same.

- 1. In the 32 Karat software, open the sequence table.
- 2. Click to highlight the first run, right-click the highlighted run, and then click **Insert Line**.
- 3. At the bottom of the **Method** column, click the green arrow icon and then click CESI-MS Auto-calibration_ABSciex.met.
- 4. In the **Sample ID** and **File name** fields, type the applicable values.
- 5. To add another line for autocalibration, click to highlight the run on line 7, right-click the highlighted run, and then click **Insert Line**.
- 6. Do steps 4 and 5 again.

The following figure shows an example of the sequence.

Figure 9-10 Sample Sequence Example

🔳 Sequ	Sequence: CE-MS_PepCalMix.seq									
Run #	Status	Run Type	Reps	Sample	Sample Inject	Sample Inject	Sample ID	Method	Filename	Action
1		Unknown	1	SI:F1	BO:A1	90.0	<d> Autocalibration</d>	CESI-MS Autocalibration.met	<d> Autocalibration.dat</d>	
2		Unknown	1	SI:A1	BO:A1	60.0	<d> Pep Cal Mix_001</d>	CESI-MS Separation.met	<d> Pep Cal Mix_001</d>	HW
3		Unknown	1	SI:F1	BO:A1	90.0	<d> Pep Cal Mix_002</d>	CESI-MS Separation.met	<d> Pep Cal Mix_002</d>	HW
4		Unknown	1	SI:F1	BO:A1	90.0	<d> Pep Cal Mix_003</d>	CESI-MS Separation.met	<d> Pep Cal Mix_003</d>	HW
5		Unknown	1	SI:F1	BO:A1	90.0	<d> Pep Cal Mix_004</d>	CESI-MS Separation.met	<d> Pep Cal Mix_004</d>	HW
6		Unknown	1	SI:F1	BO:A1	90.0	<d> Pep Cal Mix_005</d>	CESI-MS Separation.met	<d> Pep Cal Mix_005</d>	H₩
7		Unknown	1	SI:F1	BO:A1	90.0	<d> Autocalibration</d>	CESI-MS Autocalibration.met	<d> Autocalibration.dat</d>	
8		Unknown	1	SI:F1	BO:A1	90.0	<d> Pep Cal Mix_006</d>	CESI-MS Separation.met	<d> Pep Cal Mix_006</d>	HW
9		Unknown	1	SI:F1	BO:A1	90.0	<d> Pep Cal Mix_007</d>	CESI-MS Separation.met	<d> Pep Cal Mix_007</d>	HW
10		Unknown	1	SI:F1	BO:A1	90.0	<d> Pep Cal Mix_008</d>	CESI-MS Separation.met	<d> Pep Cal Mix_008</d>	HW
11		Unknown	1	SI:F1	BO:A1	90.0	<d> Pep Cal Mix_009</d>	CESI-MS Separation.met	<d> Pep Cal Mix_009</d>	HW
12		Unknown	1	SI:F1	BO:A1	90.0	<d> Pep Cal Mix_010</d>	CESI-MS Separation.met	<d> Pep Cal Mix_010</d>	HW
13		Shutdown	1				<d> Shutdown</d>	CESI-MS Shutdown.met	<d> Shutdown</d>	
14]]	•	•			•	•	Þ

7. On the toolbar, click **Sequence** > **Properties**.

Sequence Propertie	es	×
Options Audit Tr	ail]	1
1		*
		Ŧ
Export sum	imary	— I
Path:		
File paths		
Method:	C:\32Karat\Projects\CE MS\Method	e
Data:	C:\32Karat\Projects\CE MS\Data	F
	OK Cancel Apply	Help

Figure 9-11 Sequence Properties Dialog

8. Make sure that the File paths for **Method** and **Data** show the correct folder to save the data, and then click **OK**.

Note: If required, then create a folder.

9. Click File > Sequence > Save As. In this example, the sequence name is PepCalMix_Installation.

Analyze the Autocalibration Data

For the autocalibration to be successful, the following criteria must be met:

- The intensity of the reference ions is at least 10 counts per second (cps) in the mass spectrometer data and 3.3 cps in the MS/MS data.
- The reference ions are within a mass tolerance of 100 ppm.
- There are \geq 80% of the selected ions in the reference table.

If autocalibration is successful, then a green check mark is shown. If the sample was acquired but the calibration failed because one or more of the reference ions did not meet the calibration criteria, then a red circle with a diagonal line through it is shown. To see information about the failure, double-click the circle icon.

If autocalibration fails, then an error message is shown in the Sample Details dialog. Click **OK**, and then refer to the section: Troubleshoot an Autocalibration Failure.

1. In the Analyst TF software, in the Navigation bar, under Explore, double-click **Open Data File**.

If the Keep calibration data file check box was selected in the Queue Options dialog, then data for each autocalibration is saved as a separate data file in the Cal Data subfolder. The autocalibration data file names start with Cal and include the time stamp and calibration sample index. For example, Cal20130910162907040.wiff.

2. To extract the mass spectra from the TIC, highlight the region and then double-click the region. Extract one mass spectrum between 2 minutes to 2.5 minutes (MS before calibration) and another between 4 minutes to 4.5 minutes (MS after calibration).

Figure 9-12 Data Analysis

About Autocalibration

ltem	Description
1	MS before calibration
2	MS/MS before calibration
3	MS after calibration
4	MS/MS after calibration

3. To get a list of ions in the mass spectrum, right-click the mass spectrum and then click **List data**. Do this for both MS before calibration and MS after calibration.

Figure 9-13 Obtaining List Data

4. To show all the reference ions used for calibration, in each data list table, open the Calibration Peak List tab.

Figure 9-14 Reference lons

5. To make sure that the correct reference table has been selected, right-click the reference table, click the **PepCalMix_CE-MS_Calibration Ref** reference table, and then click **Use as reference**.

Figure 9-15 Reference Table Verification for MS Before Calibration

TIC: tom Sample 1 (cell of Ce(2022)1214102146100 with Nanoscrav)				Max 2.2e7 cm
	0.28			
2.047	~	0.61		
1547				
5 1047				
5040-				
	0.30 0.35 0.40 0	45 0.80 0.55 0.50	0.65 0.70 0	75 0.00 0.85 0.80 0.85
		Time, min		
*TOF MS: Exp 1, 0.1551 to 0.1590 min from Sample 1 (sal) of Cal20231214102146100 will w7 02151100390204188x.004 min.1 38554680118829918ax801 (Sanowywe)				Max. 1.4e5 op.
				964 9703
1.465		700.0070		500.0100
1045	500 D400	168.0910		
408.5465 491.2613 633.3182	683 3079 613 3433 643 6486			
6.0e4 4/3.2053 519.7944 549.2813	583.7953 - 657.	677 8524 739,3554 758,9040		883.4671
512.9335		Formation		
400 450 500 550	ećo eśo	700 700 m/z, De	800 850	odor obe sole
+ 10P MSE EXP 1, 0.1531 to 0.1890 minition sample 1 (ca) of Calcularia Harden Reformation and the Experimental Participation (calcularia) and the Experimental Participation (
Data Las Calcheon Peak Las Tarnet Mane (Da)	Found At (Da)	Intensity (cost)	Analyst Classic Parameters IntelliQuerParameters	Maner Shift (room)
1 408.55010	408.54647	6.34510e4	0.01874 Set Pask Height	-8.89295
2 473,26020	473.25528	5.03555e4 4.68445e4	0.02048 V Shew Peaks in Graph 0.02042 Centroid Peak Finding	-10.39865
4 49128559	491.26129	6.34940#4	0.02160 Seve As Text	-8.75499
6 533,2233	519.79440 533.31817	4.75350e4 7.43020e4	0.022334 2021 CES-Dapaty-65at 0.022330 2023,PspCa88ac,T07,34846	-10.17151 -9.67837
7 540.27342	540.26855	8.1003De4	0.02242 Agint_Callable_ToF APC/Negative Calibration Solution	9.01083
0 049/20033 10 1660 09300	549.20134 EAN 01075	4.0200099 4.38460x4	0.02413 Bits Galacticides Diget 0.02449 Bits Galacticides Diget 2	0.16167 V
*TOF MS: Exp 1.0.7415 to 0.7780 min from Sample 1 (cell of Cal20231214102146100 wiff			Bootine Intuilin CESP 2021 X3000 Positive	Max 1.5e5 cos
a=7.02182086082813330e-004, ID=1.38697282180344560e+001 (Vanospray)			CEB Mat Annu2020 CEB Matative (COD) complete	2
1.6e5 g	1		CES Negative (200) partial (20) Neordina Celli Solution (200)	964.9787
		768.9039	CESI-ApColibration sel	
533.3237_540.2736	613.3498 643.6548		Copy of CES 2021 X3008 Positive TOP Only	
408.5514 473.2602 519.7997 549.2865 569.8	1344 583.3139 593.8011 636.3529 657.3451		Copy of PapCalMa, TalloniyAND, M2H5	883.4751
612,9392		677.8590 739.3620 758.9107	ES Negative Calibration Solution	966,4816
a for the second s	and the second	700 The The	Ou Stringspilds B	
		m/z, Da	Middler of Okt	
*TOF MS: Exp 1, 0.7415 to 0.7760 min from Sample 1 (cal) of Cal20231214102146100.wiffa=7.02162086382813330e-004, t0=-1	.39597282190344560e+001 (Nanospray)		MERCERPECTION OF	
Data List Calibration Peak List Peak List			ND: Her box ND: new bills?	
Target Mass (Da)	Found At (Da)	Intensity (cps)	PepCalMa_Dec301_CE30 PepCalMa_Dec301_CE30	Mass Shift (ppm)
1 408.55010	408.55137 473.26017	6.22725e4 4.94930e4	0.01974 PepCalMe_ShortList 0.02131 PepCalMe_ToFeely	3.11812
3 485,25302	485.25330	4.75160e4	0.02085 PepCathuspic0c0M045 PPOs Nep-Calibration Ref.	. 0.58447
4 49126559 5 519.79969	491.20529 519.79972	6.45585e4 4.85890e4	0.02161 Reception Ref. 0.02314 Survey Max) 1.43152) 0.05462
6 533.32333	533.32366	8.24835e4	0.02194 Superflat. Tourscholic Acid	0.62220
8 549,28633	549.28554	4.29780e4	0.02299 Edit Tune Peak Search Parameters	0.35865
9 569 83388	569 83441	540475e4	0.02364	0.75614

Figure 9-16 MS After Calibration Analysis

The tables show the Target Mass (or theoretical mass) and the Found At mass (or experimental mass) for all eight reference ions selected for autocalibration. The mass shift between the Target Mass and the Found At mass is given as Mass Shift (ppm).

The mass shift is higher before calibration and lower after calibration for all ions.

6. To evaluate the MS/MS mass accuracy, do steps 3 and 4 for MS/MS before and after calibration.

For the MS/MS experiment, the mass shift after calibration is lower than it was before calibration.

Figure 9-17 Evaluation of Peak Data in MS/MS Experiment

Remove the Cartridge

If the CESI 8000 Plus system will be shut down and the power turned off, then remove the cartridge.

- 1. Make sure that the ESI voltage on the mass spectrometer is off.
- 2. Do the applicable procedure in the section: Stow the Cartridge.
- 3. In the 32 Karat software, go to the Direct Control window, and then click **Load**.
- 4. Open the cartridge cover.

Figure 10-1 Cartridge Cover

The coolant pump for the CESI 8000 Plus system turns on and releases the coolant from the cartridge coolant lines. Approximately 30 seconds are required. Wait for the pump to turn off.

5. Loosen the thumbscrews on the insertion bar.

Figure 10-2 Thumbscrews on the Insertion Bar

- 6. Lift the insertion bar fully.
- 7. To prevent damage to the sprayer tip, retract the stage as far away from the inlet on the mass spectrometer as possible.
- 8. To loosen the end of the sprayer from the adapter, turn the arrow on the sprayer to the Unlock position.

WARNING! Hot Surface Hazard. The surfaces of the ion source become hot during operation. Let the ion source cool for at least 30 minutes before the sprayer is removed from the adapter on the mass spectrometer.

Figure 10-3 Unlock the Sprayer from the Cartridge

ltem	Description
1	Sprayer in the Unlock position

Shut Down and Disconnect

ltem	Description
2	Turn to lock the sprayer from the adapter

9. Remove the sprayer from the adapter.

Figure 10-4 Sprayer Removal

- 10. Put the protective sleeve on the sprayer tip.
- 11. Put the tubing with the sprayer end through the access panel.

Figure 10-5 Sprayer and Tubing Through the Access Panel

12. Remove the coolant tubing from the notched arm.

13. Hold the cartridge sprayer with one hand and the midsection of the cartridge with the other hand, then lift the cartridge up and pull it out.

Note: As the cartridge moves up, the protective sleeves on the inlet and outlet sides go down over the capillary tips.

Note: Drops of liquid coolant usually fall from the cartridge tips, and do not cause damage to the hardware.

14. Refer to the section: Stow the Cartridge.

Stow the Cartridge

WARNING! Puncture Hazard. Touch the cartridge carefully. The capillary tips are extremely sharp.

CAUTION: Potential System Damage. To prevent contamination of the internal surface of the separation capillary, do not use the pressure rinse function to blow air through the capillaries. Use the vacuum function to dry the capillaries.

- 1. To prepare the cartridge to be stowed for less than 3 days, do this:
 - a. Run the neutral CESI rest method.
 - b. Keep the cartridge in the system for as long as 3 days.
- 2. To prepare the cartridge to be stowed for more than 3 days, do this:
 - a. Run the neutral CESI rest method.
 - b. Disconnect the sprayer from the ion source.
 - c. Remove the cartridge from the system.
 - d. Put the protective sleeve on the sprayer tip.
 - e. Put the sprayer tip in a 2 mL microcentrifuge tube of water.
 - f. Loosely seal the tube with a film cover.
 - g. Keep the cartridge in a safe area at 2 °C to 8 °C.

Required Materials

- Capillary cartridge coolant (PN 359976)
- Coolant fill tool (PN 144647)

CAUTION: Potential System Damage. To prevent damage, do not use the plunger in the coolant fill tool when coolant is added. Gravity supplies sufficient force to pull the coolant into the system.

1. Open the sample cover.

Figure 11-1 Sample Cover (Outer Door)

2. Connect the coolant fill tool to the coolant fill port.

Figure 11-2 Coolant Fill Tool Connected to the Coolant Fill Port

- 3. Fill the syringe with 120 mL of coolant.
- 4. Make sure that the CESI 8000 Plus system is on and a cartridge is installed.
- 5. Slowly add coolant until the fill indicator is between the yellow lines in the coolant sight glass.

6. Remove the coolant fill tool, and then close the sample cover.

For more information about troubleshooting, refer to the document: *CESI 8000 Plus High Performance Separation-ESI Module User Guide*.

Symptom	Possible Cause	Corrective Action
Electrospray is detected when the ESI voltage is zero and separation voltage is applied with forward pressure	 A cable is missing or is not fully connected. The adapter on the mass spectrometer does not touch the cartridge. The cartridge capillaries are not filled with separation buffer. 	 Make sure that all of the required cables are attached fully. Refer to the document: CESI 8000 Plus High Performance Separation-ESI Module User Guide. Remove the sprayer from the adapter and pull up on the metal contact for the sprayer. Install the sprayer in the adapter, and make sure that the sprayer is in the locked position.
		 To make sure that the separation capillary and conductive liquid capillary are filled with separation buffer, rinse each one at 100 psi for 3 minutes.

Troubleshooting

Symptom	nptom Possible Cause			
No flow through the separation capillary	 The capillary is blocked. The source temperature is too high, which causes the precipitation of protein at the emitter. The capillary is broken 	 Refer to the section: Clean Blockage from the Sprayer Tip. If the blockage is at the inlet side, then apply a vacuum. 		
	5. The capillary is broken.	2. To increase solubility, add an organic such as 10% isopropanol. To remove the blockage, run the neutral CESI washing method with 10% IPA while the sprayer tip is immersed in a 50 mL Falcon tube filled with 10 mL of 10% IPA.		
		3. Replace the cartridge.		

Symptom	Possible Cause	Corrective Action			
Electrospray is not stable	 The ESI voltage is not optimized. The sprayer position is not optimized in front of 	 Find the minimum ESI voltage, and then increase its working value by 0.2 kV. 			
	the inlet on the mass spectrometer.	2. At the same time, optimize the sprayer			
	 The forward pressure in the separation capillary is < 1.5 psi. 	position, and apply separation voltage and forward pressure at 1.5 psi.			
	 The sprayer needle is not fully filled. 	3. Increase the pressure to 1.5 psi or more.			
	5. The buffer concentration and pH are not optimized.	4. Make sure that the conductive liquid capillary			
	6. The value for curtain gas	is filled fully with solution.			
	 The cartridge was 	5. Optimize the buffer concentration and pH.			
	exposed to temperatures < 2 °C.	 Decrease the curtain gas to the recommended value. 			
		 Condition the capillaries. If the electrospray is still not stable, then replace the cartridge. 			

Symptom	Po	ssible Cause	Co	Corrective Action		
Carryover occurs between runs	1. 2.	The buffer vials are contaminated with sample. The separation capillary was not rinsed sufficiently between separations.	1.	Repla To pr of the sure is inc injec meth	ace the buffer vials. revent contamination e buffer vials, make that a water dip step cluded after sample stion in the separation nod.	
			2.	Do th	his:	
				a. l (a	Do a rinse with 0.1 M hydrochloric acid (HCl) at the start of each separation.	
				b. I t	Increase the rinse times between separations.	
Sample peaks are tailing in the TIE	1.	The separation capillary was not rinsed sufficiently between separations.	1.	Do a HCl a sepa	rinse with 0.1 M at the start of each aration.	
	2.	The buffer concentration	2.	Do th	his:	
		and high electro-migration dispersion occurred.		a. I t	Increase the rinse times between separations.	
	3.	The forward pressure value is too high, which caused a distorted peak shape.		b. ((f	Optimize the buffer concentration and pH for the sample that is analyzed.	
	4.	The neutral coating is damaged.	3.	Decr press	ease the forward sure to 1.5 psi.	
			4.	Run samp the s If the then	a Protein Test Mix ple to make sure that separation is correct. separation fails, replace the cartridge.	

Symptom	Pos	ssible Cause	Corrective Action		
No sample is detected	1.	The sample vial is in an incorrect position.	1.	Make sure that the sample vial is in the	
	2.	The sample volume is not sufficient.		correct position in the sample tray, sequence, and method.	
	3.	The injection plug is too short.	2.	Increase the sample volume to $> 50 \text{ µL}$ for	
	4.	The sample is too dilute.		microvials or > 5 μ L for	
	5.	An incorrect polarity is	3	nanovials.	
	6	The separation method is	5.	and/or injection pressure.	
		too short.	4.	Use a more concentrated	
	7.	The mass spectrometer	5	sample.	
			0.		
			6.	time in the CE and mass spectrometer methods.	
			7.	Make sure that the mass spectrometer settings are correct and the ionization parameters have been optimized for the sample that is analyzed.	
Low sensitivity due to highly oxidized proteins	1.	The ESI voltage is too high.	1.	Decrease the ESI voltage and optimize the position	
	2.	The sprayer tip is too		of the sprayer tip.	
		mass spectrometer.	2.	from the inlet on the mass	
	3. The entrance temperatur for the mass spectrometer is too high.			spectrometer. Refer to the section: Fine-Tune the Position of the Sprayer Tip.	
			3.	Decrease the entrance temperature for the mass spectrometer.	

Symptom	Possible Cause	Corrective Action
Capillary coating is frozen	The cartridge was exposed to temperatures < 2 °C.	Run the neutral CESI washing method to rehydrate the neutral coating, and then keep the cartridge in the instrument for 24 hours. Continued flushing is not required. After 24 hours, run the neutral CESI electrical conditioning method.

Troubleshoot an Autocalibration Failure

- 1. Do the procedure in the section: Analyze the Autocalibration Data.
- 2. Make sure that the intensity of the reference ions is correct:
 - Mass spectrometer data: > 10 cps
 - MS/MS data: > 3.3 cps
- 3. In the Calibration peak list table, if the value in the **Mass shift (ppm)** field is > 100 ppm, then do manual calibration.

Refer to the section: Manual Calibration.

- 4. Make sure that the threshold for peak detection is 1% in the spectrum.
 - a. In the Navigation bar, under Tune and Calibrate, click **Tools > Settings > Appearance Options > Other Graph**.
 - b. In the **Default Threshold for the Spectrum** field, type 1.

Conductive Liquid Capillary Contamination

If the baseline mass spectrum shows a series of peaks with a difference in m/z of 98, then the conductive liquid capillary might be contaminated with phosphate. To remove phosphate contamination, condition the conductive liquid capillary.

Figure 12-1 Profile of Phosphate Contamination

Condition the Conductive Liquid Capillary

1. Use the time program in the following figure.

Figure 12-2 Time Program for the Conductive Liquid Capillary Conditioning Method

	Time (min)	Event	Value	Duration	Inlet vial	Outlet vial	Summary	Comments
1		Rinse - Pressure	100.0 psi	10.00 min	BI:E1	BO:E1	reverse	1 M NaOH rinse
2		Rinse - Pressure	100.0 psi	10.00 min	BI:E1	BO:D1	reverse	0.1 M NaOH rinse
3		Rinse - Pressure	100.0 psi	10.00 min	BI:C1	BO:C1	reverse	0.1 M HCI rinse
4		Rinse - Pressure	100.0 psi	10.00 min	BI:C1	BO:B1	reverse	DDI water rinse
5		Rinse - Pressure	100.0 psi	5.00 min	BI:A1	BO:A1	reverse	10% HAc rinse
6		Rinse - Pressure	100.0 psi	5.00 min	BI:A1	BO:A1	forward	10% HAc rinse

2. Use the following figure to put each vial in the correct position in the buffer inlet and outlet trays.

Note: This method uses reverse rinses. Only one vial is required in the inlet buffer tray, at position A1.

Figure 12-3 Tray Layout for the Conductive Liquid Capillary Conditioning Method

Clean Blockage from the Sprayer Tip

CAUTION: Potential System Damage. Do not put more than 10 mL of CE Grade water in the tube. If there is more than 10 mL in the tube, then the liquid can splash onto the metal components of the sprayer and cause damage.

- 1. Put 10 mL of CE Grade water in a 50 mL Falcon tube, and then put the tube in the holster on the side of the system.
- 2. Carefully immerse the sprayer tip in the CE Grade water.
- 3. In the 32 Karat software, go to the Direct Control window.
- 4. Do a forward rinse with BGE at 100 psi for 5 minutes.
- 5. If required, then run the neutral CESI washing method and then the neutral CESI electrical conditioning method to condition the capillaries.
- 6. After 5 minutes, remove the sprayer from the CE Grade water.
- 7. Use lint-free wipes to dry the sprayer carefully.

Figure 12-4 Dry the Sprayer

- 8. Install the sprayer in the adapter on the mass spectrometer.
- 9. Remove the Falcon tube of CE Grade water from the holster, and discard the contents.

Contact Us

Customer Training

- In North America: NA.CustomerTraining@sciex.com
- In Europe: Europe.CustomerTraining@sciex.com
- Outside the EU and North America, visit sciex.com/education for contact information.

Online Learning Center

• SCIEX Now Learning Hub

Purchase Supplies and Reagents

Reorder SCIEX supplies and reagents online at store.sciex.com. To set up an order, use the account number, found on the quote, order confirmation, or shipping documents. Currently, customers in the United States, Canada, United Kingdom, Belgium, Netherlands, France, Germany, and Switzerland have access to the online store, but access will be extended to other countries in the future. For customers in other countries, contact a local SCIEX representative.

SCIEX Support

SCIEX and its representatives have a global staff of fully-trained service and technical specialists. They can supply answers to questions about the system or any technical issues that might occur. For more information, go the SCIEX website at sciex.com or use one of the following links to contact us.

- sciex.com/contact-us
- sciex.com/request-support

Cybersecurity

For the latest guidance on cybersecurity for SCIEX products, visit sciex.com/productsecurity.

Documentation

This version of the document supersedes all previous versions of this document.

To find software product documentation, refer to the release notes or software installation guide that comes with the software.

To find hardware product documentation, refer to the documentation that comes with the system or component.

The latest versions of the documentation are available on the SCIEX website, at sciex.com/ customer-documents.

Note: To request a free, printed version of this document, contact sciex.com/contact-us.