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Upper bounds for arithmetic–geometric index of graphs

I. Ž. Milovanović, M. M. Matejić, E. I. Milovanović

Abstract: Let G = (V,E), V = {1,2, . . . ,n}, be a simple connected graph with n vertices and
m edges and let d1 ≥ d2 ≥ ·· · ≥ dn > 0, be the sequence of vertex degrees. With i ∼ j we
denote the adjacency of the vertices i and j in graph G. With AG = ∑i∼ j

di+d j

2
√

did j
we denote

arithmetic–geometric topological index. In this paper we give some new upper bounds for this
topological index.
Keywords: Arithmetic–geometric index, Zagreb indices, multiplicative Zagreb indices.

1 Introduction

Let G = (V,E), V = {1,2, . . . ,n}, E = {e1,e2, . . . ,em}, be a simple connected graph with n
vertices and m edges, and let d1 ≥ d2 ≥ ·· · ≥ dn > 0, di = d(i), and d(e1)≥ d(e2)≥ ·· · ≥
d(em), be sequences of its vertex and edge degrees, respectively. We will use the following
notation: ∆ = d1, δ = dn, ∆e1 = d(e1)+ 2 and δe1 = d(em)+ 2. With i ∼ j we denote the
adjacency of the vertices i and j in graph G.

In [6] and [7] two vertex–degree–based topological indices, the first and the second
Zagreb indices, M1 and M2, were defined as

M1 = M1(G) =
n

∑
i=1

d2
i and M2 = M2(G) = ∑

i∼ j
did j.

Multiplicative variants of the Zagreb indices, the first and the second multiplicative
Zagreb indices, Π1 and Π2, are defined in [17] as

Π1 = Π1(G) =
n

∏
i=1

d2
i and Π2 = Π2(G) = ∏

i∼ j
did j.

Manuscript received November 12 2017; accepted May 14, 2018.
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The first multiplicative sum Zagreb index, Π∗
1, was introduced in [5]

Π∗
1 = Π∗

1(G) = ∏
i∼ j

(di +d j).

In [12] connectivity index, R, later called Randić index, was defined as

R = R(G) = ∑
i∼ j

1√
did j

.

Geometric–arithmetic topological index, GA, was introduced in [18]

GA = GA(G) = ∑
i∼ j

2
√

did j

di +d j
.

As an inverse variant of this topological index, in [15] arithmetic–geometric vertex–
degree–based topological index, AG, was defined as

AG = AG(G) = ∑
i∼ j

di +d j

2
√

did j
.

In the literature topological index GA was much more studied than AG index, see [2, 3,
4, 9, 14, 16]. In this paper we are interested in upper bounds on topological index AG.

2 Preliminary results

In this section we list some analytic inequalities for real number sequences that will be
needed in the subsequent considerations.

Let p = (pi) and a = (ai), b = (bi), i = 1,2, . . . ,m, be positive real number sequences
with the properties 0 < a ≤ ai ≤ A < +∞ and 0 < b ≤ bi ≤ B < +∞. In [1] the following
inequality was proven∣∣∣∣∣ m

∑
i=1

pi

m

∑
i=1

piaibi −
m

∑
i=1

piai

m

∑
i=1

pibi

∣∣∣∣∣≤ 1
4
(A−a)(B−b)

(
m

∑
i=1

pi

)2

. (1)

Let a = (ai), i = 1,2, . . . ,m, be a positive real number sequence. In [8] (see also [19])
the following inequality was proven(

m

∑
i=1

√
ai

)2

≤ (m−1)
m

∑
i=1

ai +m

(
m

∏
i=1

ai

) 1
m

. (2)
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Let a = (ai), i = 1,2, . . . ,m, be positive real number sequence. Then, for any real r,
r ≤ 0 or r ≥ 1, holds (see for example [10])

m

∑
i=1

ar
i ≥ m1−r

(
m

∑
i=1

ai

)r

. (3)

If 0 ≤ r ≤ 1, then opposite inequality in (3) is valid.
The inequality (3) in the literature is known as the Jensen’s inequality.
Let p = (pi) and a = (ai), i = 1,2, . . . ,m, be two positive real number sequences with

the properties

p1 + p2 + · · ·+ pm = 1 and 0 < a ≤ ai ≤ A <+∞.

In [13] (see also [11]) the next inequality was proven

m

∑
i=1

piai +aA
m

∑
i=1

pi

ai
≤ a+A. (4)

3 Upper bounds for AG

In the following theorem we establish an upper bound for invariant AG in terms of parame-
ters m, ∆e1 , δe1 and topological index R.

Theorem 3.1. Let G be a simple connected graph with n vertices and m ≥ 2 edges. Then

AG ≤ nm
2R

+
1
8

(√
∆e1 −

√
δe1

)2
R. (5)

Equality holds if and only if G is regular or biregular graph.

Proof For pi := 1√
did j

, ai = bi :=
√

di +d j, A = B =
√

∆e1 , a = b =
√

δe1 , where

summing is performed over all edges in graph G, the inequality (1) becomes

∑
i∼ j

1√
did j

∑
i∼ j

di +d j√
did j

−

(
∑
i∼ j

√
di +d j√

did j

)2

≤ 1
4

(√
∆e1 −

√
δe1

)2
(

∑
i∼ j

1√
did j

)2

,

i.e.

2R ·AG ≤

(
∑
i∼ j

√
di +d j√

did j

)2

+
1
4

(√
∆e1 −

√
δe1

)2
R2. (6)
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For r = 2, ai :=
√

di+d j
did j

, where summing is performed over all edges in graph G, the
inequality (3) transforms into(

∑
i∼ j

√
di +d j

did j

)2

≤ m∑
i∼ j

di +d j

did j
= mn.

According to this inequality and (6), follows

2R ·AG ≤ nm+
1
4

(√
∆e1 −

√
δe1

)2
R2,

wherefrom (5) is obtained.

�

Theorem 3.2. Let G be a simple connected graph with n vertices and m ≥ 2 edges. Then

AG ≤ 1
2R

(
m
(Π∗

1)
1
m

(Π2)
1
m
+n(m−1)

)
+

1
8

(√
∆e1 −

√
δe1

)2
R. (7)

Equality holds if and only if G is regular or biregular graph.

Proof For ai := di+d j
did j

, where summing is performed over all edges in graph G, the
inequality (2) becomes (

∑
i∼ j

√
di +d j

did j

)2

≤ m
(Π∗

1)
1
m

(Π2)
1
m
+n(m−1).

According to this inequality and (6), we get (7).

�

Theorem 3.3. Let G be a simple connected graph with m ≥ 2 edges. Then

AG ≤ (∆e1 +δe1)R
2

− m∆e1δe1

2(Π∗
1)

1
m (Π2)

1
2m
. (8)

Equality holds if and only if G is regular or biregular graph.

Proof For pi := 1
R
√

did j
, ai := di + d j, A = ∆e1 , a = δe1 , where summing is performed

over all edges in graph G, the inequality (4) becomes

∑
i∼ j

di +d j√
did j

+∆e1δe1 ∑
i∼ j

1√
did j(di +d j)

≤ (∆e1 +δe1)R,
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i.e.
2AG+∆e1δe1 ∑

i∼ j

1√
did j(di +d j)

≤ (∆e1 +δe1)R. (9)

Using the arithmetic-geometric mean inequality for real numbers (see e.g. [11]), we get

∑
i∼ j

1√
did j(di +d j)

≥ m

(Π∗
1)

1
m (Π2)

1
2m
.

From this inequality and the inequality (9), we arrive at (8).

�

In the following theorem we determine upper bound for invariant AG depending on the
parameters m, ∆ and δ .

Theorem 3.4. Let G be a simple connected graph with m ≥ 1 edges. Then

AG ≤ m
2

(√
∆
δ
+

√
δ
∆

)
.

Equality holds if and only if G is regular or biregular graph.

Proof Since
di +d j√

did j
=

√
di

d j
+

√
d j

di
≤
√

∆
δ
+

√
δ
∆
,

for any edge in graph G, it follows

AG = ∑
i∼ j

di +d j

2
√

did j
≤ m

2

(√
∆
δ
+

√
δ
∆

)
,

which completes the proof.

�

References

[1] D. ANDRICA, C. BADEA, Grüss’ inequality for positive linear functionals, Period. Math.
Hungar., 19 (1988), 155–167.
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