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1Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, 

Switzerland 

2Swiss Institute for Bioinformatics, CH-1005 Lausanne, Switzerland 

Abstract 

The remarkable plasticity of their architecture allows plants to adjust growth to the 

environment and to overcome adverse conditions. Two examples of environmental 

stresses that drastically affect shoot development are imminent shade and high 

temperature. Plants in crowded environments and plants in elevated ambient 

temperature display very similar phenotypic adaptations of elongated hypocotyls in 

seedlings and elevated and elongated leaves at later developmental stages. The 

comparable growth responses to shade and high temperature are partly regulated 

through shared signalling pathways, of which the phytohormone auxin and the 

phytochrome interacting factors (PIFs) are important components. During both 

shade- and temperature-induced elongation growth auxin biosynthesis and signalling 

are upregulated in a PIF-dependent manner. In this review we will discuss recent 

progress in our understanding of how auxin mediates architectural adaptations to 

shade and high temperature. 
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Abbreviations 

bHLH, basic Helix-Loop-Helix; IAA, Indole-3-Acetic Acid; NPA, 1-Naphthylphthalamic 

acid; phy, phytochrome; PIF, Phytochrome Interacting Factor; PIN, Pin-formed; 

SAUR, Small Auxin Up RNA; TAA1, Tryptophan Aminotransferase of Arabidopsis; 

YUC, YUCCA, flavin-containing monooxygenase 

Introduction 

The term auxin literally means ‘to grow’ and its role in cell division and elongation is 

well established. It is thus not surprising that auxin has emerged as an important 

regulator of adaptive growth responses to environmental stresses. Two such 

environmental stresses are vegetative shading and high temperature, which induce 

strikingly similar changes in shoot architecture. In Arabidopsis, they rapidly lead to 

elongated hypocotyls and petioles in seedlings and to hyponastic leaves with 

elongated petioles and reduced lamina size in adult plants (Gray et al. 1998; Casal 

2012; Crawford et al. 2012, Fig.1). In the long term, both vegetational shade and 

increased ambient temperature lead to early flowering as an ultimate escape 

response. It has become clear that the comparable growth responses to shade and 

increased temperature partly share signalling components, with a prominent role for 

auxin. However, as no role for auxin has been established in the regulation of 

flowering we have excluded the accelerated flowering response from this review. 
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The phenotypical adaptations to shade and increased temperature serve to bring the 

photosynthetic organs away from the stress. In the case of shade, neighbouring 

vegetation poses a threat to a plant’s light capture. When the presence of proximate 

neighbours is perceived, growth is rapidly diverted to elongation of hypocotyls, stems 

or internodes, thus bringing the photosynthetic organs higher up in the vegetation to 

avoid becoming overgrown (Casal 2012, Fig.1). These growth adaptations are costly, 

as a shade avoidance phenotype in the absence of dense vegetation leads to 

decreased biomass and reproduction (Casal and Smith 1989; Casal et al. 1994; 

Schmitt et al. 1995). However, in the presence of surrounding vegetation the shade 

avoidance response allows plants to compete with their neighbours and secure light 

capture. Consequently, plants that fail to respond to their neighbours have reduced 

fitness in dense stands and will eventually be out-competed (Ballare et al. 1988; 

Schmitt et al. 1995; Pierik et al. 2003; Keuskamp et al. 2010). The significance of the 

shade avoidance response is furthermore underlined by the fact that it is prioritised 

over defence, as shade-avoiding plants are more susceptible to pathogens and 

herbivorous insects (Moreno et al. 2009; Cerrudo et al. 2012; de Wit et al. 2013). 

The similar changes in plant architecture upon increased ambient temperature are 

thought to prevent high temperature damage to the leaves. Plants pre-grown at 28°C 

were cooler than plants pre-grown at 22°C when moved to 28°C, despite a lower 

number of stomata in high temperature-grown plants (Crawford et al. 2012). It was 

therefore suggested that the less compact shoot architecture and leaf hyponasty of 

Arabidopsis plants in high temperature facilitates transpiration and thus cools the 

leaves (Clum 1926; Radin et al. 1994; Crawford et al. 2012; Bridge et al. 2013). 
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Shade and temperature sensing 

Proximate vegetation may be perceived through volatiles and physical touch (Kegge 

and Pierik 2010; de Wit et al. 2012), but is mainly sensed by changes in the intensity 

and spectral composition of the light (reviewed in Vandenbussche et al. 2005; Casal 

2012). Red (R) and blue (B) light are depleted from the spectrum as they are 

absorbed for photosynthesis, while far-red (FR) light is reflected by plants. The 

primary signal through which plants perceive neighbours is the ratio of red to far-red 

(R:FR) light, which decreases even before actual shading occurs (Morgan and Smith 

1978; Morgan et al. 1980; Ballaré et al. 1990). Most laboratory studies use a 

decrease in R:FR to induce the shade avoidance response by supplementing the 

background light with FR. Therefore we will focus on the plant response to this early 

neighbour detection signal without a decrease in blue light or light intensity in this 

review. 

The R:FR is perceived through a set of phytochrome (phy) photoreceptors, which 

exist in two photoconvertible conformation states: the active, FR-absorbing form (Pfr) 

and the inactive, R-absorbing form (Pr). When the R:FR decreases, the phytochrome 

photoequilibrium shifts to the inactive form and thus acts as a sensor for light 

qualitative changes (Holmes and Smith 1975; Smith and Holmes 1977). Among the 

different phytochromes (phy A-E in Arabidopsis), phyB is the main phytochrome 

triggering the shade avoidance response in Arabidopsis (Franklin et al. 2003). 

Phytochromes are present in all plant tissues but not all tissues are equally 

responsive to a low R:FR signal (Sharrock 2008). In Sinapis alba (white mustard) 

both local FR irradiation of the stem and the primary leaves increased internode 

elongation, but the induction was faster when the stems were irradiated (Morgan et 
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al. 1980). In a FR-responsive Arabidopsis reporter line GUS expression was strongly 

induced in the hypocotyl both when the whole seedlings or only the cotyledons were 

treated with FR, whereas this was not the case when only the lower part of the 

hypocotyl was irradiated (Tanaka et al. 2002). Similarly, petiole elongation of adult 

Arabidopsis leaves was enhanced when the leaf lamina were locally treated with FR, 

but not when the petioles were irradiated (Kozuka et al. 2010). It thus appears that in 

Arabidopsis the cotyledons and at a later stage leaf lamina are the primary 

perception site of the low R:FR neighbour detection signal (Bou-Torrent et al. 2008). 

A rise in ambient temperature could be sensed at different levels and it is likely that 

different temperature sensing mechanisms operate simultaneously. Temperature 

may be perceived through increased fluidity of the plasma membrane and associated 

activation of ion channels and lipid signalling, through changes in protein structure or 

through ROS accumulation (as reviewed in Mittler et al. 2012). In this review we 

focus on the temperature response to a relatively mild increase in ambient 

temperature from around 20°C to temperatures still below 30°C. Unlike the classical 

heat stress response that is usually studied at temperature shifts to above 40°C, this 

milder increase in temperature leads to a moderate increase of typical heat stress 

markers (Saidi et al. 2005; Balasubramanian et al. 2006). A temperature-sensing 

mechanism that has been proposed in the context of mildly elevated ambient 

temperature (27°C) depends on chromatin accessibility through temperature-

mediated occupancy of the H2A.Z histone in nucleosomes, which wraps DNA tightly. 

It was shown that at high temperature H2A.Z nucleosome occupancy declined at the 

promoters of temperature-responsive genes, thereby rendering the chromatin more 

accessible for transcriptional regulators (Kumar and Wigge 2010). 
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Where temperature is perceived in the plant is not known. In a relatively small plant 

as Arabidopsis that lacks thick structures temperature changes might be perceived in 

all tissues. In apple trees it has been shown that increased root temperature can 

induce bud break (Greer et al. 2006), indicating that in bigger species local 

temperature perception can evoke a systemic signal that leads to a response in distal 

tissues. 

Although perception of shade and increased temperature is different, both stress 

signals employ the auxin pathway to redirect growth drastically to adapt to adverse 

conditions. The great majority of studies concerning the role of auxin in these 

responses have been done with young seedlings of Arabidopsis, using hypocotyl 

elongation as a convenient read-out of the growth response. Inhibition of different 

steps of the auxin pathway through mutations or pharmacological treatments affects 

both shade- and temperature-induced hypocotyl elongation (Gray et al. 1998; 

Steindler et al. 1999; Tao et al. 2008). In the next section we will discuss the known 

signalling steps that link auxin to the shade avoidance- and high temperature growth 

responses. For a succinct summary of the auxin pathway (biosynthesis, transport 

and response) we refer to Box 1 and references therein. 

The auxin pathway in the shade- and high temperature response 

Localisation of auxin action depends both on increased biosynthesis and polar auxin 

transport (Morelli and Ruberti 2000; Benjamins and Scheres 2008). All parts of 

Arabidopsis seedlings are able to produce auxin, with the highest synthesis capacity 

and auxin concentrations in young dividing leaves (Ljung et al. 2001). Inhibition of 
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auxin transport prevents induction of the auxin reporter DR5::GUS in the hypocotyls 

but not in the cotyledons of low R:FR-treated seedlings (Tao et al. 2008). This 

suggests that shade induces auxin production mainly in the cotyledons and that 

auxin is then transported to the hypocotyl to promote elongation growth (Fig. 2). In 

increased temperature, induction of the auxin biosynthesis genes YUC8 and YUC9 

was shown to be stronger in cotyledons than in hypocotyls (Stavang et al. 2009), 

which may indicate that also during high temperature stress the cotyledons are the 

main auxin source. Interestingly, for shade avoidance the site of signal perception 

coincides with the site of stress-induced auxin production, which may also be the 

case in response to increased temperature. 

Auxin production 

Auxin accumulates in seedlings within one hour in response to a decreased R:FR 

ratio or a transfer from 22 to 28°C (Tao et al. 2008; Franklin et al. 2011; Li et al. 

2012; Sun et al. 2012; Hornitschek et al. 2012). Increased auxin levels were also 

found in hypocotyls after two days of low R:FR treatment (Keuskamp et al. 2010). 

However, in leaves of adult plants treated with end-of-day FR, a treatment that 

mimics the shade avoidance response, no increase in auxin concentration was found 

(Kozuka et al. 2010). 

Auxin accumulation in seedlings in shade or increased temperature is due to an 

increase in auxin production. The predominant biosynthesis pathway in both 

responses is the TAA1-YUC -dependent route (Tao et al. 2008, Fig. 2). Other 

pathways may be involved additionally, as appears to be the case for the CYP79B2 

pathway in elevated temperature (Franklin et al. 2011). In accordance with a central 
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role for auxin, the sav3/taa1 mutant that does not accumulate TAA1 protein is 

strongly impaired in hypocotyl elongation in response to shade and increased 

temperature (Tao et al. 2008, Fig. 1). Adult sav3/taa1 plants show a strong reduction 

in shade-induced leaf hyponasty and petiole elongation and have a less pronounced 

reduction in leaf area in simulated shade (Tao et al. 2008; Moreno et al. 2009, Fig. 

1), indicating that TAA1 is also important for shade avoidance responses at later 

developmental stages. Despite its obvious relevance for the response to shade and 

high temperature, TAA1 is not the rate-limiting step in auxin production since its over-

expression does not phenocopy plants with increased auxin content (Tao et al. 

2008). Furthermore, TAA1 expression seems to be regulated in certain conditions in 

response to higher temperatures, while its expression decreased in response to two 

hours of low R:FR (Tao et al. 2008; Franklin et al. 2011; Nomoto et al. 2012). 

Although TAA1 may be regulated at the level of protein activity, it rather seems that 

auxin production in response to shade and increased temperature is boosted through 

induced expression of YUCCA (YUC) genes. Consequently, YUC1 overexpression 

can rescue the short hypocotyl of the sav3/taa1 mutant under shade conditions (Won 

et al. 2011). There are eleven YUC genes, which catalyse auxin biosynthesis 

downstream of TAA1 (Zhao et al. 2001; Won et al. 2011). Several YUCs are strongly 

and rapidly induced in response to shade and increased temperature (Tao et al. 

2008; Stavang et al. 2009; Sun et al. 2012; Brandt et al. 2012), but their exact 

contribution to auxin production in these responses is still unknown. YUC8 

expression is upregulated in high temperature and the yuc8 mutant has reduced 

hypocotyl elongation compared to wild type when transferred to 29°C (Sun et al. 

2012). In response to low R:FR YUC2, YUC5, YUC8 and YUC9 are strongly induced 

(Tao et al. 2008; Won et al. 2011; Li et al. 2012; Brandt et al. 2012). However, shade-
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induced hypocotyl elongation was only slightly reduced in the quintuple yuc35789 

mutant. This mild phenotype may indicate that the YUCs act redundantly as this 

mutant can still express YUC2 in response to shade (Li et al. 2012). The yuc1yuc4 

double mutant on the other hand has a sav3/taa1-resembling phenotype in shade 

(Won et al. 2011). 

Auxin transport 

The main source of newly synthesised auxin is assumed to be in the 

cotyledons/lamina and shoot apical meristem while it may be required in distal plant 

parts to affect growth. Therefore, auxin transport is an important component of the 

auxin pathway. Blocking auxin transport using the inhibitor of polar auxin transport 1-

naphthylphthalamic acid (NPA) inhibits hypocotyl elongation in response to shade 

(Steindler et al. 1999; Tao et al. 2008; Keuskamp et al. 2010). Correspondingly, 

reduced hypocotyl elongation in low R:FR was also observed in a pin3 mutant that is 

affected in polar auxin transport (Keuskamp et al. 2010). In response to low R:FR 

PIN3 protein was furthermore shown to relocate from a basal to a lateral location in 

the endodermis (Keuskamp et al. 2010). This supports a previously proposed model 

in which the root-ward auxin flux is redirected to a more lateral auxin distribution to 

regulate growth in the hypocotyl (Morelli and Ruberti 2000). Consistently, the auxin-

responsive reporter line IAA19::GUS showed a more lateral expression pattern in 

petioles of low R:FR-treated plants (Pierik et al. 2009). NPA treatment also eliminates 

high temperature-induced hypocotyl elongation, indicating that auxin transport is also 

required for the response to increased temperature (Gray et al. 1998; Stavang et al. 

2009). 
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Auxin perception and signalling 

Auxin is perceived by nuclear receptors of the TIR/AFB family and targets the 

transcriptional inhibitors called IAA proteins for degradation through the 26S 

proteasome (Box 1). Inactivation of the receptors by mutations or chemical 

treatments with competitive inhibitors strongly reduces hypocotyl elongation in 

response to shade and increased temperature (Gray et al. 1998; Keuskamp et al. 

2010). This reduced response is also observed in plants expressing a dominant-

negative mutation of IAA protein, in which inhibition of auxin-mediated responses is 

correlated with a stabilised IAA (Gray et al. 1998; Sun et al. 2012)). This suggests 

that turnover of IAAs plays a role in auxin-dependent growth regulation. 

Auxin-regulated responses 

IAA degradation and ARF activation (Box 1) leads to the induction of auxin-

responsive genes. Transcriptomic analysis of the shade and high temperature 

responses revealed that auxin-responsive genes are strongly enriched among the 

induced genes (Devlin et al. 2003; Sessa et al. 2005; Tao et al. 2008; Stavang et al. 

2009; Kozuka et al. 2010; Li et al. 2012; Hornitschek et al. 2012). There are several 

known mechanisms through which this auxin-driven gene induction affects stress-

related growth. 

One way is through activation of different components of its own pathway. 

Upregulation of PIN3 and PIN7 is likely to reinforce auxin transport towards sites of 

growth besides previously mentioned PIN relocalisation (Devlin et al. 2003; 

Page 12 of 38Physiologia Plantarum

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



13

Keuskamp et al. 2010). Expression of several small auxin up RNAs (SAURs) is 

strongly induced in response to both shade and increased temperature. A few hours 

of shade was shown to induce SAUR19, SAUR21, SAUR23 and SAUR24 in the 

basal part of hypocotyls (Spartz et al. 2012). SAUR19, SAUR23 and SAUR24 are 

also induced in the hypocotyl elongation zone after a few days of elevated 

temperature (Franklin et al. 2011). The corresponding proteins were recently 

proposed to be positive regulators of hypocotyl elongation possibly through 

modulation of auxin transport (Spartz et al. 2012; Chae et al. 2012). Plants 

expressing a miRNA targeting the SAUR61SAUR68 subfamily showed only slightly 

reduced hypocotyl length, while plants expressing GUS or GFP fusions to SAUR63 

had longer hypocotyls and increased basipetal auxin transport (Chae et al. 2012). 

Similarly, expression of a GFP fusion with SAUR19 increased leaf size and cell and 

hypocotyl length (Spartz et al. 2012), suggesting that a GUS/GFP fusion leads to 

SAUR stabilisation and a subsequent gain-of-function phenotype. The absence of 

strong phenotype in saur loss-of-function mutants could be due to redundancy of the 

different family members (Chae et al. 2012). In parallel to genes that promote 

elongation, genes participating in a negative feedback are also activated. This is the 

case for the induction of the IAAs, which may have a role in preventing exaggerated 

responses rather than promoting growth. 

Auxin also controls other hormonal pathways to coordinate growth. Exogenous auxin 

treatment activates several genes (GA20OX1, GA20OX2, GA2OX8, GA3OX1) in the 

gibberellin (GA) biosynthesis pathway, which is required for hypocotyl growth and 

enhanced elongation in response to both shade and increased temperature 

(Djakovic-Petrovic et al. 2007; Chapman et al. 2012). Binding of GA to its receptor 
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leads to degradation of the growth-inhibiting DELLA proteins (Fu et al. 2004; 

Ueguchi-Tanaka et al. 2005). The DELLA protein RGA was found to bind to the 

transcriptional activators phytochrome interacting factor (PIF) 3 and 4 (see below) 

and to thereby prevent their transcriptional activity (Feng et al. 2008; de Lucas et al. 

2008). Activation of the GA pathway by auxin leads to degradation of RGA both in 

shade and high temperature (Djakovic-Petrovic et al. 2007; Stavang et al. 2009), thus 

releasing the PIFs to promote growth. Another hormonal pathway affected by auxin is 

the cytokinin pathway. Shade induces the expression of the cytokinin oxidase-coding 

gene (CKX6) (Carabelli et al. 2007), which likely triggers cytokinin degradation. This 

leads to inhibition of leaf primordium growth through reduced cell division, a 

phenotype that is not observed in the tir1 mutant (Carabelli et al., 2007). A similar 

hormonal interaction may cause the reduced leaf blade expansion in shade. 

Independently of gene expression, auxin rapidly activates proton pumps (H+-

ATPase), which leads to acidification of the apoplast (Takahashi et al. 2012). An 

acidic pH in the apoplast increases the activity of cell wall-degrading enzymes such 

as expansins and xyloglucan endotransglucosylase/hydrosylases (XTHs) that is 

necessary to loosen the cell walls and to allow for elongation. Apart from its effect on 

cell wall loosening through apoplast acidification, auxin treatment also induces the 

expression of several EXPANSIN and XTH genes (Chapman et al. 2012). 

Accordingly, expression of several XTH genes as well as xyloglucan degrading 

activity is upregulated in shade-treated petioles of adult plants (Sasidharan et al. 

2010). Increased expression and activity of a certain XTH may not make it essential 

for growth (Kaewthai et al. 2013) and redundancy among the many XTHs may exist. 
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Nevertheless, xth15 and xth17 single mutants show reduced petiole elongation in 

response to shade (Sasidharan et al. 2010). 

Shade and temperature control of the auxin pathway 

Besides auxin temperature and shade responses both depend on members of the 

phytochrome interacting factors (PIFs), bHLH transcription factors that recently 

appeared as central regulators of growth adaptation to the environment (Leivar and 

Quail 2011; Proveniers and Van Zanten 2013). PIFs were originally described as 

proteins interacting with the active form of the phytochromes, but it has now become 

clear that they play a more general role in growth responses. Plants overexpressing 

PIF4 or PIF5 phenocopy shade-grown plants with elongated petioles and hypocotyls 

while the corresponding mutants present a reduced response to low R:FR (Lorrain et 

al. 2008). Interestingly, different PIFs are involved in different responses. Adaptation 

to increased temperature depends exclusively on PIF4, as a pif4 mutant shows 

neither hypocotyl/petiole elongation nor leaf hyponasty at 29°C (Koini et al. 2009, Fig. 

1). In response to low R:FR PIF7 seems to be the predominant regulator, as pif7 

seedlings show strongly reduced hypocotyl elongation in response to low R:FR (Li et 

al. 2012, Fig. 1). PIF4 and PIF5 are also required for a full response to shade 

particularly under low light with PIF4 acting predominantly on hypocotyl elongation 

and PIF5 on gene expression (Lorrain et al. 2008; Keller et al. 2011; Leivar et al. 

2012). Other members of the PIF family also moderately contribute to the shade 

avoidance response such as PIF1 and PIF3 (Leivar et al.  2012). 
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How the PIFs are regulated by environmental signals is better understood for shade 

than for high temperature. As proteins interacting with phytochromes PIFs are the 

perfect sensors to integrate changes in the R:FR ratio. Interaction with the 

phytochromes mediates PIF phosphorylation and/or degradation, while inactivation of 

the phytochromes in low R:FR releases their repression and allows the PIFs to act as 

transcriptional regulators (Lorrain et al. 2008; Li et al. 2012). At elevated 

temperatures, increased PIF4 expression in the cotyledons has been reported (Koini 

et al. 2009; Stavang et al. 2009; Nomoto et al. 2012) especially during the dark 

period (Nomoto et al. 2012), which leads to increased PIF4 levels (Yamashino 2013). 

Whether the rise in PIF4 levels in response to temperature elevation is exclusively a 

transcriptional response or also includes post-transcriptional regulation is still 

debated (Stavang et al. 2009; Kumar et al. 2012; Foreman et al. 2011). Shade and 

temperature also control PIF accessibility to DNA through dimerization that inhibits 

DNA binding (see before with DELLA and below with HFR1) and possibly through 

changes in DNA structure. The temperature-mediated eviction of H2A.Z from 

nucleosomes could facilitate PIF4 binding to promoters of growth-promoting genes, 

as is the case for PIF4 binding to FLOWERING LOCUS T in temperature-induced 

flowering (Kumar et al. 2012). 

The impaired response of pif mutants to shade or increased temperature correlates 

with impaired auxin production in response to these signals (Franklin et al. 2011; Li et 

al. 2012; Sun et al. 2012; Hornitschek et al. 2012). The expression of auxin-

responsive genes is also affected in pif mutants (Nozue et al. 2011; Li et al. 2012; 

Leivar et al. 2012; Hornitschek et al. 2012). For instance, shade- and temperature-

induced expression of IAA29 is strongly reduced in the pif4 mutant (Hornitschek et al. 
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2009; Koini et al. 2009; Nozue et al. 2011; Franklin et al. 2011; Sun et al. 2012; 

Hornitschek et al. 2012). Furthermore, the pif7 transcriptome after one hour in low 

R:FR is similar to the one of sav3/taa1 (Li et al. 2012), which suggests that auxin is 

the driving force for hypocotyl elongation in low R:FR. Chromatin 

immunoprecipitation experiments have shown that TAA1 and several YUCs are 

direct target genes of PIF4, PIF5 and PIF7 (Li et al. 2012; Sun et al. 2012; 

Hornitschek et al. 2012). In response to 29°C, PIF4 also targets another auxin 

biosynthesis pathway through CYB79B2 (Franklin et al. 2011). PIF-mediated auxin 

production may therefore explain how these transcription factors promote growth in 

response to changes in temperature or light. Manipulating the auxin pathway can 

rescue temperature and shade responses when PIF activity is disturbed. Hypocotyls 

of pif4 mutants do elongate in response to increased temperature when SAUR19 is 

over-expressed and application of the auxin analogue picloram can restore the 

response to low R:FR in the pif7 mutant (Franklin et al. 2011; Li et al. 2012). 

Conversely, the long hypocotyl of a PIF4 overexpressing line is reduced when YUC8 

is mutated or the auxin signalling pathway is inhibited by a dominant-negative version 

of IAA3 (Sun et al. 2012). 

Auxin production is not the only step in the auxin pathway controlled by the PIFs. 

PIF4 and PIF5 can also target genes affected in auxin signalling (such as IAA19, 

IAA29), auxin transport (such as PIN3) and auxin inactivation (such as GH3.3) 

(Hornitschek et al. 2012; Oh et al. 2012). Correspondingly, the pif4pif5 double mutant 

is affected in auxin sensitivity (Nozue et al. 2011; Hornitschek et al. 2012). PIF4, 

PIF5 and PIF7 are however not required for the induction of auxin-responsive genes 

in all conditions, since auxin treatment still induces a robust expression of some of 

these marker genes in pif mutants (Li et al. 2012; Chapman et al. 2012; Hornitschek 
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et al. 2012). This is paralleled by data from Chapman et al. (2012) showing that early 

hypocotyl responses to picloram treatments are indistinguishable from wild type in 

the pif4pif5 double mutant. 

Shade induces an extensive transcriptional network comprising both positive and 

negative regulators of elongation growth that also affect auxin signalling (Sessa et al. 

2005). Among these genes is a set of atypical basic helix-loop-helix (bHLH) 

transcription factors such as HFR1, PAR1 and PAR2 that inhibit the shade avoidance 

response (Sessa et al. 2005; Roig-Villanova et al. 2007). These bHLHs lack the 

typical E and G-Box DNA-binding domain, but act as transcriptional co-regulators by 

inhibiting DNA-binding of PIF4 and PIF5 through the formation of heterodimers with 

the PIFs (Hornitschek et al. 2009; Galstyan et al. 2011; Hao et al. 2012). HFR1 and 

PAR1 can also form heterodimers with the HLHs KDR and PRE1, respectively, which 

interferes with PIF heterodimerization and thus counteracts the inhibiting action of 

HFR1 and PAR1 on the PIFs (Hao et al. 2012; Hong et al. 2013). This reveals a 

complex competitive network of HLH/bHLH transcription factors that may be 

employed to tightly control the growth responses. Plants overexpressing PAR1 have 

an impaired shade-avoidance response and a reduced response to elevated 

temperature (Hao et al. 2012), suggesting that a similar network of repressors and 

enhancers might be at play during high temperature signalling. 

Another group of genes rapidly induced by shade is the homeodomain-leucine zipper 

(HD-ZIP) class II transcription factors such as ATHB2 and ATHB4, which can form an 

intricate regulatory network (Steindler et al. 1999; Ciarbelli et al. 2008; Sorin et al. 

2009). More recently, the HD-ZIPIII REVOLUTA (REV) was shown to induce the 

expression of ATHB2 and ATHB4 in shade and to be required for shade-induced 
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hypocotyl elongation (Brandt et al. 2012). Moreover, it was shown that REV can 

regulate the expression of YUC5 and thus seems to be directly linked to auxin. REV 

could indeed induce auxin levels and its overexpression could partially restore low 

R:FR-induced hypocotyl elongation in the sav3/taa1 mutant (Brandt et al. 2012). 

Integrating light and temperature signals 

Light and temperature provide important information about the environment, time of 

day and season that together coordinate plant growth and developmental stage 

transition. Furthermore, light and temperature are both important input signals for the 

circadian clock, as both day/night and temperature cycles can be used to entrain the 

clock. Therefore, it is perhaps not so surprising that both signals feed into the same 

growth pathway. Moreover, the plant’s response to one of the signals can be affected 

by the other. 

A clear example of such interaction between shade and temperature was shown in 

Abutilon theophrasti. Plants grown at 26/20°C (d/n) showed longer hypocotyl 

elongation in response to simulated shade than plants grown at 18/16°C (Weinig 

2013), indicating that shade and high temperature can have an additive effect on 

growth. Similarly, high temperature-induced hyponasty was enhanced in low light 

intensity as compared to higher light intensity (Vasseur et al. 2011). Interestingly, 

plants grown at 16°C show a reversed response to low R:FR with no petiole 

elongation and increased leaf expansion and biomass (Patel et al. 2013), suggesting 

that temperature has a major impact on the eventual growth output of the shade 

avoidance signalling pathway. 
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Conversely, light also affects plant responses to changes in temperature. Many 

temperature-induced responses (flowering, bud break, thermotolerance) are known 

to integrate signal input over a longer period, in which light-derived information on for 

instance day length may also play a role. It was shown that low R:FR can induce 

expression of the CBF regulon that is involved in freezing acclimation (Franklin and 

Whitelam 2007). As the R:FR also decreases during twilight, plants may use the 

information on shorter day length and longer twilight periods to prepare for 

subsequent temperature stress. Interestingly, PIF4 and PIF7 were found to be 

negative regulators of the CBF-component DRE-Binding (DREB)1, indicating that 

shade and temperature signalling pathways may directly interact (Kidokoro et al. 

2009; Lee and Thomashow 2012). Importantly, the shade induction of the CBF 

regulon and PIF repression of DREB1 expression are regulated by the circadian 

clock and day length. This might be a way for plants to distinguish between seasonal 

fluctuations and unusual stress situations. 

Similar to the response to cold, light responses are also gated by the circadian clock. 

For shade, it has been shown that plants are most responsive in terms of hypocotyl 

elongation to a short period (2h) of low R:FR when applied towards the end of the 

photoperiod (Salter et al. 2003; Sellaro et al. 2012). PIF4 and PIF5 are crucial for 

rhythmic growth promotion and their circadian expression is regulated both by light 

and temperature (Nozue et al. 2007; Nomoto et al. 2012). In diurnal cycles, the 

evening complex ELF3-ELF4-LUX regulates the rhythmic expression of PIF4 and 

PIF5 (Nusinow et al. 2011). The coincidence of high transcript levels induced by the 

evening complex and PIF protein accumulation in the dark leads to growth promotion 

at the end of the night during normal growth (Nozue et al. 2007). Although during 
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shade avoidance mechanisms exist to regulate PIF abundance (phyB inactivation, 

DELLA degradation) this circadian PIF abundance may cause the gating of 

responsiveness to the stress signal. However, the pif4pif5 mutant as well as mutants 

in the evening complex retained the gated shade response (Sellaro et al. 2012). This 

indicates that there is not a direct link between diurnal PIF4/PIF5 levels and gating 

for the shade avoidance response. One possibility is that clock gating of shade 

avoidance is due to PIF7, which appears to be the predominant PIF in shade 

avoidance. Auxin levels, signalling and responsiveness show oscillations that 

coincide with hypocotyl growth rhythms (Covington and Harmer 2007; Michael et al. 

2008; Rawat et al. 2009; Nozue et al. 2011). The gated shade avoidance response to 

afternoon shade was also found to coincide with stronger responsiveness to 

exogenous auxin, but unlike the shade response this gated auxin responsiveness 

was affected in clock mutants (Sellaro et al. 2012). Although perhaps not induced by 

the same stimulus, it thus seems that circadian oscillations of the auxin pathway 

create a window of opportunity to allow for growth-related responses. 

Altogether, auxin appears to be an important signal integrator that determines plant 

architecture in a complex environment. Although a number of important elements 

linking environmental sensing to auxin-mediated growth responses have been 

identified we still have a rather poor understanding of how perceived signals are 

integrated at the level of the whole organism. Besides strong evidence for induced 

auxin production there are indications that auxin sensitivity is also increased in 

response to stress. Whether sites of auxin production and auxin action overlap or are 

spatially separated, and how changes in sensitivity are regulated remains elusive. 

Currently available molecular tools will provide exciting new insight into spatio-
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temporal aspects of signal transduction and tissue-specific responses and further our 

understanding of auxin-mediated stress responses. 
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Figure legends 

Figure 1. Phenotypes of Col-0 and the auxin biosynthesis mutant sav3/taa1 

seedlings and adult plants (A) and of various adult pif mutant plants (B) in control 

conditions, low R:FR and increased temperature. PIF7 is the predominant PIF 

regulating the shade response, whereas the response to elevated temperature is 

mainly regulated by PIF4. 

Figure 2. Model of shade- and high temperature-induced auxin signalling in an 

Arabidopsis seedling. Both low R:FR and high temperature lead to a PIF-induced 

increase of auxin production through the TAA1-YUC pathway (see Box 1) in the 

cotyledons. Inactivation of PhyB in low R:FR leads to stabilisation of PIF4 and PIF5 

and to dephosphorylation of PIF7. The relieved PhyB suppression of the PIFs allows 

them to bind to their targets, among which are the YUCCA auxin biosynthesis genes. 

During perception of elevated ambient temperature PIF4 mediates auxin biosynthesis 

through the TAA1-YUC pathway and the CYP79B2 pathway. Auxin is transported 

from the cotyledons to the hypocotyl, where PIF4 and PIF5 possibly play a role in 

enhanced auxin sensitivity. Auxin is laterally distributed by PIN proteins, eventually 

leading to enhanced hypocotyl elongation. Red colour: regulation in high 

temperature, blue colour: regulation in low R:FR, purple colour: regulation in both 

high temperature and low R:FR. 
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BOX1 

Auxin is mainly synthesized from its precursor L-Trp through different 

pathways in the cytosol (reviewed by Ljung 2013). Of these, the pathway 

depending on the aminotransferase TAA1 for conversion to IPyA and on 

the YUCCA enzymes for subsequent conversion to IAA has recently 

emerged as a major pathway in Arabidopsis (Stepanova et al. 2008; Tao et 

al. 2008; Mashiguchi et al. 2011; Won et al. 2011). Its negative charge 

prevents auxin diffusion out of the cell, therefore it needs to be transported 

through the cell membrane via the PIN and ABCB families of efflux carrier 

proteins (reviewed by Zazímalová et al. 2010). In the low pH of the 

apoplastic environment auxin becomes protonated and in this less polar 

form it can enter cells through diffusion. Auxin can furthermore be 

transported into the cell through the AUX1/LAX family of influx carriers 

(reviewed by Swarup and Péret 2012). Auxin is perceived in the nucleus, 

where it binds to the F-box TIR/AFB family of auxin receptors. This 

stimulates degradation of the Aux/IAA repressor proteins, which relieves 

their repression of the ARF transcriptional regulators (reviewed by 

Benjamins and Scheres 2008). ABP1 is believed to be another, membrane-

bound, auxin receptor. It appears to play an important role in cell expansion 

during leaf growth (reviewed in Perrot-Rechenmann 2010), and may 

therefore be involved in the auxin-dependent growth responses to shade 

and high temperature. 

Page 36 of 38Physiologia Plantarum

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



control

low R:FR

28 °C

Col-0 sav3Col-0 sav3 pif7pif4 pif4pif7

A B

Page 37 of 38 Physiologia Plantarum

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

TAA1

auxin	
  

auxin	
  

PIF4,	
  
PIF5	
  

Hypocotyl	
  elonga6on	
  

auxin	
  

PIF4,	
  
PIF5	
  

Hypocotyl	
  elonga6on	
  

PIF4	
  
PIF5	
  
PIF7	
  

auxin	
  

YUCs	
  

PINs	
  

High	
  R:FR	
  

Low	
  R:FR	
  Ambient	
  temperature	
  

Trp	
  

IPA	
  

Pr	
   Pfr	
  

High	
  temperature	
  

IAOx	
  

CYP79B2	
  

PIF4	
  
PIF5	
  
PIF7	
  

Trp	
  

Pr	
  Pfr	
  

IAOx	
  

CYP79B2	
  
TAA1

YUCs	
  

IPA	
  

Page 38 of 38Physiologia Plantarum

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


	Serveur Académique Lausannois SERVAL serval.unil.ch
	Author Manuscript
	Faculty of Biology and Medicine Publication
	Published in final edited form as:

