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Abstract

Genome-wide association studies (GWAS) and predictive genomics have become

increasingly important in genetics research over the past decade. GWAS involves the

analysis of the entire genome of a large group of individuals to identify genetic variants

associated with a particular trait or disease. Predictive genomics combines information

from multiple genetic variants to predict the polygenic risk score (PRS) of an individual

for developing a disease.

Machine learning is a branch of artificial intelligence that has revolutionized various

fields of study, including computer vision, natural language processing, and robotics.

Machine learning focuses on developing algorithms and models that enable comput-

ers to learn from data and make predictions or decisions without being explicitly pro-

grammed. Deep learning is a subset of machine learning that uses deep neural networks

to recognize patterns and relationships.

In this dissertation, we first compared various machine learning and statistical

models for estimating breast cancer PRS. A deep neural network (DNN) was found

to be the most effective, outperforming other techniques such as BLUP, BayesA, and

LDpred. In the test cohort with 50% prevalence, the receiver operating characteristic

curves area under the curves (ROC AUCs) were 67.4% for DNN, 64.2% for BLUP,

64.5% for BayesA, and 62.4% for LDpred. While BLUP, BayesA, and LDpred generated

PRS that followed a normal distribution in the case population, the PRS generated by

DNN followed a bimodal distribution. This allowed DNN to achieve a recall of 18.8%

at 90% precision in the test cohort, which extrapolates to 65.4% recall at 20% precision

in a general population. Interpretation of the DNN model identified significant variants

that were previously overlooked by GWAS, highlighting their importance in predicting

breast cancer risk.

We then developed a linearizing neural network architecture (LINA) that provided

first-order and second-order interpretations on both the instance-wise and model-wise

xiii



levels, addressing the challenge of interpretability in neural networks. LINA outper-

formed other algorithms in providing accurate and versatile model interpretation, as

demonstrated in synthetic datasets and real-world predictive genomics applications, by

identifying salient features and feature interactions used for predictions.

Finally, it has been observed that many complex diseases are related to each other

through common genetic factors, such as pleiotropy or shared etiology. We hypoth-

esized that this genetic overlap can be used to improve the accuracy of polygenic

risk scores (PRS) for multiple diseases simultaneously. To test this hypothesis, we

propose an interpretable multi-task learning approach based on the LINA architec-

ture. We found that the parallel estimation of PRS for 17 prevalent cancers using a

pan-cancer MTL model was generally more accurate than independent estimations for

individual cancers using comparable single-task learning models. Similar performance

improvements were observed for 60 prevalent non-cancer diseases in a pan-disease MTL

model. Interpretation of the MTL models revealed significant genetic correlations be-

tween important sets of single nucleotide polymorphisms, suggesting that there is a

well-connected network of diseases with a shared genetic basis.

xiv



Chapter 1

Introduction

In this section, I discuss various concepts and methods that will be used later. First,

we will talk about machine learning, then we will introduce the necessary genomics

knowledge.

1.1 Machine Learning (ML)

Machine Learning is a subfield of Artificial Intelligence (AI) where machines learn a

task without being explicitly programmed for it, according to Arthur Samuel (El Naqa

and Murphy, 2015). In machine learning, models are created using algorithms that can

learn from data and make predictions or decisions based on that data. The models are

trained on historical data, and the goal is to make accurate predictions or decisions

about new, unseen data.

1.1.1 Types of Machine Learning

In this subsection, we introduce the different types of machine learning.

1.1.1.1 Supervised Learning

Supervised learning takes a dataset with features and labels as input and learns their

relationships, as shown in Figure 1.1.

1



Training supervised learning 
algorithm

Training a supervised learning algorithm

Dog

Cat

supervised learning 
algorithm

?

?

Dog

Cat
Prediction

Making Predictions

Figure 1.1: Supervised learning algorithm trained to predict if an image is
a cat or a dog. The top of the picture shows what the algorithm is learning from.
The bottom of the picture highlights the prediction task after the training phase: The
algorithm takes unlabeled images, possibly containing a dog or a dog, and predicts a
label for each of them.
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More formally, let define D = {(x1, y1), ..., (xi, yi), .., (xN , yN)} a dataset of size

N . xi is a feature vector of dimension dx, and yi its label. Let X be a matrix of

feature vectors and Y a vector of labels, continuous or discrete. It is assumed that a

relationship between X and Y exists. Let F be a model that has the capacity to learn

the conditional probability P (Y |X) and G a model that can learn the joint distribution

P (Y,X). In a supervised learning setup, the goal of F is to satisfy best a penalty

function that models the bias/variance trade-off (Figure1.2), while G empirically seeks

the function that best fits the training data.

Accurate learning of the relationships is measured by a loss function:

Losstotal =
N∑
i=0

Li(yi,M(xi))

where M is the model and M(xi) is the score predicted by the model.

1.1.1.2 Unsupervised Learning

Unsupervised learning takes as input a dataset D = {(x1), ..., (xi), .., (xN)} without

any label. Unlike supervised learning, where the algorithm is guided to represent a

specific relationship between X and Y , the unsupervised learning algorithm needs to

figure out by itself what relationship it needs to make inside the dataset and create its

own labels, as demonstrated in Figure 1.3.

In this dissertation, we will focus on supervised learning.

1.1.2 Regression vs Classification

The supervised learning problems are divided into two categories: The regression tasks

and the clarification tasks. Regression tasks can be defined as the process of finding the

3
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Figure 1.2: The bias/variance trade-off. The more the model becomes complex
during its training phase, the more its bias decreases while the variance increases. The
optimal point of learning is when the model variance and bias are the lowest because
this is where the model total error reached the lowest value.
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Unsupervised 
Learning Algorithm

Figure 1.3: An unsupervised learning algorithm trains to label the data points
by itself. The left side shows a dataset of unlabeled data points. The right side
demonstrates that the model decided to make 3 groups of data points to describe the
data it was given (the orange, green and gold groups).
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relationship between X and Y where Y is continuous. A classification task, however,

is a process of finding the relationship between X and Y where Y is discrete. Figure

1.4 illustrates the two types of distinct tasks.

1.1.3 Interpretable Machine Learning

The concept of interpretability in mathematics is not well defined. According to (Miller,

2019), interpretability can be defined as the extent to which a human can understand

the reasoning behind a decision made by a model. Another definition is the extent to

which a human can accurately predict the model’s output. The more interpretable a

machine learning model is, the easier it becomes for humans to comprehend its pre-

dictions or decisions. A model can be considered more interpretable if its decisions

are easier for humans to understand. The terms interpretable and explainable are

used interchangeably in this context. In this dissertation, interpretable machine learn-

ing refers to gaining meaningful insights from a machine learning model, whether the

relationships are present in the data or learned by the model.
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Classification Regression

Figure 1.4: Classification task versus a regression task The left side shows that
the model tries to draw a line to separate the green points from the orange points to
classify them as accurately as possible. The right side demonstrates that the model
is trying to draw a line to estimate the red points as closely as possible to realize a
regression.
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1.2 Supervised Machine Learning Algorithms

In this section, we introduce the necessary knowledge to understand the supervised

deep neural network architectures used in this dissertation. First, I will describe the

fundamental of linear regression and logistic regression. Then I will introduce neural

networks and the notion of supervised learning.

1.2.1 Linear Regression

For a regression task,let’s define a dataset D = {(x1, y1), ..., (xi, yi), .., (xN , yN)}, as

previously defined. The labels Y are continuous, and the dataset carries the following

assumptions:

• Features in X are independent from each other

• There is a linear relationship between X and Y

• Homoscedasticity: The variance of residual is the same for any value of X.

• For any fixed value of X, the mean of Y is normally distributed.

The relationship between the d features of xi and the response yi are modeled as

follow:

yi = βdx
d
i + βd−1x

d−1
i + ...+ β1x

1
i + β0 + ϵi (1.1)

where the βis represents the weights. There are d+ 1 weights: one for each dimen-

sion, and β0 is the bias. ϵi is the error term.

The Mean Square Error (MSE) is a common loss function that models the bias/variance

trade-off. It is derived as:

MSE =
1

N

N∑
i=0

(yi −M(xi))
2 (1.2)

8



where M is our linear regression model.

The objective function is:

argminM(MSE) =
1

N

N∑
i=0

(yi −M∗(xi))
2 (1.3)

Where M∗ is the optimal model M that minimizes the best MSE.

1.2.2 Logistic Regression

For a classification task,let’s define a dataset D = {(x1, y1), ..., (xi, yi), .., (xN , yN)},

as previously defined. The labels Y are binary, and the dataset carries the following

assumptions:

• Features in X are independent from each other

• There is a linear relationship between X and the response logit.

• For any fixed value of X, the Y is normally distributed.

The logistic regression model can be derived as follows:

logit = log
p

1− p
= βdx

d
i + βd−1x

d−1
i + ...+ β1x

1
i + β0 + ϵi (1.4)

p =
1

1 + e−logit

where p is the probability of a positive outcome.The function f(x) = 1
1+e−x is

called the sigmoid function and was introduced by Pierre François Verhulst in the 19th

century.
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The log-loss is a common loss function that models how close the prediction prob-

ability is to the actual binary values. It is derived as:

logloss =
1

N

N∑
i=0

yi ∗ logM(xi) + (1− yi) log (1−M(xi)) (1.5)

where M is our logistic regression model.

The objective function is:

argminM(logloss) =
1

N

N∑
i=0

yi log(M
∗(xi)) + (1− yi) log(1−M∗(xi)) (1.6)

Where M∗ is the optimal model M that minimizes the best the log-loss.

1.2.3 Deep Learning

In this subsection, we will extend the supervised classification task to Artificial Neural

Networks and introduce the concept of Multi-Task Learning (MTL).

1.2.3.1 Artificial Neural Network

History: Artificial neural networks (ANN) are complex statistical models inspired

by biological neural networks. They are composed of neurons designed on the model

of biological neurons (Figure 1.5). The artificial neurons take a signal as input from

the preceding neurons’ weighted outputs and get activated; based on the sum of these

outputs. The function that decides whether the neuron gets activated is called the

activation function. Like a biological neuron, if the strength of the input signal is

strong enough, the neuron is activated and delivers a signal to the rest of the network

it is connected to. If the connection between two neurons is deemed of importance,
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bias
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Figure 1.5: A biological neuron (up) vs an artificial neuron(down). The struc-
ture of the artificial neuron is very similar to the biological neuron. They both share
a structure to receive an input signal and, based on its strength, decide to produce a
corresponding output signal.
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then, as with biological networks, the connection is reinforced. This gave birth to the

perceptron by Franck Rosenblatt in 1958 (Rosenblatt, 1958). Artificial neural networks

are constructed using layers of neurons. One layer contains several neurons, takes input

from a preceding layer, and connects its outputs to another layer. When the neurons

of each network layer are connected to all the neurons of the preceding layer and the

next layer, it is called a fully connected layer (Figure 1.6). A network constructed with

such layers is called a Feed Forward Neural Network (FFNN).

Activation functions: In a neuron, the strength of the input signal depends on the

weights attributed to each connection. A neuron has one weight wn,i,l for each input

connection. The output of a neuron n on layer l, given d neurons on the previous layer

is given by:

outputn,l = f(
d∑

i=1

wn,i,l−1outputi,l−1) (1.7)

where f is the activation function of the neuron n. Several activation functions were

developed. I am going to introduce the one I use in this dissertation. The first activation

function presented here is sigmoid ( Equation 1.4). In this dissertation, this function is

used to activate the output neuron and map a real number to a probability (See Figure

1.7). Formally, for x ∈ R, sigmoid(x) ∈ [0, 1]. Another activation function used in this

dissertation is ReLU (Fukushima, 1975). The ReLU function is defined as follows:

ReLU(x) =


x, if x ≥ 0

0, otherwise

(1.8)

This function is mainly used for neurons on hidden layers (layers that are between

the input layer and the output layer) and introduces non-linearity to the network.
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Figure 1.6: A feed-forward neural network. Each neuron is connected to all the
neurons of the previous layer and the neurons of the next layer. Image is drawn using
https://alexlenail.me/NN-SVG/.
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Figure 1.7: The sigmoid curve, the ReLU curve, and the Leaky ReLU curve.
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However, the dying neuron is a drawback inherent to ReLU (Lu et al., 2019). Leaky

ReLU was proposed to solve this issue (Maas et al., 2013). It allows the negative signals

to be output with a small coefficient α. Formally it is defined as:

Leaky ReLU(x) =


x, if x ≥ 0

−αx, otherwise

(1.9)

Training with Backpropagation: Training a FFNN for a supervised learning task

requires the same setup as the linear regression for regression tasks or the logistic

regression for classification tasks.

Let’s define again a datasetD = {(x1, y1), ..., (xi, yi), .., (xN , yN)} a dataset of size N .

xi is a feature vector of dimension dx, and yi its label. Let X be a matrix of feature

vectors and Y a vector of continuous labels. The neural network F takes X as input

and must learn the relationship between X and Y . The training goal is to minimize the

loss function L. Hence, the network must go through learning steps. At each learning

step, a forward pass is realized. The network makes predictions using the input data.

Then, the loss is measured to quantify the error. Finally, this error is backpropagated

to the network that adapts its weights to minimize this error (Rumelhart et al., 1986).

The algorithm is detailed in Algorithm 1.2.1 . In this dissertation, the Adam optimizer

(Kingma and Ba, 2014a) version of the stochastic gradient update is used that introduce

an adaptive estimate of lower-order moments and result in a faster and better gradient

update algorithm.

Example of deep neural network architectures: Deep Neural Networks (DNN)

are an ANN type that has more than 2 hidden layers. DNNs have been widely studied

in the past years. They have met tremendous success in a vast number of different tasks,
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Algorithm 1.2.1 Error backpropagation to the ith weight on neuron n, on layer l,
wn,i,l in a feed-forward neural network, at learning step t.

(1) ∀(xi, yi) ∈ D, propagate the input xi through the network to compute the outputs Y p,
the vector containing all the ypi .

(2) Compute the loss L(Y p, Y ), with Y the vector containing all the yi

(3) For each weight wn,i,l compute

wt+1
n,i,l = wt

n,i,l − α
∂L(Y p, Y )

∂wn,i,l
(1.10)

with α referring to the learning rate, and t the learning step.

including audio and speech processing, visual data processing, and natural language

processing (NLP) (Adeel et al., 2020; Tian et al., 2020; Young et al., 2018; Koppe et al.,

2021) . Among them, Convolutional Neural Networks (CNN) (LeCun et al., 1998) have

been part of these tremendous successes. CNNs perform pointwise multiplication of

the input features with a moving filter across the feature space. Let’s call each unit

computation position the offset τ . The convolution operation for 1d datasets, as used

in this dissertation, is computed as follows:

Conv(X,W, τ) =
∞∑

i=−∞

xiwτ−i (1.11)

where X has d features, W is the kernel function (or weights of the neural network),

xi is a unique feature vector, and wi is a weight in the filter. Figure 1.8 shows a 1D

CNN. Multiple filters can be applied at each feature to decompose the signal into

higher-order features. After the convolution operator is applied, the extracted feature

space can be condensed using the pooling operator. Several blocks of convolution and

pooling can be added together to condense the extracted feature. Then, those features

can be flattened and passed to a FFNN to make the final prediction.
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Input layer Convolution 1D Pooling 1D Convolution 1D Pooling 1D Flatten Layer Feed Forward Layers Output Layer

Figure 1.8: Example of a CNN for object classification with 1D signal. The
signal is processed through several blocks of convolution and pooling, then the features
are flattened to be processed by a FFNN for the final classification prediction.

17



1.2.3.2 Multi-task learning

Multitask Learning (Caruana, 1998) is a transfer learning method that enhances one

task’s performance by utilizing the information gained from related tasks. It accom-

plishes this by simultaneously training on multiple tasks while sharing a common rep-

resentation, allowing what is learned from one task to improve the learning of other

tasks. Multi-task learning was used with success in several different problems (Zhang

and Yang, 2018), such as natural language processing (Collobert and Weston, 2008),

speech recognition (Deng et al., 2013) or computer vision (Girshick, 2015). Formally,

let’s define a dataset D = {(x1, y1), ..., (xi, yi), .., (xN , yN)} a dataset of size N . xi is a

feature vector of dimension dx, and yi its vector labels of dimension dy. Each dimension

of yi refers to the label of xi for task Ti. Let X be a matrix of feature vectors and

Y a matrix of labels, YTi
being the label vector for task Ti. The network F takes X

as input and must learn the relationship between X and Y . The network goal is to

minimize the loss function L that is defined as follows:

Losstotal =

dy∑
i=0

wTi
Li(M(X)Ti

, YTi
) (1.12)

with wi being the contribution weight of task Ti to the global loss, and M(X)Ti
the

model output for task Ti.

1.3 Genomics

Genomics encompasses the study of all genes in the genome, the interactions among

genes, the genetic mutations, and the effects of genetic variants on human traits, known

as phenotype. Mutations in an individual’s genome can lead to dramatic changes in

their phenotypes. Single Nucleotide Polymorphisms (SNP) represent substitutions of a
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single nucleotide in the human genome. Figure 1.9 represents a simplified chromosome

structure where those SNPs are quantified.

Different methods can be used to identify SNPs, such as dynamic allele-specific hy-

bridization (Jobs, 2001), molecular beacons (Abravaya et al., 2003), and SNP microar-

rays (Steemers and Gunderson1, 2005; Thissen et al., 2019). SNP microarrays were

notably used to sequence SNPs for the Oncorarray consortium (Amos et al., 2017),

UKBiobank genomics data (Bycroft et al., 2018), and the 1000 Genome project data

(Consortium et al., 2015).Sequenced personal genomes are compared with a reference

genome that contains the most common variants at each locus within the population.

Therefore, a dataset is created where each position can take 3 different values, as

illustrated in Figure 1.10. For individual i at position j, we have:

SNPi,j =


0, if both maternal and paternal base pair at position j mutated

1, if only one mutated

2, if no mutation

(1.13)
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Paternal 
Chromosome

Maternal
Chromosome

Locus

Centromere 

Size

Homologous Chromosomes:
• Same Size
• Same Centromere
• Same genes positions (loci) 

A T

C G
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G C

G C
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Figure 1.9: Representation of a human chromosome Each individual possesses
a paternal chromosome and a maternal chromosome, linked through the centromere.
The structure of those chromosomes is a double helix. There are 4 possible nucleotides:
Adenine (A), Cytosine (C), Guanine (G), and Thymine (T). A and T and C and G
are exclusively bounded together on the double helix.
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SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8 SNP9…

Reference A T C G A A A C T

Paternal A T C A C A A C T

Maternal A T C A A A A C T

Data

Genome

SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8 SNP9…

Individual 2 2 2 0 1 2 2 2 2

Figure 1.10: Mapping between the observed SNP and its data representation.
The red coloring shows a locus where 1 mutation happened on the maternal side, while
the gold coloring shows a locus where 2 mutations happened. There is no distinction
between the unique mutation on the maternal and paternal chromosomes.
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1.4 Genome-Wide Association Studies

Genome-Wide Association Studies (GWAS) map SNP arrays to a trait to unveil the

associations of variants with this particular trait. GWAS are generally conducted on a

population sourced from a biobank, such as the UKBiobank (Bycroft et al., 2018), or

study cohorts for specific diseases (Mailman et al., 2007). Human subjects are recruited

on a volunteer-based system where they are asked to transmit their medical history. In

some cases, such as UKBiobank, they are followed up throughout their life for potential

additional traits developing with age.

Several data processing methods can be used to process the data, such as the minor

allele frequency criteria, the Hardy–Weinberg equilibrium, or linkage disequilibrium.

Hardly-Weinberg equilibrium relates to the principle that genetic variations stay the

same from one generation to another. In this case, chi-square tests 1.14 are applied

between an expected genetic population versus the current actual population. The test

is formulated as follows:

χ2 =
∑
i

(Oi − Ei)
2

Ei

(1.14)

Ei being the expected value at sample i and O the observed value at sample i.

If the test indicates a statistical difference between the expected population and

the observed population, then the observed SNP genetic structure is in disequilibrium.

Disequilibrium can indicate a significant amount of mutation rate, or non-random mat-

ing for example. Linkage disequilibrium refers to the non-random correlation between

SNPs. Minor allele frequency refers to the frequency of the recessive allele for on

position among the population. PLINK is the most popular software to assess those

principles and manage this type of genomic data (Purcell et al., 2007).

Ancestry is also an important feature to consider because it may introduce bias in

detecting variants that can lead to false positive variants over a population (Marchini
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et al., 2004; Novembre et al., 2008; Lawson et al., 2020). Simple linear models may

struggle to separate sub-populations effectively.

Statistical models have been widely used to model the relationships between SNPs and

traits. Association analysis can be conducted using logistic regression between each

SNP individually and the trait of interest. For each association, the p-value is calcu-

lated, and adjusted for multiple comparison using the Bonferroni level of significance

(Bonferroni, 1935). The adjusted p-values are then commonly used to filter out signif-

icant SNPs from the non-important ones. Polygenic risk scores (PRS) can be derived

using the additive effect of the SNPs. Linear regression models, such as Best Linear

Unbiased Prediction (BLUP) (Henderson, 1975), consider the additive effects of SNPs

to determine the relative importance of those SNPs. The genetic effect of SNPs is

also associated with non-fixed effects, such as weight and environmental or behavioral

factors. The model is structured as follows:

Y = Wα +Xsβs + g + e (1.15)

g ∼ N(0, σ2
a)

e ∼ N(0, σ2
e)

where σ2
a represents the genetic variation, σ2

e the residual variance for non-fixed

effects, W is the covariates matrix for non-fixed effect, α its weight vector, Xs contains

the SNPs matrix, and βs the SNPs weights (Uffelmann et al., 2021).

1.5 Conclusion

In this section, I introduced several concepts used in this dissertation. The principle

of machine learning, supervised learning, interpretable machine learning, multi-task
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learning, neural networks as well as genomics, SNPs, GWAS, and PRS scores were

covered. In this dissertation, we leverage the predicting power of neural networks,

interpretable machine learning, and multi-task learning to redefine GWAS and enhance

PRS score computation.
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Chapter 2

Deep neural network improves the estimation of

polygenic risk scores for breast cancer

In this chapter, I demonstrate the existence of non linear relationships between the

genotype and the phenotype for breast cancer. This non-linearity is leveraged by a

Deep Neural Network to achieve improved performance, compared to the baseline, for

Breast Cancer PRS prediction accuracy.
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2.1 Introduction

Breast cancer is the second deadliest cancer for U.S. women. Approximately one in

eight women in the U.S. will develop invasive breast cancer over the course of their

lifetime (NIH, 2012). Early detection of breast cancer is an effective strategy to reduce

the death rate. If breast cancer is detected in the localized stage, the 5-year survival

rate is 99% (NIH, 2012). However, only 62% of the breast cancer cases are detected

in the localized stage (NIH, 2012). In 30% of the cases, breast cancer is detected

after it spreads to the regional lymph nodes, reducing the 5-year survival rate to 85%.

Furthermore, in 6% of cases, the cancer is diagnosed after it has spread to a distant

part of the body beyond the lymph nodes and the 5-year survival rate is reduced to

27%. To detect breast cancer early, the US Preventive Services Task Force (USP-

STF) recommends biennial screening mammography for women over 50 years old. For

women under 50 years old, the decision for screening must be individualized to balance

the benefit of potential early detection against the risk of a false positive diagnosis.

False-positive mammography results, which typically lead to unnecessary follow-up di-

agnostic testing, become increasingly common for women 40 to 49 years old (Nelson

et al., 2009). Nevertheless, for women with a high risk for breast cancer (i.e. a lifetime

risk of breast cancer higher than 20%), the American Cancer Society advises a yearly

breast MRI and mammogram starting at 30 years of age (Oeffinger et al., 2015).

Polygenic risk scores (PRS) assess the genetic risks of complex diseases based on the

aggregate statistical correlation of a disease outcome with many genetic variations over

the whole genome. Single-nucleotide polymorphisms (SNPs) are the most commonly

used genetic variations. While genome-wide association studies (GWAS) report only

SNPs with statistically significant associations to phenotypes (Dudbridge, 2013), PRS
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can be estimated using a greater number of SNPs with higher adjusted p-value thresh-

olds to improve prediction accuracy. Previous research has developed a variety of

PRS estimation models based on Best Linear Unbiased Prediction (BLUP), including

gBLUP (Clark et al., 2013), rr-BLUP (Whittaker et al., 2000a), (Meuwissen et al.,

2001), and other derivatives (Maier et al., 2015; Speed and Balding, 2014). These lin-

ear mixed models consider genetic variations as fixed effects and use random effects to

account for environmental factors and individual variability. Furthermore, linkage dis-

equilibrium was utilized as a basis for the LDpred (Vilhjálmsson et al., 2015), (Khera

et al., 2018), and PRS-CS (Ge et al., 2019) algorithms.

PRS estimation can also be defined as a supervised classification problem. The input

features are genetic variations, and the output response is the disease outcome. Thus,

machine learning techniques can be used to estimate PRS based on the classification

scores achieved (Ho et al., 2019). A large-scale GWAS dataset may provide tens of

thousands of individuals as training examples for model development and benchmark-

ing. Wei et al (2019)(Wei et al., 2009) compared support vector machine and logistic

regression to estimate PRS of Type-1 diabetes. The best Area Under the receiver

operating characteristic Curve (AUC) was 84% in this study. More recently, neural

networks have been used to estimate human height from the GWAS data, and the best

R2 scores were in the range of 0.4 to 0.5 (Bellot et al., 2018). Amyotrophic lateral

sclerosis was also investigated using Convolutional Neural Networks (CNN) with 4511

cases and 6127 controls (Yin et al., 2019) and the highest accuracy was 76.9%.

Significant progress has been made in estimating PRS for breast cancer from a variety

of populations. In a recent study (Mavaddat et al., 2019), multiple large European

women cohorts were combined to compare a series of PRS models. The most predic-

tive model in this study used lasso regression with 3,820 SNPs and obtained an AUC

of 65%. A PRS algorithm based on the sum of log odds ratios of important SNPs
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for breast cancer was used in the Singapore Chinese Health Study (Chan et al., 2018)

with 46 SNPs and 56.6% AUC, the Shanghai Genome-Wide Association Studies (Wen

et al., 2016) with 44 SNPs and 60.6% AUC, and a Taiwanese cohort (Hsieh et al., 2017)

with 6 SNPs and 59.8% AUC. A pruning and thresholding method using 5,218 SNPs

reached an AUC of 69% for the UK Biobank dataset (Khera et al., 2018).

In this study, deep neural network (DNN) was tested for breast cancer PRS estimation

using a large cohort containing 26053 cases and 23058 controls. The performance of

DNN was shown to be significantly higher than alternative machine learning algorithms

and other statistical methods in this large cohort. Furthermore, DeepLift (Shrikumar

et al., 2017) and LIME (Ribeiro et al., 2016) were used to identify salient SNPs used

by DNN for prediction.

2.2 Methods

In this section , we detail the development of the workflow and our DNN model to im-

prove PRS prediction, leveraging non linearity. We also detail the benchmark protocol

with SOTA algortihms.

2.2.1 Breast cancer GWAS data

This study used a breast cancer GWAS dataset generated by the Discovery, Biol-

ogy, and Risk of Inherited Variants in Breast Cancer (DRIVE) project (Amos et al.,

2017) and was obtained from the NIH dbGaP database under the accession number of

phs001265.v1.p1. The DRIVE dataset was stored, processed, and used on the Schooner

supercomputer at the University of Oklahoma in an isolated partition with restricted

access. The partition consisted of 5 computational nodes, each with 40 CPU cores
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Figure 2.1: Computational workflow of predictive genomics. The DRIVE
dataset was randomly split into the training set, the validation set, and the test set.
Only the training set was used for association analysis, which generated the p-values
for the selection of SNPs as input features. The training data was then used to train
machine learning models and statistical models. The validation set was used to select
the best hyperparameters for each model based on the validation AUC score. Finally,
the test set was used for performance benchmarking and model interpretation.
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(Intel Xeon Cascade Lake) and 200 GB of RAM. The DRIVE dataset in the dbGap

database was composed of 49,111 subjects genotyped for 528,620 SNPs using OncoAr-

ray (Amos et al., 2017). 55.4% of the subjects were from North America, 43.3% from

Europe, and 1.3% from Africa. The disease outcome of the subjects was labeled as

malignant tumor (48%), in situ tumor (5%), and no tumor (47%). In this study, the

subjects in the malignant tumor and in situ tumor categories were labeled as cases

and the subjects in the no tumor category were labeled as controls, resulting in 26053

(53%) cases and 23058 (47%) controls. The subjects in the case and control classes

were randomly assigned to a training set (80%), a validation set (10%), and a test

set (10%) (Figure 2.1). The association analysis was conducted on the training set

using PLINK 2.0 (Chang et al., 2015). The p-value for each SNP was calculated using

logistic regression.

2.2.2 Development of deep neural network models for PRS

estimation

A variety of deep neural network (DNN) architectures (Bengio et al., 2009) were trained

using Tensorflow 1.13. The Leaky Rectified Linear Unit (ReLU) activation function (Xu

et al., 2015) was used on all hidden-layers neurons with the negative slope co-efficient

set to 0.2. The output neuron used a sigmoid activation function. The training error

was computed using the cross-entropy function:

n∑
i=1

y ∗ log(p) + (1− y) ∗ log(1− p) (2.1)

where p ∈ [0, 1] is the prediction probability from the model and y ∈ [|0, 1|] is

the prediction target at 1 for case and 0 for control. DNNs were trained using mini-

batches with a batch size of 512. The Adam optimizer (Kingma and Ba, 2014b), an
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adaptive learning rate optimization algorithm, was used to update the weights in each

mini-batch. The initial learning rate was set to 10−4, and the models were trained

for up to 200 epochs with early stopping based on the validation AUC score. Dropout

(Srivastava et al., 2014) was used to reduce overfitting. Batch normalization (BN) (Ioffe

and Szegedy, 2015) was used to accelerate the training process, and the momentum

for the moving average was set to 0.9 in BN.

2.2.3 Development of alternative machine learning models for

PRS estimation

Logistic regression, decision tree, random forest, AdaBoost, gradient boosting, support

vector machine (SVM), and Gaussian naive Bayes were implemented and tested using

the scikit-learn machine learning library in Python. These models were trained using

the same training set as the DNNs and, similarly, their hyperparameters were tuned

using the same validation set (Figure 2.1). These models are briefly described below.

• Decision Tree: The gini information gain with best split was used. The maximum

depth was not set. The tree expanded until all leaves were pure or contained less

than a minimum number of two examples per split.

• Random Forest: 3000 decision trees (as configured above) were used as base

learners. Bootstrap samples were used to build each base learner. When searching

for each tree’s best split, the maximum number of considered features was set to

be the square root of the number of features.

• AdaBoost: 2000 decision trees (as configured above) were used as base learners.

The learning rate was set to 1. The algorithm used was SAMME.R (Hastie et al.,

2009).
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• Gradient Boosting: 400 decision trees (as configured above) were used as the base

learners. Log-loss was used as the loss function. The learning rate was fixed to

0.1. The mean squared error with improvement score (Friedman, 2001) was used

to measure the quality of a split.

• SVM: The kernel was a radial basis function with γ = 1
n∗V ar

, where n is the

number of SNPs and Var is the variance of the SNPs across individuals. The

regularization parameter C was set to 1.

• Logistic Regression: L2 regularization with α = 0.5 was used. L1 regularization

was tested, but not used, because it did not improve the performance.

• Gaussian Näıve Bayes: The likelihood of the features was assumed to be Gaus-

sian. The classes had uninformative priors.

2.2.4 Development of statistical models for PRS estimation

The same training and validation sets were used to develop statistical models (Figure

2.1). The BLUP and BayesA models were constructed using the bWGR R package.

The LDpred model was constructed using the algorithm as described (Vilhjálmsson

et al., 2015).

• BLUP: The linear mixed model was y = µ+Xb+ e, where y were the response

variables, µ were the intercepts, X were the input features, b were the regression

coefficients, and e were the residual coefficients.

• BayesA: The priors were assigned from a mixture of normal distributions.

• LDpred: The p-values were generated by our association analysis described above.

The validation set was provided as reference for LDpred data coordination. The
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radius of the Gibbs sampler was set to be the number of SNPs divided by 3000

as recommended by the LDpred user manual (https://github.com/bvilhjal/

ldpred/blob/master/ldpred/run.py).

The score distributions of DNN, BayesA, BLUP, and LDpred were analyzed with the

Shapiro test for normality and the Bayesian Gaussian mixture (BGM) expectation

maximization algorithm. The BGM algorithm decomposed a mixture of two Gaussian

distributions with weight priors at 50

2.2.5 DNN model interpretation protocol

LIME and DeepLift were used to interpret the DNN predictions for subjects in the test

set with DNN output scores higher than 0.67, which corresponded to a precision of 90%.

For LIME, the submodular pick algorithm was used, the kernel size was set to 40, and

the number of explainable features was set to 41. For DeepLift, the importance of each

SNP was computed as the average across all individuals, and the reference activation

value for a neuron was determined by the average value of all activations triggered

across all subjects.

2.3 Results and Discussion

In this section, we discuss our results and provide rationals for why DNN performs

better than the baseline algorithms to estimate Breast Cancer PRS.
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2.3.1 Development of a machine learning model for breast

cancer PRS estimation

The breast cancer GWAS dataset containing 26053 cases and 23058 controls was gen-

erated by the Discovery, Biology, and Risk of Inherited Variants in Breast Cancer

(DRIVE) project (Amos et al., 2017). The DRIVE data is available from the NIH

dbGaP database under the accession number of phs001265.v1.p1. The cases and con-

trols were randomly split into a training set, a validation set, and a test set (Figure

2.1). The training set was used to estimate the p-values of SNPs using association

analysis and train machine learning and statistical models. The hyperparameters of

the machine learning and statistical models were optimized using the validation set.

The test set was used for the final performance evaluation and model interpretation.

The statistical significance of the disease association with 528,620 SNPs was as-

sessed with Plink using only the training set. The obtained p-values for all tested

SNPs are shown in Figure 2.2A as a Manhattan plot.To obtain unbiased benchmark-

ing results on the test set, it was critical not to use the test set in the association

analysis (Figure 2.1) and not to use association p values from previous GWAS studies

that included subjects in the test set, as well-described in the Section 7.10.2 of (Hastie

et al., 2009). There were 1,061 SNPs with a p-value less than the critical value of

9.5 ∗ 10−8, which was set using the Bonferroni correction (9.5 ∗ 10−8 = 0.05/528, 620).

Filtering with a Bonferroni-corrected critical value may remove many informative SNPs

that have small effects on the phenotype, epistatic interactions with other SNPs, or

non-linear association with the phenotype (De et al., 2014). Relaxed filtering with

higher p-value cutoffs was tested to find the optimal feature set for DNN (Figure 2.2B).

The DNN models in Figure 2.2B had a deep feedforward architecture consisting of an

input layer of variable sizes, followed by 3 successive hidden layers containing 1000,
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p-value 
cutoff SNPs

Computational Cost of Training AUC Accuracy

Convergence 
time (minutes)

Peak Memory 
(GB) Training Validation Training Validation

None 528,620 1308 66.6 100.0% 65.9% 100.0% 60.1%
10-2 13,890 51 3.2 93.4% 66.5% 85.1% 61.4%
10-3 5,273 23 2.2 80.5% 67.1% 73.4% 62.0%
10-4 3,041 16 2 75.9% 66.4% 67.6% 61.1%
10-5 2,099 9 1.4 72.2% 65.7% 63.2% 60.8%

(B)

Figure 2.2: SNP filtering and model training for DNN. (A) Manhattan plot from
the association analysis. Each point represents a SNP with its p-value in the log10 scale
on the y-axis and its position in a chromosome on the x-axis. The x-axis is labeled
with the chromosome numbers. Chromosome 23 represents the X chromosome. Chro-
mosomes 24 and 25 represent the pseudoautosomal region and non-pseudoautosomal
region of the Y chromosome, respectively. Chromosome 26 designates the mitochon-
drial chromosome. The red line marks the p-value cutoff at 9.5∗10−8and the green line
marks the p-value cutoff at 10−3. B) Performance of the DNN models trained using
five SNP sets filtered with increasing p-value cutoffs. The models were compared by
their training costs and performances in the training and validation sets.

35



250, and 50 neurons and an output layer with a single neuron. As the p-value cutoff

increased, a greater number of SNPs were incorporated as input features, and training

consumed a larger amount of computational resources in terms of computing time and

peak memory usage. A feature set containing 5,273 SNPs above the p-value cutoff of

10−3 provided the best prediction performance measured by the AUC and accuracy on

the validation set. In comparison with smaller feature sets from more stringent p-value

filtering, the 5,273-SNP feature set may have included many informative SNPs provid-

ing additional signals to be captured by DNN for prediction. On the other hand, more

relaxed filtering with p-value cutoffs greater than 10−3 led to significant overfitting as

indicated by an increasing prediction performance in the training set and a decreasing

performance in the validation set (Figure 2.2B).

Interestingly, the largest DNN model, consisting of all 528,620 SNPs, decreased

the validation AUC score by only 1.2% and the validation accuracy by 1.9% from

the highest achieved values. This large DNN model used an 80% dropout rate to

obtain strong regularization, while all the other DNN models utilized a 50% dropout

rate. This suggested that DNN was able to perform feature selection without using

p-values, although the limited training data and the large neural network size resulted

in complete overfitting. The effects of dropout and batch normalization were tested

using the 5,273-SNP DNN model ( Figure 2.3). Without dropout, the DNN model

using only batch normalization had a 3.0% drop in AUC and a 4.0% drop in accuracy

and its training converged in only two epochs. Without batch normalization, the DNN

model had 0.1% higher AUC and 0.3% lower accuracy but its training required a 73%

increase in the number of epochs to reach convergence.

As an alternative to filtering, autoencoding was tested to reduce a large number of

SNPs to a small set of features for PRS estimation (Fergus et al., 2018; Cudic et al.,
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Figure 2.3: Effects of dropout and batch normalization on the 5,273-SNP
DNN model.
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2018). An autoencoder was trained to encode 5273 SNPs into 2000 features with a

mean square error (MSE) of 0.053 and a root mean square error (RMSE) of 0.23. The

encodings were used to train a DNN model with the same architecture as the ones

shown in Figure 2.2B except for the number of input neurons. The autoencoder-DNN

model had a similar number of input neurons for DNN as the 2099-SNP DNN model,

but had a 1.3% higher validation AUC and a 0.2% higher validation accuracy ( Table

2.1 and Figure 2.2B). This increased validation AUC and accuracy suggested that

the autoencoding provided improved dimensionality reduction compared to the SNP

filtering based on p-values. In comparison with the 5,273-SNP model, auto-encoding

sped up the convergence process, but led to a 0.3% reduction in validation AUC score

and a 1.6% reduction in validation accuracy.

The deep feedforward architecture benchmarked in Figure 2.2B was compared with

a number of alternative neural network architectures using the 5,273-SNP feature set

(Table 2.1). A shallow neural network with only one hidden layer resulted in a 0.9%

lower AUC and 1.1% lower accuracy in the validation set compared to the DNN. This

suggested that additional hidden layers in DNN were useful in representing complex

interactions among SNPs. The additional hidden layers also supported additional fea-

ture selection and transformation in the model. One-dimensional convolutional neural

network (1D CNN) was previously used to estimate the PRS for bone heel mineral

density, body mass index, systolic blood pressure and waist-hip ratio (Bellot et al.,

2018) and was also tested here for breast cancer prediction with the DRIVE dataset.

The validation AUC and accuracy of 1D CNN were lower than DNN by 3.2% and

2.0%, respectively. Two-dimensional CNN was particularly popular for image analy-

sis, because the receptive field of the convolutional layer can capture space-invariant

information with shared parameters. However, the SNPs distributed across a genome
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may not have significant space-invariant patterns to be captured by the convolutional

layer, which may explain the poor performance of CNN.

The 5,273-SNP feature set was used to test alternative machine learning approaches,

including logistic regression, decision tree, naive Bayes, random forest, ADAboost, gra-

dient boosting, and SVM, for PRS estimation (Figure 2.4). These models were trained,

turned, and benchmarked using the same training, validation, and test sets, respec-

tively, as the DNN models (Figure 2.1). Although the decision tree had a test AUC of

only 50.9%, ensemble algorithms that used decision trees as the base learner, includ-

ing random forest, ADABoost, and gradient boosting, reached test AUCs of 63.6%,

64.4%, and 65.1%, respectively. This showed the advantage of ensemble learning.

SVM reached a test AUC of 65.6%. Näıve Bayes and logistic regression were both

linear models with the assumption of independent features. Logistic regression per-

formed substantially better than näıve Bayes, ensemble techniques and SVM, based on

the AUC scores. Out of all the machine learning models, the DNN model still achieved

the highest test AUC at 67.4% and the highest test accuracy at 62.8%.

2.3.2 Comparison of the DNN model with statistical models

for breast cancer PRS estimation

The performance of DNN was compared with three representative statistical models,

including BLUP, BayesA, and LDpred (Table 2.2). Because the relative performance

of these methods may be dependent on the number of training examples available,

the original training set containing 39,289 subjects was down-sampled to create three

smaller training sets containing 10000, 20000, 30000 subjects. As the 5,273-SNP feature

set generated with a p-value cutoff of 10−3 may not be the most appropriate for the

statistical methods, a 13,890-SNP feature set (p-value cutoff = 10−2) and a 2,099-SNP
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Algorithms Test AUC Test Accuracy
Decision Tree 50.9% 54.2%
Naïve Bayes 60.7% 57.0%

Random Forest 63.6% 58.3%
ADABoost 64.4% 59.5%

Gradient Boosting 65.1% 60.2%
SVM 65.6% 60.8%

Logistic Regression 66.5% 60.1%
DNN 67.4% 62.8%

Figure 2.4: Comparison of machine learning approaches for PRS estimation.
The performances of the models were represented as Receiver Operating Characteristic
(ROC) curves in different colors. The Area under the ROC curve (AUC) and the
accuracy from the test set are shown in the legend. The DNN model outperformed the
other machine learning models in terms of AUC and accuracy.
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feature set (p-value cutoff = 10−5) were tested for all methods. Although LDpred also

required training data, its prediction relied primarily on the provided p-values, which

were generated for all methods using all 39,289 subjects in the training set. Thus,

the down-sampling of the training set did not reduce the performance of LDpred.

LDpred reached its highest AUC score at 62.4% using the p-value cutoff of 10−3. A

previous study (Ge et al., 2019)[12] that applied LDpred to breast cancer prediction

using the UK Biobank dataset similarly obtained an AUC score of 62.4% at the p-

value cutoff of 10−3. This showed consistent performance of LDpred in the two studies

using different datasets. When DNN, BLUP, and BayesA used the full training set,

they obtained higher AUCs than LDpred at their optimum p-value cutoffs. DNN,

BLUP, and BayesA all gained performance with the increase in the training set sizes

(Table 2.2). The performance gain was more substantial for DNN than BLUP and

BayesA. The increase from 10,000 subjects to 39,258 subjects in the training set resulted

in a 1.9% boost to DNN’s best AUC, a 0.7% boost to BLUP, and a 0.8% boost to

BayesA. This indicated the different variance-bias trade-offs made by DNN, BLUP, and

BayesA. The high variance of DNN required more training data, but could capture more

extensive interactions among SNPs and non-linear relationships between the SNPs and

the phenotype. The high bias of BLUP and BayesA had lower risk for overfitting using

smaller training sets, but their models only considered linear relationships. The higher

AUCs of DNN across all training set sizes indicated that DNN had a better variance-

bias balance for breast cancer PRS estimation. For all four training set sizes, BLUP

and BayesA achieved higher AUCs using more stringent p-value filtering. When using

the full training set, reducing the p-value cutoffs from 10-2 to 10-5 increased the AUCs

of BLUP from 61.0% to 64.2% and the AUCs of BayesA from 61.1% to 64.5%. This

suggested that BLUP and BayesA preferred a reduced number of SNPs that were

found by logistic regression to be significantly associated with the phenotype. On the
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other hand, DNN produced lower AUCs using the p-value cutoff of 10-5 than the other

two higher cutoffs. This suggested that DNN can perform better feature selection in

comparison to SNP filtering based on p-values from logistic regression.

The four algorithms were compared using the score histograms of the case pop-

ulation and the control population from the test set in Figure 2.5. The score dis-

tributions of BLUP, BayesA and LDpred all followed normal distributions. The p-

values from the Shapiro normality test of the case and control distributions were

0.46 and 0.43 for BayesA, 0.50 and 0.95 for BLUP, and 0.17 and 0,24 for LDpred,

respectively. The case and control distributions were Ncase(µ = 0.577, σ = 0.20)

and Ncontrol(µ = 0.479, σ = 0.19) from BayesA, Ncases(µ = 0.572, σ = 0.19) and

Ncontrol(µ = 0.483, σ = 0.18) from BLUP, and Ncase(µ = −33.52, σ = 5.4) and

Ncontrol(µ = −35.86, σ = 4.75) from LDpred. The means of the case distributions were

all significantly higher than the control distributions for BayesA (p-value < 10−16),

BLUP (p-value < 10−16 ), and LDpred ( p-value < 10−16) and their case and con-

trol distributions had similar standard deviations. The score histograms of DNN did

not follow normal distributions based on the Shapiro normality test with a p-value

of 4.1 × 10−34 for the case distribution and a p-value of 2.5 × 10−9 for the control

distribution. The case distribution had the appearance of a bi-modal distribution.

The Bayesian Gaussian mixture expectation maximization algorithm decomposed the

case distribution to two normal distributions: Ncase1(µ = 0.519, σ = 0.096) with an

86.5% weight and Ncase2(µ = 0.876, σ = 0.065) with a 13.5% weight. The control

distribution was resolved into two normal distributions with similar means and dis-

tinct standard deviations: Ncontrol1(µ = 0.471, σ = 0.1) with an 85.0% weight and

Ncontrol2(µ = 0.507, σ = 0.03) with a 15.0% weight. The Ncase1 distribution had a

similar mean as the Ncontrol1 and Ncontrol2 distributions. This suggested that the Ncase1
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Figure 2.5: Score histograms of DNN, BLUP, BayesA, and LDpred. The case
and control populations are shown in the orange and blue histograms, respectively. The
green line represents the score cutoff corresponding to the precision of 90% for each
model. DNN had a much higher recall than the other algorithms at 90% precision.
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distribution may represent a normal-genetic-risk case sub-population, in which the sub-

jects may have a normal level of genetic risk for breast cancer and the oncogenesis likely

involved a significant environmental component. The mean of the Ncase2 distribution

was higher than the means of both the Ncase1 and Ncontrol1 distributions by more than

4 standard deviations ( p-value < 10−16). We hypothesized that the Ncase2 distribu-

tion represented a high-genetic-risk case sub-population for breast cancer, in which the

subjects may have inherited many genetic variations associated with breast cancer.

Three GWAS were performed between the high-genetic risk case subpopulation

with DNN PRS > 0.67, the normal genetic-risk case subpopulation with DNN PRS

< 0.67, and the control population (see Supplementary Table 3 in Badré et al. (2021)).

The GWAS analysis of the high-genetic-risk case subpopulation versus the control

population identified 182 significant SNPs at the Bonferroni level of statistical signif-

icance. The GWAS analysis of the high-genetic-risk case subpopulation versus the

normal-genetic-risk case subpopulation identified 216 significant SNPs. The two sets

of significant SNPs found by these two GWAS analyses were very similar, sharing 149

significant SNPs in their intersection. Genes associated with these 149 SNPs were

investigated with pathway enrichment analysis (Fisher’s Exact Test; P < 0.05) using

SNPnexus (Dayem Ullah et al., 2018) ( see Supplementary Table 4 in (Badré et al.,

2021)). Many of the significant pathways were involved in DNA repair (O’Connor,

2015) signal transduction (Kolch et al., 2015), and suppression of apoptosis (Fernald

and Kurokawa, 2013). Interestingly, the GWAS analysis of the normal genetic-risk

case subpopulation and the control population identified no significant SNP. This sup-

ported our classification of the cases into the normal-genetic-risk subjects, and Deep

neural network improves the estimation of polygenic risk scores for breast cancer 365

the high-genetic-risk subjects based on their PRS scores from the DNN model.
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In comparison with AUCs, it may be more relevant for practical applications of PRS

to compare the recalls of different algorithms at a given precision that warrants clinical

recommendations. At 90% precision, the recalls were 18.8% for DNN, 0.2% for BLUP,

1.3% for BayesA, and 1.3% for LDpred in the test set of the DRIVE cohort with a 50%

prevalence. This indicated that DNN can make a positive prediction for 18.8% of the

subjects in the DRIVE cohort and these positive subjects would have an average chance

of 90% to eventually develop breast cancer. However, BLUP, BayesA and LDpred can

only make a similarly confident prediction for less than 2% of the subjects. American

Cancer Society advises yearly breast MRI and mammogram starting at the age of 30

years for women with a lifetime risk of breast cancer greater than 20%, which meant

a 20% precision for PRS. By extrapolating the performance in the DRIVE cohort, the

DNN model should be able to achieve a recall of 65.4% at a precision of 20% in the

general population with a 12% prevalence rate of breast cancer.

2.3.3 Interpretation of the DNN model

While the DNN model used 5,273 SNPs as input, we hypothesized that only a small

set of these SNPs were particularly informative for identifying the subjects with high

genetic risks for breast cancer. LIME and DeepLift were used to find the top-100

salient SNPs used by the DNN model to identify the subjects with classification scores

higher than the cutoff at 90% precision. 23 SNPs were ranked by both algorithms to

be among their top-100 salient SNPs (Figure 2.6). The small overlap between their

results can be attributed to their different interpretation approaches. LIME considered

the DNN model as a black box and perturbed the input to estimate the importance of

each variable; whereas, DeepLift analyzed the gradient information of the DNN model.

30% of LIME’s salient SNPs and 49% of DeepLift’s salient SNPs had p-values less
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Figure 2.6: Venn diagram of important SNPs found by LIME, DeepLift, and
association analysis. The red circle represents the top-100 salient SNPs identified
by LIME. The green circle represents the top-100 salient SNPs identified by DeepLift.
The blue circle represents the 1,068 SNPs that had p-values lower than the Bonferroni-
corrected critical value. The numbers in the Venn diagram show the sizes of the
intersections and complements among the three sets of SNPs.
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than the Bonferroni significance threshold of 9.5 × 10−8. This could be attributed to

the non-linear relationship between the salient SNPs and the disease outcome, which

cannot be captured by association analysis using logistic regression.

To illustrate this, four salient SNPs with significant p-values were shown in Figure

2.7, which exhibited linear relationships between their genotype values and log odds

ratios as expected. Four salient SNPs with insignificant p-values were shown in Figure

2.8, which showed clear biases towards cases or controls by one of the genotype values

in a nonlinear fashion.

Michailidou et al. (2017) summarized a total of 172 SNPs associated with breast

cancer. Out of these SNPs, 59 were not included on OncoArray, 63 had an association

p value less than 103 and were not included in the 5273-SNP feature set for DNN, 34

were not ranked among the top-1000 SNPs by either DeepLIFT or LIME, and 16 were

ranked among the top-1000 SNPs by DeepLIFT, LIME, or both (see Supplementary

Table 5 in (Badré et al., 2021)). This indicates that many SNPs with significant

association may be missed by the interpretation of DNN models.

The 23 salient SNPs identified by both DeepLift and LIME in their top-100 list

are shown in Table 2.3. Eight of these SNPs had p-values higher than the Bonferroni

level of significance and were missed by the association analysis using Plink. The

potential oncogenesis mechanisms for some of the eight SNPs have been investigated

in previous studies. The SNP, rs139337779 at 12q24.22, is located within the gene,

Nitric oxide synthase 1 (NOS1). (Li et al., 2019) showed that the overexpression of

NOS1 can upregulate the expression of ATP-binding cassette, subfamily G, member 2

(ABCG2), which is a breast cancer resistant protein (Mao and Unadkat, 2015), and

NOS1-indeuced chemo-resistance was partly mediated by the upregulation of ABCG2

expression. (Lee et al., 2009) reported that NOS1 is associated with the breast cancer
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Figure 2.7: Genotype-phenotype relationships for salient SNPs used in the
DNN model: Linear case Four salient SNPs with linear relationships as shown by
the pink lines and the significant association p-values.
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Figure 2.8: Genotype-phenotype relationships for salient SNPs used in the
DNN model: Non-linear case. Four salient SNPs with non-linear relationships as
shown by the pink lines and the insignificant association p-values. The DNN model
was able to use SNPs with non-linear relationships as salient features for prediction.
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risk in a Korean cohort. The SNP, chr13 113796587 A G at 13q34, is located in the F10

gene, which is the coagulation factor (Tinholt et al., 2014) showed that the increased

coagulation activity and genetic polymorphisms in the F10 gene are associated with

breast cancer. The BNC2 gene containing the SNP, chr9 16917672 G T at 9p22.2, is

a putative tumor suppressor gene in high-grade serious ovarian carcinoma (Cesaratto

et al., 2016). The SNP, chr2 171708059 C T at 2q31.1, is within the GAD1 gene and

the expression level of GAD1 is a significant prognostic factor in lung adenocarcinoma

(Tsuboi et al., 2019). Thus, the interpretation of DNN models may identify novel SNPs

with nonlinear association with the breast cancer (Purcell Shaun et al., 2009; Scott

et al., 2017; LeBlanc and Kooperberg, 2010; Angermueller et al., 2016; Schmidhuber,

2015).
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Chapter 3

LINA: A Linearizing Neural Network Architecture

for Accurate First-Order and Second-Order

Interpretations
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3.1 Introduction

An interpretable machine learning algorithm should have a high representational capac-

ity to provide strong predictive performance, and its learned representations should be

amenable to model interpretation and understandable to humans. The two desiderata

are generally difficult to balance. Linear models and decision trees generate simple rep-

resentations for model interpretation but have low representational capacities for only

simple prediction tasks. Neural networks and support vector machines have high repre-

sentational capacities to handle complex prediction tasks, but their learned representa-

tions are often considered to be ”black boxes” for model interpretation (Bermeitinger.

et al., 2019). Predictive genomics is an exemplary application that requires both a

strong predictive performance and high interpretability. In this application, the geno-

type information for a large number of SNPs in a subject’s genome is used to predict the

phenotype of this subject. While neural networks have been shown to provide better

predictive performance than statistical models (Badré et al., 2021; Fergus et al., 2018),

statistical models are still the dominant methods for predictive genomics, because ge-

neticists and genetic counselors can understand which SNPs are used and how they are

used as the basis for certain phenotype predictions. Neural network models have also

been used in many other important bioinformatics applications (Ho Thanh Lam et al.,

2020; Do and Le, 2020; Baltres et al., 2020) that can benefit from model interpretation.

To make neural networks more useful for predictive genomics and other applications,

we developed a new neural network architecture, referred to as linearizing neural net-

work architecture (LINA), to provide both first-order and second-order interpretations

and both instance-wise and model-wise interpretations. Model interpretation reveals

the input-to-output relationships that a machine learning model has learned from the

training data to make predictions (Molnar, 2020). The first-order model interpretation
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aims to identify individual features that are important for a model to make predic-

tions. For predictive genomics, this can reveal which individual SNPs are important

for phenotype prediction. The second-order model interpretation aims to identify im-

portant interactions among features that have a large impact on model prediction.

The second-order interpretation may reveal the XOR interaction between the two fea-

tures that jointly determine the output. For predictive genomics, this may uncover

epistatic interactions between pairs of SNPs (Cordell, 2002; Phillips, 2008). A gen-

eral strategy for the first-order interpretation of neural networks, first introduced by

Saliency (Simonyan et al., 2014), is based on the gradient of the output with respect

to (w.r.t.) the input feature vector. A feature with a larger partial derivative of the

output is considered more important. The gradient of a neural network model w.r.t.

the input feature vector of a specific instance can be computed using backpropagation,

which generates an instance-wise first-order interpretation. The Grad*Input algorithm

(Shrikumar et al., 2017) multiplies the obtained gradient element-wise with the input

feature vector to generate better scaled importance scores. As an alternative to using

the gradient information, the Deep Learning Important FeaTures (DeepLIFT) algo-

rithm explains the predictions of a neural network by backpropagating the activations

of the neurons to the input features (Shrikumar et al., 2017). The feature importance

scores are calculated by comparing the activations of the neurons with their references,

which allows the importance information to pass through a zero gradient during back-

propagation. The Class Model Visualization (CMV) algorithm (Simonyan et al., 2014)

computes the visual importance of pixels in convolution neural network (CNN). It per-

forms backpropagation on an initially dark image to find the pixels that maximize the

classification score of a given class. While the algorithms described above were de-

veloped specifically for neural networks, model-agnostic interpretation algorithms can

be used for all types of machine learning models. Local Interpretable Model-agnostic
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Explanations (LIME) (Ribeiro et al., 2016) fits a linear model to synthetic instances

that have randomly perturbed features in the vicinity of an instance. The obtained

linear model is analyzed as a local surrogate of the original model to identify the im-

portant features for the prediction on this instance. Because this approach does not

rely on gradient computation, LIME can be applied to any machine learning model,

including non-differentiable models. Previously, we combined LIME and DeepLIFT to

interpret a feedforward neural network model for predictive genomics (Badré et al.,

2021). Kernel SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017) uses

a sampling method to find the Shapley value for each feature of a given input. The

Multi-Objective Counterfactuals (MOC) method (Dandl et al., 2020) searches for the

counterfactual explanations for an instance by solving a multi-objective optimization

problem. The importance scores calculated by the L2X algorithm (Chen et al., 2018)

are based on the mutual information between the features and the output from a ma-

chine learning model. L2X is efficient because it approximates the mutual information

using a variational approach. The second-order interpretation is more challenging than

the first-order interpretation because d features would have d2−d
2

possible interactions

to be evaluated. Computing the Hessian matrix of a model for the second-order in-

terpretation is conceptually equivalent to, but much more computationally expensive

than, computing the gradient for the first-order interpretation. Group Expected Hes-

sian (GEH) (Cui et al., 2019) computes the Hessian of a Bayesian neural network for

many regions in the input feature space and aggregates them to estimate an interaction

score for every pair of features. The additive grooves algorithm (Sorokina et al., 2007)

estimates the feature interaction scores by comparing the predictive performance of the

decision tree containing all features with that of the decision trees with pairs of fea-

tures removed. Neural Interaction Detection (NID) (Tsang et al., 2017) avoids the high

computational cost of evaluating every feature pair by directly analyzing the weights
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in a feedforward neural network. If some features are strongly connected to a neuron

in the first hidden layer and the paths from that neuron to the output have high aggre-

gated weights, then NID considers these features to have strong interactions. Model

interpretations can be further classified as instance-wise interpretations or model-wise

interpretations. Instance-wise interpretation algorithms, including Saliency (Simonyan

et al., 2014), LIME (Ribeiro et al., 2016) and L2X (Chen et al., 2018), provide an

explanation for a model’s prediction for a specific instance. For example, an instance-

wise interpretation of a neural network model for predictive genomics may highlight

the important SNPs in a specific subject which are the basis for the phenotype pre-

diction of this subject. This is useful for intuitively assessing how well grounded the

prediction of a model is for a specific subject. Model-wise interpretation provides in-

sights into how a model makes predictions in general. CMV (Simonyan et al., 2014)

was developed to interpret CNN models. Instance-wise interpretation methods can

also be used to explain a model by averaging the explanations of all the instances in

a test set. A model-wise interpretation of a predictive genomics model can reveal the

important SNPs for a phenotype prediction in a large cohort of subjects. Model-wise

interpretations shed light on the internal mechanisms of a machine learning model.

In this study, we designed the LINA architecture and developed the first-order and

second-order interpretation algorithms for LINA. The interpretation performance of

the new methods was benchmarked using synthetic datasets and a predictive genomics

application in comparison with state-of-the-art (SOTA) interpretation methods. The

interpretations from LINA were more versatile and more accurate than those from the

SOTA methods.
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3.2 Methods

3.2.1 LINA Architecture

The key feature of the LINA architecture (Figure 3.1) is the linearization layer, which

computes the output as an element-wise multiplication product of the input features,

attention weights, and coefficients:

y = S[KT (A ◦X) + b] = S(
d∑

i=1

(ki ∗ ai ∗ xi) + b) (3.1)

where y is the output, X is the input feature vector, S() is the activation function

of the output layer, ◦ represents the element-wise multiplication operation, K and b

are respectively the coefficient vector and bias that are constant for all instances, and

A is the attention vector that adaptively scales the feature vector of an instance. X,

A and K are three vectors of dimension d, which is the number of input features.

The computation by the linearization layer and the output layer is also expressed in

a scalar format in Equation 3.1. This formulation allows the LINA model to learn a

linear function of the input feature vector, coefficient vector, and attention vector. The

attention vector is computed from the input feature vector using a multi-layer neural

network, referred to as the inner attention neural network in LINA. The inner attention

neural network must be sufficiently deep for a prediction task owing to the designed

low representational capacity of the remaining linearization layer in a LINA model.

In the inner attention neural network, all hidden layers use a non-linear activation

function, such as ReLU, but the attention layer uses a linear activation function to

avoid any restriction in the range of the attention weights. This is different from the

typical attention mechanism in existing attentional architectures which generally use

the softmax activation function.
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Figure 3.1: An example of LINA model for structured data. The LINA model
uses an input layer and multiple hidden layer to output the attention weights in the
attention layer. The attention weights are then multiplied with the input features
element-wise in the linearization layer and then with the coefficients in the output layer.
The crossed neurons in the linearization layer represent element-wise multiplication of
their two inputs. The incoming connections to the crossed neurons have a constant
weight of 1.
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3.2.2 The Loss Function

The loss function for LINA is composed of the training error loss, regularization penalty

on the coefficient vector, and regularization penalty on the attention vector:

loss = E(Y, Ytrue) + β ∗ ||K||2 + γ ∗ ||A− 1||1 (3.2)

where E is a differentiable convex training error function, ||K||2 is the L2 norm of the

coefficient vector, ||A − 1||1 is the L1 norm of the attention vector minus 1, and β

and γ are the regularization parameters. The coefficient regularization sets 0 to be the

expected value of the prior distribution for K, which reflects the expectation of un-

informative features. The attention regularization sets 1 to be the expected value of

the prior distribution for A, which reflects the expectation of a neutral attention weight

that does not scale the input feature. The values of β and γ and the choices of L2, L1,

and L0 regularization for the coefficient and attention vectors are all hyperparameters

that can be optimized for predictive performance on the validation set.

3.2.3 First-order interpretation

Interpretation from the gradient of the output, y, w.r.t the input feature vector, X.

The output gradient can be decomposed as follows:

∂y

∂xi

= ki ∗ ai +
d∑

j=1

∂aj
∂xi

∗ xj (3.3)

Proof:
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Let us derive ∂y
∂xi

for a regression task (or the logit for a classification task):

∂y

∂xi

=
∂kiaixi

∂xi

+
d∑

j=1,j ̸=i

∂kjajxj

∂xi

+
∂b

∂xi

= ki
∂aixi

∂xi

+
d∑

j=1,j ̸=i

kj
∂ajxj

∂xi

= ki(
∂ai
∂xi

+ ai) +
d∑

j=1,j ̸=i

kj
∂ajxj

∂xi

∂y

∂xi

= kiai +
d∑

j=1

∂aj
∂xi

xj

End-of-proof.

The decomposition of the output gradient in LINA shows that the contribution

of a feature in an attentional architecture comprises (i) a direct contribution to the

output weighted by its attention weight and (ii) an indirect contribution to the output

during attention computation. This indicates that using attention weights directly as

a measure of feature importance omits the indirect contribution of a feature in the

attention mechanism. For the instance-wise first-order interpretation, we defined

FQi =
∂y

∂xi

(3.4)

as the full importance score for feature i,

DQi = kiai (3.5)
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as the direct importance score for feature i, and

IQi =
d∑

j=1

∂aj
∂xi

xj (3.6)

as the indirect importance score for feature i. For the model-wise first-order interpre-

tation, we defined the model-wise full importance score (FPi), direct importance score

(DPi), and indirect importance score (IPi) for feature i as the averages of the absolute

values of the corresponding instance-wise importance scores of this feature across all

instances in the test set:

FPi = |FQi| (3.7)

DPi = |DQi| (3.8)

IPi = |IQi| (3.9)

Because absolute values are used, the model-wise FPi of feature i is no longer a

sum of its IPi and DPi.

3.2.4 Second-order interpretation

It is computationally expensive and unscalable to compute the Hessian matrix for a

large LINA model. Here, the Hessian matrix of the output w.r.t. the input feature

vector is reducible to the Jacobian matrix of the attention vector w.r.t. the input

feature vector in a LINA model, which is computationally feasible to calculate when

the network utilizes leaky-ReLU or ReLU activation function. It is derived as follows:

∂2y

∂xi∂xj

= kj
∂aj
∂xi

+ ki
∂ai
∂xj

(3.10)

Proof:
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∂2y

∂xi∂xj

= KT ∂

∂xi



x1
∂a1
∂xj

...

xj−1
∂aj−1

∂xj

xj
∂aj
∂xj

+ aj

xj+1
∂aj+1

∂xj

...

xn
∂an
∂xj
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∂2y

∂xi∂xj

= KT



x1
∂2a1

∂xj∂xi

...

xj−1
∂2aj−1

∂xj∂xi

xj
∂2aj

∂xj∂xi
+

∂aj
∂xi

xj+1
∂aj+1

∂xj∂xi

...

xi−1
∂2ai−1

∂xj∂xi

xi
∂2ai

∂xj∂xi
+ ∂ai

∂xj

xi+1
∂ai+1

∂xi∂xi

...

xn
∂2an
∂xj∂xi


We aim to demonstrate that, for any neuron, q, in the attention layer that outputs

A (i.e., q ∈ A):

∂2aq
∂xj∂xi

= 0

For any neuron q ∈ A:

aq =

ml∑
i=1

wq,k,lfk,l
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∂aq
∂xj

=

ml∑
i=1

wq,k,l
∂fk,l
∂xj

∂2aq
∂xi∂xj

=

ml∑
i=1

wq,k,l
∂2fk,l
∂xi∂xj

Where fk,l is the activation function output from neuron k on hidden layer l con-

taining ml neurons, and w(i, k, l) the coefficient of the connection between neuron q on

layer A and neuron k on layer l.

For this proof, we define the activation functions:

ReLU(x) =


x, if x > 0

0, otherwise

, and Leaky−ReLU(x) =


x, if fi,l > 1

−αx, otherwise

, where

α is a constant.

Initial case:

Let’s assume the case where MTL LINA has only one hidden layer. For any neuron q

on the 1st hidden layer, we have:

∂fq,1
∂xj

=
∂fq,1
∂oq,1

∂oq,1
∂xj

.

with oq,1 being the output of neuron q before activation.

oq,1 =
m∑
k=1

wq,k,1xk

Because wq,k,1 is independent of xj,

∂oq,1
∂xj

=
m∑
k=1

wq,k,1
∂xk

∂xj
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Then:

∂fq,1
∂xj

=
∂fq,1
∂oq,1

m∑
k=1

wq,k,l
∂xk

∂xj

∂fq,1
∂xj

=
∂fq,1
∂oq,1

wq,j,1

∂2fq,1
∂xi∂xj

=
∂

∂xi

(
∂fq,1
∂oq,1

wq,j,1)

∂2fq,1
∂xi∂xj

= wq,j,1
∂

∂xi

(
∂fq,1
∂oq,1

)

When fq,1 is ReLU or leaky-ReLU, then ∂
∂xi

(∂fq,1
∂oq,1

) = 0 because for ReLU:∂fq,1
∂oq,1

=
1, if fq,1 > 0

0, else

, or Leaky-ReLU: ∂fq,1
∂oq,1

=


1, if fq,1 > 0

−α, else

, and so the second-order

derivative of those functions is assumed to be 0 everywhere. Thus:

∂2fq,1
∂xi∂xj

= 0

And:

∂2aq
∂xi∂xj

=

m1∑
i=1

wq,k,1
∂2fk,1
∂xi∂xj

= 0

Induction:

We hypothesize that, for a neural network with 2 or more hidden layers, we have

at layer l, for any neuron q:

∂2fq,l
∂xi∂xj

= 0
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On the next hidden layer l + 1, we have, for any neuron q:

∂fq,l+1

∂xj

=
∂fq,l+1

∂oq,l+1

∂oq,l+1

∂xj

And:

oq,l+1 =

ml∑
k=1

wq,k,lfk,l

Because wq,k,l is independent of xj,

∂oq,l+1

∂xj

=

ml∑
k=1

wq,k,l
∂fk,l
∂xj

Then:

∂fq,l+1

∂xj

=
∂fq,l+1

∂oq,l+1

m∑
k=1

wq,k,l
∂fk,l
∂xj

∂2fq,l+1

∂xi∂xj

=
∂

∂xi

(
∂fq,l+1

∂oq,l+1

m∑
k=1

wq,k,l
∂fk,l
∂xj

)

∂2fq,l+1

∂xi∂xj

=
∂fq,l+1

∂oq,l+1

m∑
k=1

wq,k,l
∂

∂xi

(
∂fk,l
∂xj

) +
∂

∂xi

(
∂fq,l+1

∂oq,l+1

)
m∑
k=1

wq,k,l
∂fk,l
∂xj

∂
∂xi

(
∂fq,l+1

∂oq,l+1
) = 0 because the second derivative of ReLU or Leaky-ReLU is zero.

Thus,

∂2fq,l+1

∂xi∂xj

=
∂fq,l+1

∂oq,l+1

m∑
k=1

wq,k,l
∂

∂xi

(
∂fk,l
∂xj

)

But for any neuron q on l (hypothesis):
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∂2fq,l
∂xi∂xj

= 0

By deduction:

∂2fq,l+1

∂xi∂xj

=
∂fq,l+1

∂oq,l+1

m∑
k=1

wq,k,l0

∂2fq,l+1

∂xi∂xj

= 0

Conclusion:

By induction, we have demonstrated that for any neuron q on any layer l:

∂2fq,l
∂xi∂xj

= 0

Therefore,

∂2aq
∂xi∂xj

=

ml∑
i=1

wq,k,l
∂2fk,l
∂xi∂xj

=

ml∑
i=1

wq,k,l0

∂2aq
∂xi∂xj

= 0

For any aq ∈ A:
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∂2y

∂xi∂xj

= KT



0

...

∂aj
∂xi

...

∂ai
∂xj

...

0


Hence,

∂2y

∂xi∂xj

= kj
∂aj
∂xi

+ ki
∂ai
∂xj

End of Proof.

TheK-weighted sum of the omitted second-order derivatives of the attention weights

constitutes the approximation error. The performance of the second-order interpre-

tation based on this approximation is benchmarked using synthetic and real-world

datasets.

For instance-wise second-order interpretation, we define a directed importance score

of feature r to feature c:

SQc
r = kc

∂ac
∂xr

(3.11)
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This measures the importance of feature r in the calculation of the attention weight

of feature c. In other words, this second-order importance score measures the impor-

tance of feature r to the direct importance score of feature c for the output. For the

model-wise second-order interpretation, we defined an undirected importance score

between feature r and feature c based on their average instance-wise second-order im-

portance score in the test set:

SPc,r = |SQc
r + SQr

c| (3.12)

3.2.5 Recap of the LINA importance scores

The notations and definitions of all the importance scores for a LINA model are recapit-

ulated below. FQ and SQ are selected as the first-order and second-order importance

scores, respectively, for instance-wise interpretation. FP and SP are used as the first-

order and second-order importance scores, respectively, for model-wise interpretation.
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3.3 Data and Experimental Setup

3.3.1 California housing dataset

The California housing dataset (Pace and Barry, 1997) was used to formulate a simple

regression task, which is the prediction of the median sale price of houses in a district

based on eight input features ( Table 3.1). The dataset contained 20640 instances

(districts) for model training and testing.

3.3.2 First-order benchmarking datasets

Five synthetic datasets, each containing 20,000 instances, were created using the sig-

moid functions to simulate binary classification tasks. These functions were created
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following the examples in (Chen et al., 2018) for the first-order interpretation bench-

marking. All five datasets included ten input features. The values of the input features

were independently sampled from a standard Gaussian distribution: xi ∼ N(0, 1), i ∈

{1, 2, . . . , 10}. The target value was set to 0 if the sigmoid function output is (0,0.5).

The target value was set to 1, if the sigmoid function output is [0.5,1). We used the

following five sigmoid functions of different subsets of the input features:

(F1): Sig(4X2
1 − 3X2

2 − 2X2
3 + X2

4 ). This function contains four important features

with independent squared relationships with the target. The ground-truth rankings

of the features by first-order importance are X1, X2, X3, and X4. The remaining six

uninformative features are tied in the last rank.

(F2): Sig(−10 sin(X1) + 2|X2| + X3 − exp(−X4)). This function contains four im-

portant features with various non-linear additive relationships with the target. The

ground-truth ranking of the features is X1, X4, X2, and X3. The remaining six unin-

formative features are tied in the last rank.

(F3): Sig(4X1X2X3 + X4X5X6). This function contains six important features with

multiplicative interactions among one another. The ground-truth ranking of the fea-

tures is X1, X2, and X3 tied in the first rank, X4, X5, and X6 tied in the second rank,

and the remaining uninformative features tied in the third rank.

(F4): Sig(−10 sin(X1X2X3) + |X4X5X6|). This function contains six important fea-

tures with multiplicative interactions among one another and non-linear relationships

with the target. The ground-truth ranking of the features is X1, X2, and X3 tied in the

first rank, X4, X5, and X6 tied in the second rank, and the other four uninformative

features tied in the third rank.

(F5): Sig(−20sin(X1X2) + 2|X3| + X4X5 − 4exp(−X6)). This function contains six

important features with a variety of non-linear relationships with the target. The
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ground-truth ranking of the features is X1 and X2 tied in the first rank, X6 in the sec-

ond, X3 in the third, X4 and X5 tied in the fourth, and the remaining uninformative

features tied in the fifth.

3.3.3 Second-order benchmarking dataset

Ten regression synthetic datasets, referred to as F6-A, F7-A, F8-A, F9-A, and F10-A

(-A datasets) and F6-B, F7-B, F8-B, F9-B, and F10-B (-B datasets) were created. The

-A datasets followed the examples in (Tsang et al., 2017) for the second-order interpre-

tation benchmarking. The -B datasets used the same functions below to compute the

target as the -A datasets, but included more uninformative features to benchmark the

interpretation performance on high-dimensional data. Each -A dataset contained 5,000

instances. Each -B dataset contained 10,000 instances. The five -A datasets included

13 input features. The five -B datasets included 100 input features, some of which were

used to compute the target. In F7-A/B, F8-A/B, F9-A/B, and F10-A/B, the values of

the input features of an instance were independently sampled from a standard uniform

distribution: Xi ∼ U(−1, 1),i ∈ {1, 2, . . . , 13} in the -A datasets or i ∈ {1, 2, . . . , 100}

in the -B datasets. In the F6 dataset, the values of the input features of an in-

stance were independently sampled from two uniform distributions: Xi ∼ U(0, 1),

i ∈ 1, 2, 3, 6, 7, 9, 11, 12, 13} in the -A datasets and i ∈ {1, 2, 3, 6, 7, 9, 11, ..., 100} in the

-B datasets; and Xi ∼ U(0.6, 1), i ∈ {4, 5, 8, 10} in both. The value of the target for

an instance was computed using the following five functions:

(F6-A) and (F6-B): πX1X2
√
X3 + sin−1X4 + log (X3 +X5) +

X9

X10

√
X7

X8
−X2X7. This

function contains eleven pairwise feature interactions: {(X1, X2), (X1, X3), (X2, X3),

(X3, X5), (X7, X8), (X7, X9), (X7, X10), (X8, X9), (X8, X10), (X9, X10), (X2, X7)}.

(F7-A) and (F7-B): exp(|X1−X2|)+|X2X3|−X
2|X4|
3 +log(X2

4+X2
5+X2

7+X2
8 )+X9+
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X2
10

1+X2
10
. This function contains nine pairwise interactions: {(X1, X2), (X2, X3), (X3, X4),

(X4, X5), (X4, X7), (X4, X8), (X5, X7), (X5, X8), (X7, X8)}.

(F8-A) and (F8-B): sin(|X1X2| + 1) − log(|X3X4| + 1) + cos(X5 + X6 − X8) +√
X2

8 +X2
9 +X2

10. This function contains ten pairwise interactions: {(X1, X2), (X3, X4),

(X5, X6), (X4, X7), (X5, X6), (X5, X8), (X6, X8), (X8, X9), (X8, X10), (X9, X10)}.

(F9-A) and (F9-B): tanh(X1X2 + X3X4)
√

|X5| + log [(X6X7X8)
2 + 1] + X9X10 +

1
1+|X10| . This function contains thirteen pairwise interactions: {(X1, X2), (X1, X3), (X2, X3),

(X2, X4), (X3, X4), (X1, X5), (X2, X5), (X3, X5), (X4, X5), (X6, X7), (X6, X8), (X7, X8),

(X9, X10)}.

(F10-A) and (F10-B): cos(X1X2X3) + sin(X4X5X6). This function contains six

pairwise interactions: {(X1, X2), (X1, X3), (X2, X3), (X4, X5), (X4, X6), (X5, X6)}.

3.3.4 Breast cancer dataset

The Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE)

project (Amos et al., 2017) generated a breast cancer dataset (NIH dbGaP accession

number: phs001265.v1.p1) for genome-wide association study (GWAS) and predictive

genomics. This cohort contained 26,053 case subjects with malignant tumor or in situ

tumor and 23,058 control subjects with no tumor. The task for predictive genomics is a

binary classification of subjects between cases and controls. The breast cancer dataset

was processed using PLINK (Purcell et al., 2007) as described previously (Badré et al.,

2021) to compute the statistical significance of the SNPs. Out of a total of 528,620

SNPs, 1541 SNPs had a p-value lower than 10−6 and were used as the input features

for predictive genomics. To benchmark the performance of the model interpretation,

1541 decoy SNPs were added as input features. The frequencies of homozygous minor

alleles, heterozygous alleles, and homozygous dominant alleles were the same between

decoy SNPs and real SNPs. Because decoy SNPs have random relationships with

76



the case/control phenotype, they should not be selected as important features or be

included in salient interactions by model interpretation.

3.3.5 Implementations and Evaluation Strategies

The California Housing Dataset was partitioned into a training set (70%), a validation

set (20%), and a test set (10%). The eight input features were longitude, latitude,

median age, total rooms, total bedrooms, population, households, and median income.

The median house value was the target of the regression. All the input features were

standardized to zero mean and unit standard deviation based on the training set. Fea-

ture standardization is critical for model interpretation in this case because the scale

for the importance scores of a feature is determined by the scale for the values of

this feature, and comparison of the importance scores between features requires the

values of the features to be in the same scale. The LINA model comprised an input

layer (8 neurons), five fully connected hidden layers (7, 6, 5, 4, and 3 neurons), and

an attention layer (8 neurons) for the inner attention neural network, followed by a

second input layer (8 neurons), a linearization layer (8 neurons), and an output layer

(1 neuron). The hidden layers used ReLU as the activation function. No regularization

was applied to the coefficient vector and L1 regularization was applied to the attention

vector (γ = 10−6). The LINA model was trained using the Adam optimizer with a

learning rate of 10−2. The predictive performance of the obtained LINA model was

benchmarked to have an RMSE of 71055 in the test set. As a baseline model for com-

parison, a gradient boosting model achieved an RMSE of 77852 in the test set using

300 decision trees with a maximum depth of 5.

For the first-order interpretation, each synthetic dataset was split into a cross-validation

set (80%) for model training and hyperparameter optimization and a test set (20%) for
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performance benchmarking and model interpretation. A LINA model and a feedfor-

ward neural network (FNN) model were constructed using 10-fold cross-validation. For

the first four synthetic datasets, the inner attention neural network in the LINA model

had 3 layers containing 9 neurons in the first layer, 5 neurons in the second layer, and

10 neurons in the attention layer. The FNN had 3 hidden layers with the same number

of neurons in each layer as the inner attention neural network in the LINA model. For

the fifth function with more complex relationships, the first and second layers were

widened to 100 and 25 neurons, respectively, in both the FNN and LINA models to

achieve a predictive performance similar to the other datasets in their respective vali-

dation sets. Both the FNN and LINA models were trained using the Adam optimizer.

The learning rate was set to 10−2. The mini-batch size was set to 32. No hyperparam-

eter tuning was performed. The LINA model was trained with the L2 regularization

on the coefficient vector (β = 10−4) and the L1 regularization on the attention vector

(γ = 10−6). The values of β and γ were selected from 10−2,10−3,10−4,10−5,10−6,10−7,

and 0 based on the predictive performance of the LINA model on the validation set.

Batch normalization was used for both architectures. Both the FNN and LINA models

achieved predictive performance at approximately 99% AUC on the test set in the five

first-order synthetic datasets, which was comparable to (Chen et al., 2018). Deep Lift

(Shrikumar et al., 2017), LIME (Ribeiro et al., 2016), Grad*Input (Shrikumar et al.,

2017), L2X (Chen et al., 2018) and Saliency (Simonyan et al., 2014) were used to in-

terpret the FNN model and calculate the feature importance scores using their default

configurations. FP, DP, and IP scores were used as the first-order importance scores

for the LINA model. We compared the performances of the first-order interpretation

of LINA with DeepLIFT, LIME, GradInput, and L2X. The interpretation accuracy

was measured using the Spearman rank correlation coefficient between the predicted

ranking of features by their first-order importance and the ground-truth ranking. This

78



metric was chosen because it encompasses both the selection and ranking of the im-

portant features.

For the second-order interpretation benchmarking, each synthetic dataset was also split

into a cross-validation set (80%) and a test set (20%). A LINA model, an FNN model

for NID, and a Bayesian neural network (BNN) for GEH, as shown in (Cui et al., 2019),

were constructed based on the neural network architecture used in (Tsang et al., 2017)

using 10-fold cross-validation. The inner attention neural network in the LINA model

uses 140 neurons in the first hidden layer, 100 neurons in the second hidden layer,

60 neurons in the third hidden layer, 20 neurons in the fourth hidden layer, and 13

neurons in the attention layer. The FNN model was composed of 4 hidden layers with

the same number of neurons in each layer as LINA’s inner attention neural network.

The BNN model uses the same architecture as that of the FNN model. The FNN,

BNN, and LINA models were trained using the Adam optimizer with a learning rate of

10−3 and a mini-batch size of 32 for the -A datasets and 128 for the -B datasets. The

LINA model was trained using L2 regularization on the coefficient vector (β = 10−4)

and the L1 regularization on the attention vector (γ = 10−6) with batch normalization.

Hyperparameter tuning was performed as described above to optimize the predictive

performance. The FNN and BNN models were trained using the default regularization

parameters, as shown in (Cui et al., 2019), (Tsang et al., 2017). Batch normalization

was used for LINA. The FNN, BNN, and LINA models all achieved R² scores of more

than 0.99 on the test sets of the five -A datasets, as in the examples in (Tsang et al.,

2017), while their R² scores ranged from 0.91 to 0.93 on the test set of the five high-

dimensional -B datasets. Pairwise interactions in each dataset were identified from the

BNN model using GEH (Cui et al., 2019), the FNN model using NID (Tsang et al.,

2017), and the LINA model using the SP scores. For GEH, the number of clusters

was set to the number of features and the number of iterations was set to 20. NID
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was run using its default configuration. For a dataset with m pairs of ground-truth

interactions, the top-m pairs with the highest interaction scores were selected from

each algorithm’s interpretation output. The percentage of ground-truth interactions

in the top-m predicted interactions (i.e., the precision) was used to benchmark the

second-order interpretation performance of the algorithms.

For the breast cancer dataset, 49111 subjects in the breast cancer dataset were ran-

domly divided into the training set (80%), validation set (10%), and test set (10%).

The FNN model and the BNN model had 3 hidden layers with 1000, 250, and 50

neurons as described previously (Badré et al., 2021). The same hyperparameters were

used in our previous study (Badré et al., 2021). The inner attention neural network in

the LINA model also used 1000, 250, and 50 neurons before the attention layer. All

of these models had 3082 input neurons for 1541 real SNPs and 1541 decoy SNPs. β

was set to 0.01 and γ to 0, which were selected from 10−2,10−3,10−4,10−5,10−6,10−7,

and 0 based on the predictive performance of the LINA model on the validation set.

Early stopping based on the validation AUC score was used during training. The FNN,

BNN, and LINA models achieved a test AUC of 64.8%, 64.8%, and 64.7% on the test

set, respectively, using both the 1541 real SNPs with p-values less than 10−6 and the

1541 decoy SNPs. The test AUCs of these models were lower than that of the FNN

model in our previous study (Badré et al., 2021) at 67.4% using real 5,273 SNPs with

p-values less than 10−3 as input. As the same FNN architecture design was used in

the two studies, the reduction in the predictive performance in this study can be at-

tributed to the use of more stringent p-value filtering to retain only real SNPs with a

high likelihood of having a true association with the disease and the addition of decoy

SNPs for benchmarking the interpretation performance.

Deep Lift (Shrikumar et al., 2017), LIME (Ribeiro et al., 2016), Grad*Input (Shriku-

mar et al., 2017), L2X (Chen et al., 2018) and Saliency (Simonyan et al., 2014) were
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used to interpret the FNN model and calculate the feature importance scores using

their default configurations. The FP score was used as the first-order importance score

for the LINA model. After the SNPs were filtered at a given importance score thresh-

old, the false discovery rate (FDR) was computed from the retained real and decoy

SNPs above the threshold. The number of retained real SNPs was the total positive

count for the FDR. The number of false positive hits (i.e., the number of unimportant

real SNPs) within the retained real SNPs was estimated as the number of retained de-

coy SNPs. Thus, FDR was estimated by dividing the number of retained decoy SNPs

by the number of retained real SNPs. An importance-score-sorted list of SNPs from

each algorithm was filtered at an increasingly stringent score threshold until reaching

the desired FDR level. The interpretation performance of an algorithm was measured

by the number of top-ranked features filtered at 0.1%, 1%, and 5% FDR and the FDRs

for the top-100 and top-200 SNPs ranked by an algorithm. For the second-order inter-

pretation, pairwise interactions were identified from the BNN model using GEH (Cui

et al., 2019), from the FNN model using NID (Tsang et al., 2017), and from the LINA

model using the SP scores. For GEH, the number of clusters was set to 20 and the

number of iterations was set to 20. While LINA and NID used all 4,911 subjects in

the test set and completed their computation within an hour, the GEH results were

computed for only 1000 random subjects in the test set over ¿2 days because GEH

would have taken approximately two months to complete the entire test set with its

n2 computing cost where n is the number of subjects. NID was run using its default

configuration in the FNN model. The interpretation accuracy was also measured by

the numbers of top-ranked pairwise interactions detected at 0.1%, 1%, and 5% FDR

and the FDRs for the top-1000 and top-2000 interaction pairs ranked by an algorithm.

A SNP pair was considered to be false positive if one or both of the SNPs in a pair

was a decoy.
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3.4 Results and Discussion

3.4.1 Demonstration of LINA on a real-world application

In this section, we demonstrate LINA using the California housing dataset, which

has been used in previous model interpretation studies for algorithm demonstration

(Cui et al., 2019), (Tsang et al., 2017). Four types of interpretations from LINA

were presented, including the instance-wise first-order interpretation, the instance-wise

second-order interpretation, the model-wise first-order interpretation, and the model-

wise second-order interpretation.

3.4.1.1 Instance-wise Interpretation

Table 3.1 shows the prediction and interpretation results of the LINA model for an

instance (district # 20444) that had a true median price of $208600. The predicted

price of $285183 was simply the sum of the eight element-wise products of the attention,

coefficient, and feature columns plus the bias. This provided an easily understandable

representation of the intermediate computation behind the prediction for this instance.

For example, the median age feature had a coefficient of 213 in the model. For this

instance, the median age feature had an attention weight of -275, which switched

the median age to a negative feature and amplified its direct effect on the predicted

price in this district. The product of the attention weight and coefficient yielded

the direct importance score of the median age feature (i.e., DQ = -58,524), which

represented the strength of the local linear association between the median age feature

and the predicted price for this instance. By assuming that the attention weights of

this instance are fixed, one can expect a decrease of $58,524 in the predicted price for an

increase in the median age by one standard deviation (12.28 years) for this district. But

this did not consider the effects of the median age increase on the attention weights,
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which was accounted for by its indirect importance score (i.e., IQ = 91,930). The

positive IQ indicated that a higher median age would increase the attention weights

of other positive features and increase the predicted price indirectly. Combining the

DQ and IQ, the positive FQ of 33,407 marked the median age to be a significant

positive feature for the predicted price, perhaps through the correlation with some

desirable variables for this district. This example suggested a limitation of using the

attention weights themselves to evaluate the importance of features in the attentional

architectures. The full importance scores represented the total effect of a feature’s

change on the predicted price. For this instance, the latitude feature had the largest

impact on the predicted price. Table 3.2 presents a second-order interpretation of

the prediction for this instance. The median age row in Table 3.2 shows how the

median age feature impacted the attention weights of the other features. The two

large positive SQ values of median age to the latitude and longitude features indicated

significant increases of the two location features’ attention weights with the increase of

the median age. In other words, the location becomes a more important determinant of

the predicted price for districts with older houses. The total bedroom feature received a

large positive attention weight for this instance. The total bedroom column in Table 3.2

shows that the longitude and latitude features are the two most important determinants

for the attention weights of the total bedroom feature. This suggested how a location

change may alter the direct importance of the total bedroom feature for the price

prediction of this district.

3.4.1.2 Model-wise Interpretation

Figure 3.2 shows the first-order model-wise interpretation results across districts in the

California Housing dataset. The longitude, latitude, and population were the three
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Figure 3.2: First-order model-wise interpretation. The three bars of a feature
represented the FP, IP, and DP scores of this feature in the LINA model.

most important features. The longitude and latitude had both high direct importance

scores and high indirect importance scores. However, the population feature derived its

importance mostly from its heavy influence on the attention weights as measured by its

indirect importance score. Figure 3.3 shows the second-order model-wise interpretation

results for pairs of different features. Among all the feature pairs, the latitude and

longitude features had the most prominent interactions, which was reasonable because

the location was jointly determined by these two features. Some significant differences

existed between the instance-wise interpretation and model-wise interpretation (e.g.,

Table 3.1 vs. Figure 3.2 and Table 3.2 vs. Figure 3.3). This illustrates the need for

both instance-wise and model-wise interpretation methods for different purposes
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Figure 3.3: Second-order model-wise interpretation. The second-order model-
wise importance scores (SP) are undirected between two features and are shown in a
symmetric matrix as a heatmap. The importance scores for the feature self-interactions
are set to zero in the diagonal of the matrix.

3.4.2 Benchmarking of the first-order and second-order

interpretation using synthetic datasets

In real-world applications, the true importance of features for prediction cannot be

determined with certainty and may vary among different models. Therefore, previous

studies on model interpretation (Ribeiro et al., 2016), (Cui et al., 2019) benchmarked

their interpretation performance using synthetic datasets with known ground-truth of

feature importance. In this study, we also compared the interpretation performance of

LINA with the SOTA methods using synthetic datasets created as in previous studies

(Chen et al., 2018), (Tsang et al., 2017).

The performance of the first-order interpretation of LINA was compared with

DeepLIFT, LIME, Grad*Input, and L2X (Table 3.3). The three first-order importance

scores from LINA, including FP, DP, and IP, were tested. The DP score performed the
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worst among the three, especially in the F3 and F4 datasets which contained interac-

tions among three features. This suggested the limitation of using attention weights

as a measure of feature importance. The FP score provided the most accurate ranking

among the three LINA scores because it accounted for the direct contribution of a fea-

ture and its indirect contribution through attention weights. The first-order importance

scores were then compared among different algorithms. L2X and LIME distinguished

many important features correctly from un-informative features, but their rankings of

the important features were often inaccurate. The gradient-based methods produced

mostly accurate rankings of the features based on their first-order importance. Their

interpretation accuracy generally decreased in datasets containing interactions among

more features. Among all the methods, the LINA FP scores provided the most accurate

ranking of the features on average.

The performance of the second-order interpretation of LINA was compared with

those of GEH and NID (Table 3.4). There were a total of 78 possible pairs of interac-

tions among 13 features in each -A synthetic dataset and there were 4950 possible pairs

of interactions among 100 features in each -B synthetic dataset. The precision from

random guesses was only ∼ 12.8% on average in the -A datasets and less than 1% in the

-B datasets. The three second-order algorithms all performed significantly better than

the random guess. In the -A datasets, the average precision of LINA SP was ∼ 80%,

which was ∼ 12% higher than that of NID and ∼ 29% higher than that of GEH. The

addition of 87 un-informative features in the -B datasets reduced the average precision

of LINA by ∼ 15%, that of NID by ∼ 13%, and that of GEH by ∼ 22%. In the -B

datasets, the average precision of LINA SP was ∼ 65%, which was ∼ 9% higher than

that of NID and ∼ 35% higher than that of GEH. This indicates that more accurate

second-order interpretations can be obtained from the LINA models.
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3.4.3 Benchmarking of the first-order and second-order

interpretation using a predictive genomics application

As the performance benchmarks in synthetic datasets may not reflect those in real-

world applications, we engineered a real-world benchmark based on a breast cancer

dataset for predictive genomics. While it was unknown which SNPs and which SNP

interactions were truly important for phenotype prediction, the decoy SNPs added by

us were truly unimportant. Moreover, a decoy SNP cannot have a true interaction,

such as XOR or multiplication, with a real SNP to have a joint impact on the disease

outcome. Thus, if a decoy SNP or an interaction with a decoy SNP is ranked by

an algorithm as important, it should be considered a false positive detection. As the

number of decoy SNPs was the same as the number of real SNPs, the false discovery

rate can be estimated by assuming that an algorithm makes as many false positive

detections from the decoy SNPs as from the real SNPs. This allowed us to compare

the number of positive detections by an algorithm at certain FDR levels.

The first-order interpretation performance of LINA was compared with those of

DeepLIFT, LIME, Grad*Input, and L2X (Table 3.5). At 0.1%, 1%, and 5% FDR,

LINA identified more important SNPs than other algorithms. LINA also had the lowest

FDRs for the top-100 and top-200 SNPs. The second-order interpretation performance

of LINA was compared with those of NID and GEH (Table 3.6). At 0.1%, 1%, and 5%

FDR, LINA identified more pairs of important SNP interactions than NID and GEH

did. LINA had lower FDRs than the other algorithms for the top-1000 and top-2000

SNP pairs. Both L2X and GEH failed to output meaningful importance scores in this

predictive genomics dataset. Because GEH needed to compute the full Hessian, it was

also much more computationally expensive than the other algorithms.
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The existing model interpretation algorithms and LINA can provide rankings of the

features or feature interactions based on their importance scores at arbitrary scales. We

demonstrated that decoy features can be used in real-world applications to set thresh-

olds for first-order and second-order importance scores based on the FDRs of retained

features and feature pairs. This provided an uncertainty quantification of the model in-

terpretation results without knowing the ground-truth in real-world applications. The

predictive genomics application provided a real-world test of the interpretation perfor-

mance of these algorithms. In comparison with the synthetic datasets, the predictive

genomics dataset was more challenging for model interpretation, because of the low

predictive performance of the models and the large number of input features. For this

real-world application, LINA was shown to provide better first-order and second-order

interpretation performance than existing algorithms on a model-wise level. Further-

more, LINA can provide instance-wise interpretation to identify important SNP and

SNP interactions for the prediction of individual subjects. Model interpretation is im-

portant for making biological discoveries from predictive models, because first-order

interpretation can identify individual genes involved in a disease ((Rivandi et al., 2018;

Romualdo Cardoso et al., 2022)), and second-order interpretation can uncover epistatic

interactions among genes for a disease ((Shaker and Senousy, 2019; van de Haar et al.,

2019)). These discoveries may provide new drug targets ((Wang et al., 2018; Gao et al.,

2019; Gonçalves et al., 2020)) and enable personalized formulation of treatment plans

((Wu et al., 2016; Zhao et al., 2021; Velasco-Ruiz et al., 2021)) for breast cancer.

3.5 Conclusion

In this study, we designed a new neural network architecture, referred to as LINA, for

model interpretation. LINA uses a linearization layer on top of a deep inner attention
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neural network to generate a linear representation of model prediction. LINA provides

the unique capability of offering both first-order and second-order interpretations and

both instance-wise and model-wise interpretations. The interpretation performance of

LINA was benchmarked to be higher than the existing algorithms on synthetic datasets

and a predictive genomics dataset.
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Chapter 4

Explainable multi-task learning improves the

parallel estimation of polygenic risk scores for

many diseases through shared genetic basis
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4.1 Introduction

The polygenic risk score (PRS) of a complex disease quantifies the genetic risk of an in-

dividual for this disease based on many genetic variants across the whole genome of this

individual. The risk variants are generally selected based on this disease’s genome-wide

association studies (GWAS), often using a relaxed statistical significance threshold. A

PRS can be estimated using a variety of statistical methods, including Best Linear

Unbiased Prediction (BLUP) (Whittaker et al., 2000b; Meuwissen et al., 2001; Clark

et al., 2013; Maier et al., 2015; Speed and Balding, 2014) and LDPred (Privé et al.,

2020; Vilhjálmsson et al., 2015; Khera et al., 2018; Márquez-Luna et al., 2021). Statis-

tical models of PRS have been built for breast cancer (Khera et al., 2018), colorectal

cancer[(Thomas et al., 2020), (Gola et al., 2020), Type-2 diabetes (Ge et al., 2022),

cardiovascular disease (Ye et al., 2021), and many other diseases. These statistical

methods generally assume that the effects of risk variants on a phenotype are linear

and independent. Recently, machine learning approaches free of these assumptions

(Ho et al., 2019) have been used to estimate the PRS for breast cancer (Badré et al.,

2021), blood pressure (Elgart et al., 2022), and schizophrenia (Bracher-Smith et al.,

2022). However, the existing studies generally focused on constructing independent

PRS models for individual diseases.

Many complex diseases share a substantial amount of common risk genetic determi-

nants. Genome-wide cross-trait analyses have been performed between obesity and

cardiovascular diseases (Zhuang et al., 2021), between thyroid and breast cancers (Sut-

ton et al., 2022), between uterine leiomyoma and breast cancer (Wu et al., 2022),

between asthma and cardiovascular diseases (Zhou et al., 2022), between Alzheimer’s

disease and gastrointestinal tract disorders (Adewuyi et al., 2022), between Alzheimer

disease and major depressive disorder (Lutz et al., 2020), between lung cancer and
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chronic bronchitis (Byun et al., 2021), and so on. These studies were often motivated

by frequent co-occurrences of a pair of diseases in a population. Some of the epidemio-

logical associations have been attributed to the shared genetic architecture between the

diseases. The related genetic etiology among diseases can be caused by dysfunctions in

some common enzymes or pathways, which may increase the clinical risks for multiple

diseases directly or indirectly.

In this study, we hypothesized that shared genetic determinants among diseases can

be exploited to improve their PRS estimation. We tested this hypothesis using a pan-

disease multi-task learning (MTL) approach (Caruana, 1998) based on an interpretable

neural network architecture (Badré and Pan, 2022). MTL has been widely used in many

computer vision (Girshick, 2015) and natural text processing (Liu et al., 2016) appli-

cations, in which the training examples have multiple labels to be predicted from the

same input feature vectors. Unlike single-task learning (STL), which trains a model to

predict each individual label independently, MTL trains a model to predict all labels

in parallel. MTL has been shown to provide better predictive performance than STL

when the learning tasks are related (Standley et al., 2019). Related tasks can enable a

MTL model to learn a better-shared representation through data amplification, feature

selection, regularization, and other beneficial effects (Fifty et al., 2021). However, if

the tasks are unrelated, the predictive performance of MTL may be worse than that

of STL, owing to the negative knowledge transfer among the tasks (Standley et al.,

2019). Thus, if our hypothesis is invalid, the PRS learned for a disease in conjunction

with other diseases by a pan-disease MTL model would be less accurate than the PRS

learned for this disease by an STL model.
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4.2 Methods

4.2.1 Preparation of the phenotypic and genomic data

A total of 488,175 subjects were extracted from the UK Biobank dataset release ver-

sion 2 (Bycroft et al., 2018). The phenotypic traits of the subjects were determined

using the protocol and software described in a previous study (DeBoever et al., 2020).

The diseases in subjects were identified using hospital inpatient records (ICD10 codes,

UK Biobank Data Coding 19) and self-reported disease status (UK Biobank Data

Coding 3 for cancers and UK Biobank Data Coding 6 for non-cancer diseases). The

UKB genomic data covered a total of 805,426 SNPs. The genotypes of SNPs were

encoded as 0 for homozygous with the minor allele, 1 for heterozygous alleles, or 2

for homozygous with the dominant allele. All the code for data processing, model

training, performance benchmarking, and model interpretation is available publicly at

https://github.com/thepanlab/GattacaNet2.

4.2.2 Construction of the MTL and STL models.

The output of MTL LINA is a d × 1 vector, Y , containing the predicted states of d

traits. The input of MTL LINA is an m× 1 vector, X, containing the genotypes of m

SNPs. In this study, d = 69 in the pan-cancer MTL model, d = 362 in the pan-disease

MTL model, and m = 805426 in both models. MTL LINA can be expressed as:

y = S(K · (A⊙X) +B) (4.1)

A = F (X)

where S() was a sigmoid activation function to be applied element-wise to its input

column vector,K was a d×m coefficient matrix, A was am×1 attention vector, B was a
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d×1 bias vector, · represented the matrix-vector multiplication, and ⊙ represented the

element-wise multiplication. A was computed from X by a feedforward neural network,

F (), composed of 3 hidden layers containing 1000, 250, and 50 neurons. A leaky-ReLU

activation function, dropout with a dropout rate of 50%, and batch normalization were

used in all three hidden layers. A linear activation function was used in the attention

layer. K, B, and F () were all learned from the training data. The loss function of

MTL LINA was defined as:

loss = W TE + β||K||2 (4.2)

whereW was a d×1 vector of the loss weights for all traits, E was a d×1 vector of the

cross-entropy losses for all traits, and ||K||2 was the L2 norm of the coefficient matrix,

and β was the regularization weight. In this study, W = [1, . . . , 1]T and β = 10−3.

A total of 77 STL models were constructed for the 17 cancers and 60 non-cancer diseases

with prevalence levels over 0.5%. All STL models used a feedforward neural network

composed of three hidden layers containing 1000, 250, and 50 neurons as described

previously (Badré et al., 2021). A leaky-ReLU activation function, dropout with a

dropout rate of 50%, and batch normalization were also used in all three hidden layers.

The cross-entropy loss function was used to train the STL models.

4.2.3 Training and benchmarking of the MTL and STL models

The 488,175 UKB subjects were randomly divided into a training set (70%), a vali-

dation set (15%), and a test set (15%). The training set was used to train all MTL

and STL models by stochastic gradient descent. The training used mini-batches with a

batch size of 512 and the Adam optimizer with an initial learning rate of 10−4. All MTL

and STL models were trained for 100 epochs with checkpointing after every epoch. The
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checkpoints with the best performance on the validation set were kept for all MTL and

STL models, which were the epoch-27 checkpoint for the pan-cancer MTL model and

the epoch-25 checkpoint for the pan-disease MTL model. The training was carried out

on a computer node with dual A100 40GB GPUs and 256 GB system memory. The

training data was lazy-loaded to minimize memory usage using the pandas plink (noa)

library. After the training was completed, the predictive performances of all MTL and

STL models were benchmarked using the test set.

4.2.4 Interpretation of the MTL models

The first-order model-wise LINA interpretation algorithm, as detailed in Equation 3.3

and the score FP ( Equation 3.7), was used to identify important features (Badré

and Pan, 2022) for each phenotype. A synthetic genomic vector was constructed for

each subject to estimate the false discovery rate of the model interpretation, as shown

previously (Badré and Pan, 2022). The synthetic genomic vectors of all subjects con-

tained all their real SNPs and an equal number of decoy SNPs. The genotypes of the

decoy SNPs were randomly set to be 0, 1, or 2 with the same probabilities observed in

the real SNPs. Thus, the decoy SNPs had identical frequencies of homozygous minor

alleles, heterozygous alleles, and homozygous dominant alleles as the real SNPs. But,

because the decoy SNPs should have no association with the phenotypes, any decoy

SNP identified as important by the interpretation algorithm was considered a false

positive hit.

A pan-cancer MTL model was constructed and trained as described above using the

synthetic genomic vectors of the subjects in the training set. The importance scores

of both real and decoy SNPs were computed for each cancer using the subjects in the

test set. Only SNPs on the non-sex chromosomes were considered for model interpre-

tation. The FDR for an importance score threshold was estimated as the ratio between
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the numbers of decoy SNPs to real SNPs above this threshold. The important SNPs

at 0.1% FDR and 5% FDR were identified for all cancers with > 0.5% prevalence in

the pan-cancer MTL model. The intersection and union of the important SNPs were

counted between every pair of prevalent cancers. The genetic correlation between two

cancers was computed as the Spearman correlation coefficient between the importance

scores of the SNPs belonging to the union of the SNP sets of the two cancers at 5%

FDR.

4.3 Results

4.3.1 Parallel prediction of many diseases by MTL

A neural network architecture was developed to predict many traits of an individual

from their whole genome (Figure 4.1). This was an MTL extension of the linearizing

neural network architecture (LINA) previously shown to provide good predictive per-

formance for STL estimation of breast cancer PRS (Badré and Pan, 2022). All the

traits shared a latent genomic representation, which was an element-wise multiplica-

tion of a learned attention vector and the input whole-genome vector. Each trait was

predicted from the shared representation via a task-specific hidden layer. The output

from the MTL model was a vector of character states for all the considered phenotypes,

referred to as a whole-phenome vector.

Training a MTL model required a cohort of subjects with phenome-wide trait data. In

this study, we used the United Kingdom Biobank (UKB) dataset and extracted 362

disease traits, including 69 cancer traits, from the electronic medical record of 488,175

UKB participants. 77 diseases, including 17 types of cancers and 60 non-cancer dis-

eases, had prevalence levels higher than 0.5% in the UKB cohort. We constructed two
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Whole-Phenome Vector

Hidden Layer

Hidden Layer

Attention Layer

𝐾ଵ 𝐾 𝐾ௗ

Hidden Layer

  

  𝑦ଵ

Whole-Genome Vector

  𝑦   𝑦ௗ

…. ….

Figure 4.1: An MTL deep neural network for parallel prediction of multiple
traits. This model was constructed based on the linearizing neural network architec-
ture. The input layer (diamond box) contains all genetic variants in the whole genome.
An attention vector is generated after 3 hidden layers (rectangular boxes) and then
multiplied element-wise (round circle) with the input vector through a skip connec-
tion. The shared representation is used to predict each trait (yi in round circle). From
end to end, a whole-phenome vector (diamond box) composed of many individual traits
is predicted from this individual’s whole-genome vector.
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MTL models, one to predict the 69 cancers (pan-cancer MTL) and the other one to

predict all 362 diseases (pan-disease MTL). Instead of selecting SNPs for each disease

based on their statistical association, we included all 805,426 SNPs genotyped in the

UKB cohort as the input for both MTL models. The UKB cohort was randomly divided

into a training set (70%) for model training, a validation set (15%) for hyperparameter

optimization, and a test set (15%) for performance benchmarking. A model’s training

took approximately 5 days on a computer node with dual A100 40GB GPUs. All the

benchmarking results described below were based on the test set.

4.3.2 Improved accuracy for PRS estimation by MTL

The estimation accuracy of malignant melanoma PRS was compared among STL, pan-

cancer MTL, and pan-disease MTL (Figure 4.2 and Figure 4.3). The same training data

was used to train the STL model to predict malignant melanoma only (Figure 4.2A), the

pan-cancer MTL model to predict 69 cancers, including malignant melanoma (Figure

4.2B), and the pan-disease MTL to predict malignant melanoma along with 361 other

diseases (Figure 4.2C). The MTL and STL models generated different distributions of

PRS in the test set. The differences were especially pronounced on the two shoulders

of the distributions, which represented the subjects with higher or lower genetic risks

than the average. The separation between the PRS distribution of the control subjects

and the PRS distribution of the case subjects was greater in the two MTL models

than the STL model. The predictive performances of the three models were compared

using the Receiver Operating Characteristics (ROC) curves (Figure 4.3A). The Area

Under the Curve (AUC) of the ROC curve by STL was only 2.8% higher than the 50%

baseline, while those by the pan-cancer MTL and pan-disease MTL were 9.2% and 8.1%

higher, respectively. Because of the imbalanced data, the predictive performances of
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Figure 4.2: PRS estimation for malignant melanoma by STL and MTL. (A –
C) Density plots of malignment melanoma PRS estimated by (A) STL, (B) pan-cancer
MTL, and (C) pan-disease MTL. Each panel contains two overlapping density plots:
a blue one for the control test cohort and an orange one for the case test cohort. The
separation between the control and case density plots is greater in the two MTL panels
than in the STL panel.

Figure 4.3: PRS ROC AUC and PR AUC curves for malignant melanoma by
STL and MTL. (A) Receiver operating characteristic (ROC) curves of STL (blue),
pan-cancer MTL (orange), and pan-disease MTL (green) for malignant melanoma PRS
with the baseline (indigo dotted line). Both pan-cancer MTL and pan-disease MTL
have larger ROC AUC than STL. (B) Precision-recall (PR) curves of STL (blue), pan-
cancer MTL (orange), and pan-disease MTL (green) for malignant melanoma PRS
with the disease prevalence as the baseline (indigo dotted line). The two MTL models
also have larger PR AUC than STL.

104



the three models were also compared using the Precision-Recall (PR) curves (Figure

4.3B). Both MTL models achieved much higher precisions at the same recall level

than the STL model. The baseline of the PR curve was determined by the prevalence

level of malignant melanoma in the UKB cohort, which was 1.28%. The PR AUC

by STL was 0.04% higher than the baseline, while those by the pan-cancer MTL and

pan-disease MTL were 0.42% and 0.33% higher, respectively. Overall, these metrics

reflected better predictive performance of the two MTL models than the STL model

for malignant melanoma.

The predictive performances of the two MTL models were then compared with the

disease-specific STL models across 17 common cancers with prevalence levels higher

than 0.5% (Table 4.1). The comparisons were made using both ROC AUC and PR

AUC to account for the sensitivity, specificity, precision, and recall of the models. The

two MTL models offered higher ROC AUC for 16 cancers and higher PR AUC for all

17 cancers than the disease-specific STL models. The magnitude of the performance

improvement was quantified using the relative increase of the over-the-baseline AUC

gain by an MTL model in comparison with the corresponding STL model. The average

relative increase of ROC AUC over STL was 141% for the pan-cancer MTL and 153%

for the pan-disease MTL. The average relative increase of PR AUC over STL was

96% for the pan-cancer MTL and 83% for the pan-disease MTL. The variability of

the relative increases among different cancers suggested that each disease benefited to

a different extent from MTL. The pan-cancer MTL had the highest ROC AUC for 4

cancers and highest PR AUC for 5 cancers. The pan-disease MTL had the highest ROC

AUC for 12 cancer types and highest PR AUC for 12 cancer types. This suggested

that the performance improvement from transfer learning increased with the number

of traits in MTL. To further check if the performance gain by MTL over STL can
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Diseases

Receiver operating characteristics (ROC) AUC# Precision-recall (PR) AUC#

STL 
ROC
AUC

Pan-cancer MTL Pan-disease MTL STL 
PR

AUC

Pan-cancer MTL Pan-disease MTL
Prevalence
(Baseline)ROC Relative 

increase*
ROC Relative 

increase*
PR Relative 

increase*
PR Relative 

increase*AUC AUC AUC AUC

Malignant melanoma 52.80% 59.20% 234% 58.10% 194% 1.33% 1.70% 790% 1.61% 593% 1.28%

Non-melanoma skin cancer 61.50% 62.40% 8% 62.90% 12% 9.76% 10.03% 8% 10.21% 14% 6.65%

Skin cancer 61.00% 61.80% 7% 61.90% 8% 10.40% 10.73% 11% 10.86% 15% 7.32%

Lung cancer 59.10% 60.30% 14% 60.50% 16% 1.39% 1.44% 11% 1.51% 23% 0.90%

Intrathoracic cancer 59.10% 60.70% 18% 61.00% 21% 1.54% 1.58% 7% 1.65% 20% 1.01%

Colorectal cancer 54.40% 56.40% 46% 57.10% 60% 2.00% 2.21% 71% 2.29% 100% 1.72%

Colon cancer 53.90% 55.70% 47% 56.10% 59% 1.38% 1.49% 51% 1.49% 53% 1.17%

Rectal cancer 54.70% 57.90% 69% 59.30% 100% 0.77% 0.88% 98% 0.89% 116% 0.67%

Bladder cancer 64.50% 67.90% 24% 68.40% 27% 0.80% 0.87% 24% 0.92% 42% 0.51%

Uterine cancer 51.20% 53.20% 177% 51.80% 50% 1.08% 1.18% 224% 1.10% 49% 1.04%

Cervical cancer 55.20% 55.40% 4% 56.50% 24% 1.80% 1.88% 35% 1.97% 76% 1.58%

Prostate cancer 60.00% 59.70% -3% 59.60% -4% 8.33% 8.53% 9% 8.37% 2% 6.06%

Breast cancer 57.00% 58.30% 19% 58.10% 16% 9.38% 9.67% 13% 9.79% 20% 7.25%

Female genital tract cancer 54.00% 54.30% 7% 54.50% 11% 3.15% 3.27% 41% 3.39% 84% 2.86%

Male genital tract cancer 53.60% 56.10% 68% 54.50% 24% 2.57% 2.73% 57% 2.59% 9% 2.28%

Lymphoma 50.40% 56.80% 1442% 57.90% 1704% 0.73% 0.82% 102% 0.82% 98% 0.64%

Non-hodgkins lymphoma 52.10% 56.60% 220% 57.80% 278% 0.61% 0.68% 81% 0.69% 95% 0.53%

#Best AUC highlighted in bold

*Relative increase = 
ெ்  ି௦  ି(ௌ்  ି௦ )

ௌ்  ି௦ 
× 100%

Table 4.1: Comparison of STL, pan-cancer MTL, and pan-disease MTL by
ROC AUC and PR AUC for 17 cancer types with > 0.5% prevalence
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Disease

Receiver operating characteristics (ROC) AUC# Precision-recall (PR) AUC#

STL

Pan-disease MTL ROC

STL

Pan-disease MTL PR

ROC
AUC

Relative 
increase*

PR
AUC

Relative 
increase*

Prevalence
(Baseline)

Allergy or anaphylactic reaction to food 54.35% 55.52% 26.80% 0.61% 0.64% 44.67% 0.54%
Angina 64.08% 65.33% 8.88% 5.52% 5.60% 3.59% 3.23%

Appendicitis 51.16% 53.10% 167.60% 1.44% 1.47% 29.03% 1.32%
Arthritis (nos) 55.17% 55.64% 9.02% 1.51% 1.52% 6.25% 1.22%

Asthma 60.01% 61.15% 11.39% 16.44% 17.02% 12.37% 11.75%
Atrial fibrillation 63.69% 64.62% 6.78% 4.12% 4.42% 18.82% 2.50%

Atrial flutter 64.05% 64.69% 4.59% 3.60% 3.70% 6.62% 2.12%
Back pain 52.75% 53.44% 24.94% 1.15% 1.19% 34.87% 1.03%

Benign breast lump 53.39% 54.18% 23.45% 1.58% 1.62% 23.64% 1.41%
Bronchitis 51.87% 52.95% 57.92% 1.32% 1.33% 9.67% 1.21%
Cataract 52.81% 53.43% 22.13% 2.38% 2.45% 29.45% 2.13%

Cervical spondylosis 56.00% 58.97% 49.47% 0.87% 1.02% 95.82% 0.72%
Chickenpox 53.73% 54.16% 11.41% 2.58% 2.62% 20.03% 2.33%
Gallstones 63.43% 64.95% 11.36% 2.65% 2.86% 23.82% 1.75%

Chronic sinusitis 53.23% 53.92% 21.31% 0.82% 1.07% 343.92% 0.75%
Depression 57.35% 58.46% 15.15% 7.93% 8.29% 20.87% 6.24%

Diabetes 67.26% 67.92% 3.83% 9.75% 9.99% 4.78% 4.59%
Dyspepsia / indigestion 53.67% 55.05% 37.66% 3.13% 3.34% 64.05% 2.80%
Ear/vestibular disorder 51.57% 53.16% 101.20% 1.01% 1.00% -7.92% 0.92%

Eczema/dermatitis 54.62% 56.98% 51.32% 3.54% 3.93% 80.88% 3.07%
Emphysema/chronic bronchitis 58.26% 60.08% 22.08% 1.94% 2.03% 14.61% 1.35%

Endometriosis 54.13% 53.80% -7.88% 1.77% 1.75% -9.67% 1.58%
Epilepsy 49.81% 53.94% 2188.46% 0.81% 0.93% 1638.72% 0.82%

Essential hypertension 51.92% 54.37% 127.01% 1.38% 1.47% 78.20% 1.26%
Eye/eyelid problem 49.52% 50.96% 298.50% 0.79% 0.84% 711.13% 0.80%

Fracture lower leg / ankle 53.99% 54.65% 16.63% 0.56% 0.60% 89.87% 0.52%
Gastro-oesophageal reflux (gord) / gastric reflux 53.91% 55.18% 32.31% 5.57% 5.73% 22.40% 4.87%

Glaucoma 58.48% 59.31% 9.86% 1.65% 1.83% 42.36% 1.24%
Gout 61.60% 63.60% 17.21% 4.66% 5.32% 43.41% 3.16%

Hayfever/allergic rhinitis 55.02% 57.16% 42.54% 7.62% 8.13% 44.51% 6.48%
Heart attack (MI) 71.25% 72.56% 6.16% 5.06% 5.27% 7.30% 2.30%

Hiatus hernia 55.90% 57.71% 30.64% 3.06% 3.26% 36.16% 2.51%
Hypertension 62.89% 61.78% -8.64% 37.70% 36.41% -12.40% 27.32%

Hyperthyroidism/thyrotoxicosis 67.77% 71.55% 21.27% 1.74% 2.14% 45.39% 0.85%
Hypothyroidism/myxoedema 73.90% 74.96% 4.43% 12.99% 13.59% 7.53% 5.14%

Inguinal hernia 75.09% 76.31% 4.89% 1.49% 1.57% 9.41% 0.66%
Iron deficiency anaemia 67.23% 67.34% 0.65% 1.53% 1.61% 10.74% 0.75%

Irritable bowel syndrome 62.16% 62.38% 1.78% 3.85% 3.81% -2.77% 2.56%
Joint pain 50.89% 51.78% 100.28% 0.61% 0.69% 468.36% 0.59%

Kidney stone/ureter stone/bladder stone 60.69% 65.07% 41.01% 1.29% 1.53% 52.22% 0.84%
Measles / morbillivirus 54.81% 53.73% -22.39% 2.06% 1.97% -34.87% 1.78%

Migraine 64.51% 64.65% 0.99% 5.48% 5.57% 3.91% 3.38%
Mumps / epidemic parotitis 55.02% 55.73% 14.19% 1.23% 1.33% 85.88% 1.11%

Oesophagitis/barretts oesophagus 54.94% 55.57% 12.66% 2.57% 2.60% 6.79% 2.16%
Osteoporosis 71.77% 71.94% 0.77% 3.67% 3.65% -1.38% 1.76%

Other joint disorder 50.51% 50.55% 8.05% 0.62% 0.61% -27.80% 0.60%
Pleural effusion 55.53% 55.92% 7.08% 0.78% 0.77% -2.67% 0.61%

Pneumonia 52.46% 53.75% 52.23% 1.89% 1.98% 71.05% 1.76%
Psoriasis 65.93% 69.96% 25.32% 2.73% 3.60% 59.80% 1.26%

PE +/- DVT 53.52% 54.39% 24.61% 1.12% 1.04% -33.39% 0.88%
Respiratory infection 53.23% 55.10% 58.13% 2.15% 2.21% 22.05% 1.88%
Rheumatoid arthritis 60.03% 62.85% 28.14% 1.79% 2.21% 77.95% 1.25%

Rubella / german measles 53.95% 54.71% 19.12% 0.74% 0.82% 106.25% 0.68%
Sciatica 52.14% 53.54% 65.85% 1.25% 1.33% 65.47% 1.14%
Stroke 59.06% 59.80% 8.11% 2.14% 2.27% 23.21% 1.58%

Tuberculosis (tb) 51.42% 53.69% 160.91% 0.57% 0.68% 307.11% 0.54%
Ulcerative colitis 57.43% 60.72% 44.32% 0.77% 0.77% 4.13% 0.55%

Urinary tract infection/kidney infection 58.20% 58.19% -0.17% 0.76% 0.75% -5.71% 0.58%
Varicose veins 58.09% 59.84% 21.72% 0.71% 0.76% 27.42% 0.52%

Whooping cough / pertussis 52.32% 51.15% -50.68% 0.83% 0.84% 12.82% 0.79%

#Best AUC highlighted in bold

*Relative increase = 
ெ்  ି௦  ି(ௌ்  ି௦ )

ௌ்  ି௦ 
× 100%

Table 4.2: Comparison of STL and pan-disease MTL by ROC AUC and PR
AUC for 60 non-cancer diseases with > 0.5% prevalence.
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be generalized across non-cancer diseases, we compared the pan-disease MTL model

with the disease-specific STL models for 60 non-cancer diseases with prevalence levels

higher than 0.5% (Table 4.2). The same set of performance metrics was used for the

comparison. Compared with the disease-specific STL models, the pan-disease MTL

model provided higher ROC AUC for 55 non-cancer diseases and higher PR AUC for

50 non-cancer diseases. The average relative increase by MTL across the 60 non-cancer

diseases was 68% for ROC AUC and 82% for PR AUC. The benchmarking results for

both cancer and non-cancer diseases indicated significant performance improvements

by MTL over STL across many diseases.

4.3.3 Identification of important SNPs for MTL by model

interpretation

The first-order model-wise LINA interpretation algorithm (see Chapter 3) was used to

identify the important SNPs used by MTL to predict each disease. A pan-cancer MTL

model was trained and interpreted using an input whole-genome vector that contained

the real SNPs and an equal number of decoy SNPs. Figure 4.4 shows the distributions

of importance scores for the real SNPs and the decoy SNPs used by the MTL model to

predict malignant melanoma. There were 59,350 real SNPs and 3091 decoy SNP with

important scores above 0.52× 10−3, which corresponded to a 5% FDR, because decoy

SNPs with random association with the trait cannot be truly important for prediction.

At the estimated FDR level of 0.1%, 48 real SNPs and no decoy SNP were identified

as important for the MTL model to predict malignant melanoma. Many of these im-

portant SNPs have been identified as risk variants for melanoma in previous GWAS

studies, including rs12203592 (Gibbs et al., 2017), rs62389423 (Ransohoff et al., 2017),

rs4785763 (Bishop et al., 2009), rs4238833 (Bishop et al., 2009), rs10931936 (Landi
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et al., 2020), rs1126809 (Landi et al., 2020), and Affx-35293625 (Brandes et al., 2021).

Important SNPs in the pan-cancer MTL model were identified for the 17 prevalent

cancers at the FDR levels of 0.1% and 5% (Table 4.3). The number of important SNPs

at 0.1% FDR was 29 on average across the 17 cancers with substantial variability.

These important SNPs may have strong associations with the traits. At 5% FDR, an

average of 36,048 important SNPs were identified for the cancers, suggesting the use of

diffused weak association signals across the whole genome by MTL for trait prediction.

We investigated the overlaps among the important SNPs for different diseases. At 0.1%

FDR, only 4 common SNPs were shared among uterine cancer’s 25 important SNPs,

colorectal cancer’s 36 important SNPs, and malignant melanoma’s 48 important SNPs

(Figure 4.5A). The number of important SNPs in the intersection for every pair of

diseases at 0.1% FDR were listed in Table 4.4. The relatively small intersections be-

tween different cancers indicated distinct SNP sets with large effect sizes for different

diseases. At 5% FDR, there were 21041 common SNPs shared among uterine can-

cer’s 38474 important SNPs, colorectal cancer’s 45450 important SNPs, and malignant

melanoma’s 59350 important SNPs (Figure 4.5B). Genetic correlations were computed

between every pair of cancers based on their importance scores for the SNPs impor-

tant for one of the diseases or both at 5% FDR (Table 4.5). The genetic correlations

were 0.88 between breast cancer and uterine cancer and 0.89 between lung cancer and

lymphoma. Overall, 184 pairs of diseases have positive correlation coefficients between

0.5 and 1.0, 97 pairs have positive correlation coefficients between 0 and 0.5, and only

8 pairs have negative correlation coefficients. This suggested that MTL identified and
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FDR levels

Disease

0.1% 5.0%

Malignant melanoma 48 59350

Non-melanoma skin cancer 132 48848

Skin cancer 106 48419

Lung cancer 4 41075

Intrathoracic cancer 3 40392

Colorectal cancer 36 45450

Colon cancer 22 37487

Rectal cancer 28 47904

Bladder cancer 8 37

Uterine cancer 25 38474

Cervical cancer 5 42068

Prostate cancer 23 94

Breast cancer 34 96

Female genital tract cancer 15 37083

Male genital tract cancer 5 40742

Lymphoma 0 43412

Non-hodgkins lymphoma 4 41889

Table 4.3: Numbers of important SNPs used by pan-cancer MTL to estimate
PRS of prevalent cancers
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Figure 4.5: Importance scores of real and decoy SNPs for malignant
melanoma PRS estimation by pan-cancer MTL. The Venn diagrams show
the overlap among the important SNPs found for uterine cancer, malignant melanoma,
and colorectal cancer at 0.1% FDR (A) and 5% FDR (B). The sizes of the circles and
their overlaps are drawn proportionally. The important sets of SNPs for the three
cancers have a small overlap at 0.1% FDR and a large overlap at 5% FDR.

may have exploited extensive genetic correlations between diseases to achieve a positive

knowledge transfer among diseases for PRS estimation.

4.4 Discussion

Learning many tasks together in a neural network model does not automatically guar-

antee performance boost for all tasks (Fifty et al., 2021), (Joshi et al., 2019). Negative

knowledge transfer can occur between unrelated tasks and, thereby, degrade the perfor-

mance of a MTL model for these tasks (Bingel and Søgaard, 2017). We did not assume

a priori which sets of diseases might be genetically related and could benefit from MTL.

By aggregating many diseases together, we discovered positive knowledge transfer for

most of the prevalent diseases studied here. The extent of positive knowledge transfer

was quantified for each disease based on the gain of predictive performance by MTL

relative to STL. For example, malignment melanoma and uterine cancer benefited sub-

stantially from parallel training with the other cancers in the pan-cancer MTL, but

the extent of positive knowledge transfer to the two cancers was reduced when adding
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many non-cancer diseases in the pan-disease MTL. The majority of common cancers,

including intrathoracic cancer, rectal cancer, and cervical cancer, gained additional per-

formance by scaling MTL from 69 cancers to 362 diseases. Beneficial transfer learning

was also evident for most of the non-cancer common diseases. Consistent observation of

increased PRS accuracies for so many diseases provided strong support for the positive

knowledge transfer during parallel learning of the genetic risks for complex diseases.

To understand how the PRS estimation benefited from MTL, we interpreted a pan-

cancer MTL model and identified important SNPs for each cancer at two empirically

estimated FDR levels. Many diseases shared a significant fraction of important SNPs

at 5% FDR for their predictions. This suggested a beneficial joint selection of SNPs

predictive of multiple diseases. This could be attributed to pleiotropy, wherein a ge-

netic variant may have effects on multiple traits. A meta-analysis of many complex

traits’ GWAS results estimated 31% of the SNPs and 63% of the genes to be pleiotropic

(Watanabe et al., 2019). In addition, the joint feature selection in MTL may be bet-

ter at filtering out SNPs with random trait associations in the training data than the

disease-specific feature selection in STL can.

Data amplification may be a second mechanism for beneficial transfer learning in PRS

estimation. Many diseases have an epidemiological correlation. For example, Woo

et al. found a 75% greater risk of overall incident cancers after asthma diagnosis in

adults (Woo et al., 2021). Pooling the positive cases of multiple diseases together to

train a MTL model may increase the effective sample size for learning a shared la-

tent representation predictive of these diseases. Furthermore, many cancers may have

some common genetic etiology. Pan-cancer risk variants may elevate the overall risk

of individuals for cancers (Rashkin et al., 2020), and some environmental factors may

determine the specific site of carcinogenesis. Pooling many cancer cases together may

amplify the signal for discovering pan-cancer risk variants. Besides feature selection
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and data amplification, other mechanisms, such as eavesdropping, representation bias,

and regularization (Caruana, 1998), may also contribute to the positive knowledge

transfer between diseases for PRS estimation.

Because hard parameter sharing was used in our neural networks from the input layer

to the attention layer, the beneficial transfer learning may have produced a latent repre-

sentation of the genomic data with better generalization for many diseases. Pervasive

genetic correlations between diseases allowed MTL to improve the PRS estimation

broadly across diseases. While many cross-strait studies have shown the genetic corre-

lation between specific pairs of diseases (Zhuang et al., 2021; Sutton et al., 2022; Wu

et al., 2022; Zhou et al., 2022; Adewuyi et al., 2022; Lutz et al., 2020; Byun et al.,

2021), our study suggested that various degrees of shared genetic basis may be very

prevalent among many complex diseases. Our results highlighted the potential value of

holistic association studies between the whole human phenome and the whole human

genome for both risk variant discovery and PRS estimation.
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Chapter 5

Summary and Conclusions
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5.1 Deep neural network improves the estimation

of polygenic risk scores for breast cancer

This study compared different computational models for estimating polygenic risk

scores (PRS) for breast cancer using genetic variants across the whole genome. A

deep neural network (DNN) outperformed established statistical algorithms such as

BLUP, BayesA, and LDpred. In a test cohort with 50% prevalence, DNN achieved an

area under the receiver operating characteristic curve (AUC) of 67.4% and was able

to separate the case population into high- and normal-genetic-risk sub-populations.

The PRS generated by DNN in the case population followed a bi-modal distribution

composed of two normal distributions with distinctly different means. This suggests

that DNN was able to separate the case population into a high-genetic-risk case sub-

population with an average PRS significantly higher than the control population and

a normal-genetic-risk case sub-population with an average PRS similar to the control

population. This allowed DNN to achieve 18.8% recall at 90% precision in the test co-

hort with 50% prevalence, which can be extrapolated to 65.4% recall at 20% precision

in a general population with 12% prevalence. Interpretation of the DNN model identi-

fied interesting variants assigned insignificant p-values by association studies but were

important for DNN prediction. These variants may be associated with the phenotype

through non-linear relationships or epistatic interactions.

This study, however, presents some limitations. First, we didn’t restrict the study

to one ancestry group, which could lead to biased models. Nevertheless, mitochondrial

SNPs were included in the study, and the models were aware of ancestry to some ex-

tent. We assumed that any good model could exploit linkage disequilibrium and HWE

disequilibrium. Thus, we didn’t perform classic preprocessing steps, which could hin-

der the performances of benchmark models. However, these choices were critical since
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we needed to relax the proposed criteria to allow non-linear relationship expressions.

Future works for this study could focus on studying those criteria in depth.

This paper was published in ”Badré, A., Zhang, L., Muchero, W. et al. Deep

neural network improves the estimation of polygenic risk scores for breast cancer. J

Hum Genet 66, 359–369 (2021). https://doi.org/10.1038/s10038-020-00832-7”

5.2 LINA: A Linearizing Neural Network

Architecture for Accurate First-Order and

Second-Order Interpretations

Although neural networks can yield high predictive performance, the lack of inter-

pretability has hindered the identification of salient features and important feature

interactions used for their predictions. This represented a key hurdle for deploying

neural networks in many biomedical applications that require interpretability, includ-

ing predictive genomics. LINA was developed to provide both the first-order and the

second-order interpretations on both the instance-wise and the model-wise levels. LINA

combines the representational capacity of a deep inner attention neural network with

a linearized intermediate representation for model interpretation. In comparison with

DeepLIFT, LIME, Grad*Input, and L2X, the first-order interpretation of LINA had

better Spearman correlations with the ground-truth importance rankings of features in

synthetic datasets. In comparison with NID and GEH, the second-order interpretation

results from LINA achieved better precision for the identification of the ground-truth

feature interactions in synthetic datasets. These algorithms were further benchmarked

using predictive genomics as a real-world application. LINA identified larger numbers
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of SNPs and salient SNP interactions than the other algorithms at given false discovery

rates. The results showed accurate and versatile model interpretation using LINA.

In this paper, some limitations can be highlighted again. First, the genomics part

was reduced to only 3082 SNPs. In larger studies, as in Section 2, the total number of

SNPs considered at the optimal threshold was 5273, or more than 1M in Section 4. It

would have been more appropriate to study the behavior of LINA on a higher number

of variants. Nevertheless, standard GWAS also works with a limited number of SNPs

because of the restrictive selection threshold.

This paper was published in ”A. Badré and C. Pan, ”LINA: A Linearizing Neural

Network Architecture for Accurate First-Order and Second-Order Interpretations,” in

IEEE Access, vol. 10, pp. 36166-36176, 2022, doi: 10.1109/ACCESS.2022.3163257.”

5.3 Explainable multi-task learning improves the

parallel estimation of polygenic risk scores for

many diseases through shared genetic basis

In this study, we developed a multi-task learning (MTL) neural network architecture to

predict many disease traits of an individual from their whole genome. The model used

a shared latent genomic representation, and each trait was predicted from the shared

representation via a task-specific hidden layer. The study used the UK Biobank dataset

to extract 362 disease traits, including 69 cancer traits and constructed two MTL

models - one to predict the 69 cancers and the other to predict all 362 diseases. The

MTL models achieved higher predictive performance than single-task learning (STL)

models for malignant melanoma and 17 common cancers with prevalence levels higher
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than 0.5%. The MTL models also showed improved accuracy for predicting 60 non-

cancer diseases with prevalence levels higher than 0.5%. The study suggested that the

performance improvement from transfer learning increased with the number of traits in

MTL. The first-order model-wise LINA interpretation algorithm was utilized to identify

important SNPs used by Multi-Task Learning (MTL) to predict cancer diseases. A

pan-cancer MTL model was trained and interpreted using real and decoy SNPs. At

FDR levels of 0.1% and 5%, important SNPs were identified for 17 prevalent cancers,

with a higher number of important SNPs identified at 5% FDR. The overlaps among

the important SNPs for different diseases were investigated, and small intersections

between different cancers were found, indicating distinct SNP sets with large effect sizes

for different diseases. At 5% FDR, genetic correlations were computed between every

pair of cancers based on their importance scores for the SNPs important for one of the

diseases or both. The genetic correlations suggested that MTL identified and exploited

extensive genetic correlations between diseases to achieve a positive knowledge transfer

among diseases for PRS estimation.

As a limitation, we didn’t perform any optimal task grouping. Leveraging optimal

task grouping could improve the MTL model prediction performances.

This paper is currently under review.

5.4 Closing remarks and Future works

Overall, we achieved greater PRS estimation for many diseases. We proposed a new

workflow to achieve optimal results for PRS on breast cancer leveraging deep neural

network predicting power. Then, we developed LINA to enable enhanced interpretabil-

ity for non-linear GWAS. Finally, we leveraged pleiotropy and common etiology with

multi-LINA, a multi-task learning architecture inspired by LINA, to achieve higher

121



performance and uncover pleiotropic variants.

In the future, several possible research paths can be explored. The performance

of our model on specific ancestry groups can be explored. Preprocessing steps utility,

such as HWE and Linkage disequilibrium criteria relaxations, can be investigated to

further validate deep neural networks’ outperformance of the statistical models. Using

more accurate peer-reviewed p-values for SNP filtering could also lead to better PRS

prediction by deep neural networks and, thus, more accurate interpretations. Efficient

Task grouping can also be researched to increase task-wise prediction performance.

Finally, the development of methods to quantify uncertainty for model predictions and

interpretation should be designed to enhance our proposed important SNP recovery

method.
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Privé, F., J. Arbel, and B. J. Vilhjálmsson, 2020: LDpred2: better, faster, stronger.
Bioinformatics, 36 (22-23), 5424–5431, https://doi.org/10.1093/bioinformatics/b
taa1029, URL https://doi.org/10.1093/bioinformatics/btaa1029.

Purcell, S., and Coauthors, 2007: Plink: a tool set for whole-genome association and
population-based linkage analyses. The American journal of human genetics, 81 (3),
559–575.

Purcell Shaun, S. J. V. P. O. M. C. . S. P. F. . S. P. . . . ., Wray Naomi, and Coauthors,
2009: Common polygenic variation contributes to risk of schizophrenia and bipolar
disorder. Nature, 460 (7256), 748–752.

130

https://www.nature.com/articles/s41467-021-25171-9
https://www.nature.com/articles/s41467-021-25171-9
https://seer.cancer.gov/statfacts/html/breast.html
https://seer.cancer.gov/statfacts/html/breast.html
https://doi.org/10.1093/bioinformatics/btaa1029


Ransohoff, K. J., and Coauthors, 2017: Two-stage genome-wide association study
identifies a novel susceptibility locus associated with melanoma. Oncotarget, 8 (11),
17 586–17 592, https://doi.org/10.18632/oncotarget.15230, URL https://www.onco
target.com/article/15230/text/, publisher: Impact Journals.

Rashkin, S. R., and Coauthors, 2020: Pan-cancer study detects genetic risk variants
and shared genetic basis in two large cohorts. Nature Communications, 11 (1), 4423,
https://doi.org/10.1038/s41467-020-18246-6, URL https://www.nature.com/article
s/s41467-020-18246-6, number: 1 Publisher: Nature Publishing Group.

Ribeiro, M. T., S. Singh, and C. Guestrin, 2016: ” why should i trust you?” explaining
the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 1135–1144.

Rivandi, M., J. W. Martens, and A. Hollestelle, 2018: Elucidating the underlying
functional mechanisms of breast cancer susceptibility through post-gwas analyses.
Frontiers in genetics, 9, 280.

Romualdo Cardoso, S., A. Gillespie, S. Haider, and O. Fletcher, 2022: Functional
annotation of breast cancer risk loci: current progress and future directions. British
Journal of Cancer, 126 (7), 981–993.

Rosenblatt, F., 1958: The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65 (6), 386.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams, 1986: Learning representations
by back-propagating errors. nature, 323 (6088), 533–536.

Schmidhuber, J., 2015: Deep learning in neural networks: An overview. Neural net-
works, 61, 85–117.

Scott, R. A., and Coauthors, 2017: An expanded genome-wide association study of
type 2 diabetes in europeans. Diabetes, 66 (11), 2888–2902.

Shaker, O. G., and M. A. Senousy, 2019: Association of snp-snp interactions between
rankl, opg, chi3l1, and vdr genes with breast cancer risk in egyptian women. Clinical
Breast Cancer, 19 (1), e220–e238.

Shrikumar, A., P. Greenside, and A. Kundaje, 2017: Learning important features
through propagating activation differences. International conference on machine
learning, PMLR, 3145–3153.

Simonyan, K., A. Vedaldi, and A. Zisserman, 2014: Deep inside convolutional net-
works: Visualising image classification models and saliency maps. 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Workshop Track Proceedings, Y. Bengio, and Y. LeCun, Eds., URL
http://arxiv.org/abs/1312.6034.

131

https://www.oncotarget.com/article/15230/text/
https://www.oncotarget.com/article/15230/text/
https://www.nature.com/articles/s41467-020-18246-6
https://www.nature.com/articles/s41467-020-18246-6
http://arxiv.org/abs/1312.6034


Sorokina, D., R. Caruana, and M. Riedewald, 2007: Additive groves of regression trees.
Machine Learning: ECML 2007: 18th European Conference on Machine Learning,
Warsaw, Poland, September 17-21, 2007. Proceedings 18, Springer, 323–334.

Speed, D., and D. J. Balding, 2014: Multiblup: improved snp-based prediction for
complex traits. Genome research, 24 (9), 1550–1557.

Srivastava, N., G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 2014:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res., 15, 1929–1958.

Standley, T., A. R. Zamir, D. Chen, L. Guibas, J. Malik, and S. Savarese, 2019:
Which Tasks Should Be Learned Together in Multi-task Learning? URL https:
//openreview.net/forum?id=HJlTpCEKvS.

Steemers, F. J., and K. L. Gunderson1, 2, 2005: Illumina, inc.

Sutton, M., P.-E. Sugier, T. Truong, and B. Liquet, 2022: Leveraging pleiotropic
association using sparse group variable selection in genomics data. BMC Medical
Research Methodology, 22 (1), 9, https://doi.org/10.1186/s12874-021-01491-8,
URL https://doi.org/10.1186/s12874-021-01491-8.

Thissen, J. B., and Coauthors, 2019: Axiom microbiome array, the next generation mi-
croarray for high-throughput pathogen and microbiome analysis. PLoS One, 14 (2),
e0212 045.

Thomas, M., and Coauthors, 2020: Genome-wide Modeling of Polygenic Risk Score in
Colorectal Cancer Risk. The American Journal of Human Genetics, 107 (3), 432–
444, https://doi.org/10.1016/j.ajhg.2020.07.006, URL https://www.sciencedirect.co
m/science/article/pii/S0002929720302366.

Tian, H., S.-C. Chen, and M.-L. Shyu, 2020: Evolutionary programming based deep
learning feature selection and network construction for visual data classification.
Information systems frontiers, 22, 1053–1066.

Tinholt, M., and Coauthors, 2014: Increased coagulation activity and genetic polymor-
phisms in the f5, f10 and epcr genes are associated with breast cancer: a case-control
study. Bmc Cancer, 14, 1–11.

Tsang, M., D. Cheng, and Y. Liu, 2017: Detecting statistical interactions from neural
network weights. International Conference on Machine Learning.

Tsuboi, M., and Coauthors, 2019: Prognostic significance of gad1 overexpression in
patients with resected lung adenocarcinoma. Cancer medicine, 8 (9), 4189–4199.

Uffelmann, E., and Coauthors, 2021: Genome-wide association studies. Nature Reviews
Methods Primers, 1 (1), 59.

132

https://openreview.net/forum?id=HJlTpCEKvS
https://openreview.net/forum?id=HJlTpCEKvS
https://doi.org/10.1186/s12874-021-01491-8
https://www.sciencedirect.com/science/article/pii/S0002929720302366
https://www.sciencedirect.com/science/article/pii/S0002929720302366


van de Haar, J., S. Canisius, K. Y. Michael, E. E. Voest, L. F. Wessels, and T. Ideker,
2019: Identifying epistasis in cancer genomes: a delicate affair. Cell, 177 (6), 1375–
1383.

Velasco-Ruiz, A., and Coauthors, 2021: Polrmt as a novel susceptibility gene for car-
diotoxicity in epirubicin treatment of breast cancer patients. Pharmaceutics, 13 (11),
1942.
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