ISSN 2186-7437

NIl Shonan Meeting Report

No. 2019-139

Causal Reasoning in Systems

Gregor Gossler
Stefan Leue
Shin Nakajima

June 24-27, 2019

=O\ HETEH
NIl SHONAN MEETING

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan

Causal Reasoning in Systems

Organizers:

Gregor Gossler
Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

Stefan Leue

University of Konstanz, Konstanz, Germany

Shin Nakajima
NII, Japan

June 24-27, 2019

Abstract

The discussion of causality, which has its roots in the philosophy of sci-
ences, has recently become the subject of discussion in relation to IT sys-
tems, in particular software, hardware, and cyber-physical systems. De-
termining causalities is of essential importance when asserting the safety
of a system (what can cause a hazardous situation to occur?), when an-
alyzing failures of critical systems (why and how did an accident occur?)
or when performing fault localization in hardware or software, amongst
others. The goal of this seminar was to gain and deepen an understand-
ing of the available means to reason about causality, the approaches that
various disciplines inside computer science as well as in adjacent fields are
using to determine causality, and what notions of causality need to be
developed in order to deal with changing paradigms of computing.

1 Meeting Schedule

| Monday | Tuesday | Wednesday | Thursday |

09:00-09:30

09:30-10:00

10:00-10:30

coffee break
10.30-11.00 10:30 - 10:50

11:00-11:30

11:30-12:00

12:00-12:30
12:30-13:00
13:00-13:30

13:30-14:00

group photo

14:00-14:30

14:30-15:00

15:00-15:30

15:30-16:00

coffee break

16:00-16:40

16:40-17:20

17:20-18:00

2 Overview of Talks

2.1 Foundations of Causality
Causality in Models of Computation

Stefan Leue, University of Konstanz

The automated discovery and documentation of causal structures is of great
importance in Software and Systems Engineering. It helps in identifying and
localizing design faults, in establishing safety cases for safety-critical systems,
and in explaining and repairing system design and software errors. I will discuss
actual cause analysis in the context of models of computation in general, and
consider transition systems as a particular model of computation for concurrent
system. This is particularly relevant in order to support model-based design
as well as automated, algorithmic approaches towards actual cause analysis.
We classify causes into dynamic causes, which relate to choices made by the
environment or a scheduler during runtime, and static causes, which manifest
themselves in syntactic features or the model or program that is being consid-
ered.

I will review work on Causality Checking [4], which aims at identifying or-
dered sequences of events as dynamic actual causes for the violation of reach-
ability properties. Causality checking is based on a counterfactual notion of
cause and is an adaptation of the Halpern-Pearl [1] structural model of actual
causation to the transition system model of computation that our analysis is
based on. The causes in this case are dynamic since, for instance, the dynami-
cally scheduled order of concurrent events may be determined to be causal for
the property violation. I will present a tool called QuantUM, which implements
Causality Checking, as well as case studies from the automotive domain where
we applied Causality Checking in order to synthesize Fault Trees explaining
causes for the violation of functional safety properties [2]. In order to illustrate
static actual causes I will then discuss the identification of real-time bounds
that are determined to be causal for the violation of timed reachability prop-
erties in Timed Automata models [3]. The analysis enables a partial MaxSMT
based automated repair of the identified causes. I will conclude by discussing
research challenges in static and dynamic actual cause analysis for models of
computation.

References

[1] Joseph Y. Halpern. Actual Causality. MIT Press, 2016.

[2] Martin Kolbl and Stefan Leue. Automated functional safety analysis of
automated driving systems. In FMICS, volume 11119 of Lecture Notes in
Computer Science, pages 35-51. Springer, 2018.

[3] Martin Kolbl, Stefan Leue, and Thomas Wies. Clock bound repair for timed
systems. In CAV (1), volume 11561 of Lecture Notes in Computer Science,
pages 79-96. Springer, 2019.

[4] Florian Leitner-Fischer and Stefan Leue. Causality checking for complex
system models. In VMCAI volume 7737 of Lecture Notes in Computer
Science, pages 248-267. Springer, 2013.

Logical Foundations for Actual Causality

Vitaliy Batusov and Mikhail Soutchanski, York University, CA

We develop a novel definition of actual cause in the context of situation
calculus (SC) action theories. Situation calculus [1] is a many-sorted dialect of
second-order logic which captures the notion of action and change by modelling
all possible world histories as an infinite tree of situations stemming from a
common root. Each situation corresponds to a sequence of actions, which are
the sole source of change in the world, and the domain of application is described
by situation-dependent functions and predicates. A basic action theory (BAT,
[2]) is a well-behaved SC theory containing action precondition axioms and
successor state axioms.

To describe a causal scenario, we use causal settings of the form C = (D, o, ¢)
where D is a BAT describing the initial state and the general dynamics of the
world, o is a ground situation describing a complete narrative of events which
have transpired in the world, and ¢ is a first-order sentence describing the effect
of interest. In this framework, actual causes of the effect ¢, if any, are to be
found among the actions of . We recognize two distinct causal roles that actions
may take. For one, an action may realize the effect of interest; that is, it may
change the truth value of ¢ from false to true; we call such actions achievement
causes. Secondly, an action may prevent an effect from being lost; we call such
actions maintenance causes. Actual causes are an umbrella term covering all
combinations of achievement and maintenance.

We formalize achievement causes in two steps. First, we say that if an action
« € o triggers ¢ to become true and there is no action in o after o that changes
the truth value of ¢ back to false, then « is deemed an achievement cause in
the setting C. Second, we appeal to the mechanism of regression, afforded to
SC by the special form of its successor-state axioms; namely, to the fact that
it is trivial to obtain, from a sentence ¢ about the situation do(c/,s), a logi-
cally equivalent sentence p[¢, a] about the situation s. Despite being logically
equivalent with the situation terms fixed as shown, ¢ and p[¢, a] are generally
different formulas which are realized at different points of the narrative — in
fact, if « is a cause of ¢, then p[¢,] is guaranteed to be achieved prior to it.
Thus, if « is an achievement cause in (D, o, ¢) such that do(co,0’) C o, then
plo, al(c’) is a necessary and sufficient condition for achieving ¢ via . We say
that the achievement cause of the new setting (D, o’, p[®, a]) is also an achieve-
ment cause of the original setting C. Repeating this method over each such new
setting until the narrative o runs out, we can uncover the achievement causal
chain of the setting C — that is, a chain of actions selected from o, each of
which constructively contributes to the total effect ¢.

We define maintenance causes using an auxiliary notion of threats — actions
7 which occur in the narrative and have the hypothetical capacity of destroying
the effect ¢, but do not have that effect in the given setting. A maintnenance
cause of C is then the achievement cause of the setting (D, o”, p[¢, 7]), where
do(t,0") C o. The criterion for identifying threats is in essence a counterfactual.

We further observe that each new causal setting obtained via the discovery
of achievement or maintenance causes of C can be subject to the same analysis
as the top-level setting C. We use the generic term actual cause of C to refer
to all causes discovered by top-level analysis as well as all causes discovered by
recursively applying the top-level analysis to each new causal setting identified in
the process. With this approach, we can successfully identify non-trivial actual
causes of complex conditions expressed in first-order logic. We show that the
state-of-the-art definition of actual cause due to [3] can be effectively simulated
in our approach. Using examples, we show that long-standing disagreements
between alternative definitions of actual causality can be mitigated by faithful
SC modelling of the domains.

References

[1] John McCarthy and Patrick J Hayes, “Some philosophical problems from
the standpoint of artificial intelligence”. Readings in artificial intelligence.
Morgan Kaufmann, 1981. 431-450.

[2] Raymond Reiter, Knowledge in action: logical foundations for specifying and
implementing dynamical systems, MIT press, 2001.

[3] Joseph Y Halpern. Actual causality. MIT Press, 2016.

Causality Analysis and Fault Ascription from First
Principles

Gregor Gossler, INRTA

We present a general framework for counterfactual analysis and fault ascrip-
tion in component-based concurrent systems [4]. Our framework uses configu-
ration structures [5] as a general semantical model to handle truly concurrent
executions, partial and distributed observations in a uniform way. We define
a set of formal requirements a counterfactual function should satisfy in order
to enable the construction of meaningful causality analyses for such systems.
These requirements will serve as firm ground for guiding the definition of con-
crete analyses and reasoning about their properties. This approach contrasts
with current practice of evaluating definitions of counterfactual causality a pos-
teriori on a set of toy examples [2, 3].

Our formal requirements include well-behavedness under varying observabil-
ity (better observability improves precision of the analysis) and incrementality
(adding new observations to a log improves precision). The first requirement
is crucial for causality analyses to work on abstractions. The second one is es-
sential for incremental and on-the-fly analysis. Furthermore, we state expected
properties for the behavior of counterfactual functions under several notions of
refinement.

We state many of our results for hyperproperties [1]. Hyperproperties have
been shown necessary to deal with requirements such as security and quality of
service, and taking them into account in our framework ensures our causality
analysis can deal with violation of these kinds of properties as well. We dis-
cuss the use of analyzing the causation (of violation) of hyperproperties on a
motivating example. This is joint work with Jean-Bernard Stefani.

References

[1] M. R. Clarkson and F. B. Schneider. Hyperproperties. Journal of Computer
Security 18(6), 2010.

[2] C. Glymour, D. Danks, B. Glymour, F. Eberhardt, J. Ramsey, R. Scheines,
P. Spirtes, C. Teng, and J. Zhang. Actual causation: a stone soup essay.
Synthese 175(2), 2010.

[3] G. Gossler, O. Sokolsky, and J.-B. Stefani. Counterfactual causality from
first principles?, in: Proceedings 2nd International Workshop on Causal Rea-
soning for Embedded and safety-critical Systems Technologies (CREST’17),
EPTCS 259, 2017.

[4] G. Gossler and J.-B. Stefani. Causality Analysis and Fault Ascription
in Component-Based Systems. Research Report RR-9279, INRIA, 2019.
https://hal.inria.fr/hal-02161534

[5] R. J.van Glabbeek and G. D. Plotkin. Configuration structures, event struc-
tures, and Petri nets, Theoretical Computer Science 410 (41), 2009.

Causality and Hyperproperties

Norine Coenen, Saarland University
X: coenen@react.uni-saarland.de

Hyperproperties specify relations between multiple execution traces of a sys-
tem. This is necessary to express requirements like secrecy where for every pos-
sible value of a secret variable there has to exist a computation where the value
is different while the observations made by an external observer are the same.

Causal relations are often defined using counterfactuals. Intuitively, an ac-
tion ¢ is considered to be a cause for an effect e if there is one witness where ¢
and e occur and another witness similar to the first where ¢ and e both do not
occur. Thus, causality itself is a hyperproperty that compares multiple system
traces. In the following, we make this observation more formal.

HyperLTL [1] is a temporal logic that is able to express hyperproperties [2].
It extends linear-time temporal logic (LTL) [16] with trace quantifiers. Hyper-
LTL formulas are built according to the following grammar:

Y=V | In |
pu=ar | e |oANp | Op|plUe| Op | Oe,

where 7 is a trace variable and a is an atomic proposition. The semantics of
a HyperLTL formula is defined with respect to a trace assignment that maps
trace variables to actual traces in the system under consideration. Universal
and existential trace quantification (Vm.1), Im.7b) modify the trace assignment
by choosing system traces for the trace variable 7. a, states that the atomic
proposition a should hold on the system trace that is identified by 7. Addition-
ally, HyperLTL has the usual Boolean connectives and also inherits the temporal
operators nezt (O), until (U), eventually () and globally (O) from LTL.

To determine causal dependencies in a system we need to find system traces
that are witnesses for the counterfactual analysis. Leitner-Fischer and Leue [15]

gave a causality definition for this setting as follows: Let ¢,#' and ¢’ be system
traces and Z and W partition the variables. 1 is considered a cause for ¢ if

ACL: . tE b ALE o
AC2(1): 3. Hp At H o A(valz(t) # valz(t) V valw (t) # valw (t'))
AC2(2): V" t" Ep ANvalz(t) = valz(t") A valw: (t) # valw: (") = t" E ¢
AC3: Minimality of 1.

(AC1) ensures that cause and effect both occur on ¢t while (AC2(1)) requires
the existence of a different trace ¢ on which both cause and effect do not oc-
cur. (AC2(2)) intuitively states that on all system traces on which the cause
occurs also the effect has to occur. (AC3) states that only minimal causes are
considered, that means no ¢’ smaller than 1) can cause (.

Clearly, in this definition several system traces are compared to one another.
This is exactly what HyperLTL allows us to do so it is natural to formalize this
causality definition in HyperLTL. The following HyperLTL formula checks if v
is a cause for ¢ in a system:

. I’ V" (e A or) A (Fhgr A= ATt FE T YA (hpn A=z 7" = o).

Analogue to the causality definition above, the first conjunct ensures that cause
and effect both occur on =, the second conjunct ensures that 7’ is a differ-
ent trace on which both cause and effect do not occur and the third conjunct
stipulates that on all system traces on which the cause occurs also the effect
occurs. The minimality condition is not reflected in this definition due to the
reasons explained in the summary of the working group discussion “Logics for
Causality” below.

Given this formulation, we can now leverage all the work that has been done
in the area of hyperproperties. There has been work on different logics for hy-
perproperties (linear-time and branching-time [1], first-order and second-order
style [3, 13]). For HyperLTL in particular, there has been work on the satisfi-
ability problem [5, 6, 8], the model checking problem [4, 11, 12], the synthesis
problem [4, 7] and the monitoring problem [9, 10, 14]. The developed tools can
now be used to verify causal dependencies using the causality formulation in
HyperLTL. We can also use this logical foundation to compare different notions
of causality that have been introduced and used in the literature.

We thus can use logics for hyperproperties for the formulation and analysis
of causal dependencies in systems and benefit from the existing tool support.
This is joint ongoing work with Bernd Finkbeiner.

References

[1] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K.
Micinski, Markus N. Rabe, and César Sanchez. Temporal logics for hyper-
properties. In Proceedings of POST, volume 8414 of LNCS, pages 265—284.
Springer, 2014.

[2] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of
Computer Security, 18(6):1157-1210, 2010.

3]

Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann.
The hierarchy of hyperlogics. In 3/nd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2019, Vancouver, Canada, June 24-27,
2019. IEEE Computer Society, 2019.

Norine Coenen, Bernd Finkbeiner, César Séanchez, and Leander Tentrup.
Verifying hyperliveness. In Isil Dillig and Serdar Tasiran, editors, Computer
Aided Verification - 31st International Conference, CAV 2019, New York
City, NY, USA, July 15-18, 2019, Proceedings, Part I, volume 11561 of
Lecture Notes in Computer Science, pages 121-139. Springer, 2019.

Bernd Finkbeiner and Christopher Hahn. Deciding hyperproperties. In
Proceedings of CONCUR, volume 59 of LIPIcs, pages 13:1-13:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

Bernd Finkbeiner, Christopher Hahn, and Tobias Hans. MGHyper: Check-
ing satisfiability of HyperLTL formulas beyond the 3*V* fragment. In Pro-
ceedings of ATVA, volume 11138 of LNCS, pages 521-527. Springer, 2018.

Bernd Finkbeiner, Christopher Hahn, Philip Lukert, Marvin Stenger, and
Leander Tentrup. Synthesizing reactive systems from hyperproperties. In
Proceedings of CAV, volume 10981 of LNCS, pages 289-306. Springer, 2018.

Bernd Finkbeiner, Christopher Hahn, and Marvin Stenger. EAHyper: Sat-
isfiability, implication, and equivalence checking of hyperproperties. In Pro-
ceedings of CAV, volume 10427 of LNCS, pages 564—-570. Springer, 2017.

Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Ten-
trup. Monitoring hyperproperties. In Proceedings of RV, volume 10548 of
LNCS, pages 190-207. Springer, 2017.

Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Ten-
trup. RVHyper: A runtime verification tool for temporal hyperproperties.
In Proceedings of TACAS, volume 10806 of LNCS, pages 194—200. Springer,
2018.

Bernd Finkbeiner, Christopher Hahn, and Hazem Torfah. Model check-
ing quantitative hyperproperties. In Proceedings of CAV, volume 10981 of
LNCS, pages 144-163. Springer, 2018.

Bernd Finkbeiner, Markus N. Rabe, and César Sanchez. Algorithms for
model checking HyperLTL and HyperCTL*. In Proceedings of CAV, volume
9206 of LNCS, pages 30-48. Springer, 2015.

Bernd Finkbeiner and Martin Zimmermann. The First-Order Logic of Hy-
perproperties. In Heribert Vollmer and Brigitte Vallee, editors, 34th Sym-
posium on Theoretical Aspects of Computer Science (STACS 2017), vol-
ume 66 of Leibniz International Proceedings in Informatics (LIPIcs), pages
30:1-30:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.

Christopher Hahn, Marvin Stenger, and Leander Tentrup. Constraint-
based monitoring of hyperproperties. In Proceedings of TACAS, volume
11428 of LNCS, pages 115-131. Springer, 2019.

[15] Florian Leitner-Fischer and Stefan Leue. Causality checking for complex
system models. In Roberto Giacobazzi, Josh Berdine, and Isabella Mas-
troeni, editors, Verification, Model Checking, and Abstract Interpretation,
14th International Conference, VMCAI 2013, Rome, Italy, January 20-
22, 2013. Proceedings, volume 7737 of Lecture Notes in Computer Science,
pages 248-267. Springer, 2013.

[16] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977, pages 46-57. IEEE Computer Society, 1977.

Efficiently Computing Halpern-Pearl Causality for Binary
Models with SAT Solving and ILP

Alexander Pretschner and Amjad Ibrahim, TU Munich

A composite fact X causes an effect) in the sense of Halpern-Pearl actual
causality if (1) X and Q actually happen; (2) changing some of the original
values of X while keeping a possibly empty set W of the remaining variables at
their original value leads to Q not happening anymore; and (3) X is minimal
The complexity of the general problem has been established elsewhere. We show
that when restricting ourselves to binary causal modelsi.e., every atom in X is
Booleanthe problem can effectively and efficiently be solved using both SAT
solving and Integer Linear Programming.

The problem is not trivial because intuitively, we firstly need to enumerate
all sets W from condition (2) above and secondly need to check minimality as
required by condition (3). We show how to encode both properties as propo-
sitional formula instead which immediately gives rise to using a SAT solver
to determine if a hypothesized cause satisfies all three properties. In order to
compare SAT solving results to ILP, we then proceed by translating the propo-
sitional formulas into ILP programs as suggested by textbooks, and then define
an objective function that essentially encodes the distance of an unknown cause
X to the hypothesized cause X. Using an ILP solver, if we now manage to find
an X that is smaller than X, then we know that X satisfies conditions (1) and
(2) above but is not a minimal cause.

Using causal models with more than 4000 variables, we show that both
approaches can answer causal queries in a matter of seconds, and that the ILP
encoding in many cases outperforms the pure SAT encoding. Parts of the results
are published in [1].

References

[1] Amjad Ibrahim, Simon Rehwald, Alexander Pretschner: Efficiently Check-
ing Actual Causality with SAT Solving. To appear in Engineering Secure
and Dependable Systems, 10S Press, 2020.

2.2 Causality in Virtual Networks and the Cloud

Causality for (software defined) networks

Georgiana Caltais, University of Konstanz

This work introduces a concept of explanations with respect to the viola-
tion of safe behaviours within software defined networks (SDNs) expressible
in NetKAT. The latter is a network programming language that is based on a
well-studied mathematical structure, namely, Kleene Algebra with Tests (KAT).
Amongst others, the mathematical foundation of NetKAT gave rise to a sound
and complete equational theory.

We also provide an equational framework that computes all relevant expla-
nations witnessing a bad, or an unsafe behaviour, whenever the case. In our
setting, safety is characterised by a NetKAT policy which does not enable for-
warding packets from ingress to an undesirable egress. The proposed equational
framework is a slight modification of the sound and complete axiomatisation of
NetKAT, and is parametric on the size of the considered hop-by-hop switch pol-
icy. Our approach is orthogonal to related works which rely on model-checking
algorithms for computing all counterexamples witnessing the violation of a cer-
tain property. A corresponding tool for automatically computing the explana-
tions could be straightforwardly implemented in a programming language like
Maude, for instance; we leave this exercise as future work.

The results in this presentation are part of a larger project on (counterfac-
tual) causal reasoning on NetKAT. Lewis formulates the counterfactual argu-
ment, which defines when an event is considered a cause for some effect (or
hazardous situation) in the following way: a) whenever the event presumed to
be a cause occurs, the effect occurs as well, and b) when the presumed cause
does not occur, the effect will not occur either. The current result corresponds
to item a) in Lewis’ definition, as it describes the events that have to happen in
order for the hazardous situation to happen as well. The next natural step is to
capture the counterfactual test in b). This reduces to tracing back the explana-
tions to the level of the switch policy, and rewrite the latter so that it disables
the generation the paths leading to the undesired egress. The generation of a
correct” switch policy can be seen as an instance of program repair.

In the future we would be, of course, interested in defining notions of causal-
ity (and associated algorithms) with respect to the violation of other relevant
properties such as liveness, for instance. We would also like to explain and
eventually disable routing loops (i.e., endlessly looping between A and B) from
occurring. Or, we would like to identify the cause of packets being not correctly
filtered by a certain policy.

Using SAT Solvers to Prevent Causal Failures in the Cloud

Ruzica Piskac, Yale

Today’s cloud systems heavily rely on redundancy for reliability. Never-
theless, as cloud systems become ever more structurally complex, independent
infrastructure components may unwittingly share deep dependencies. These
unexpected common dependencies may result in causal failures that undermine
redundancy efforts. The state-of-the-art efforts, e.g., post-failure forensics, not

10

only lead to prolonged failure recovery time in the face of structurally complex
systems, but also fail to avoid expensive service downtime. In this talk, we
present a series of work [1, 2] towards preventing causal failures not only in a
single cloud data center but also across multiple cloud providers.

The INDaaS system [1] attacked the problem of causal failures in the cloud
from the systems research perspective: INDaaS first analyzes the network and
automatically collects dependencies between network entities. Next, it con-
structs a fault graph to model the target system stacks, and then using Monte
Carlo simulations, it analyzes the fault graph to identify potential risks. Scal-
ability, efficiency and the lack of formal guarantees were the main problems
of the INDaaS system. For the structurally complex cloud systems with tens
of thousands of components and multi-layered hardware/software stacks,it is
challenging to make fault graph analysis approaches achieve both accuracy and
efficiency.

We developed RepAudit [2], an auditing system which builds on the INDaaS
system’s fault graph, to identify causal failures in the cloud. To ensure the
practicality, efficiency, and accuracy of our approach, we further equip RepAudit
with a domain-specific auditing language framework, a set of high-performance
auditing primitives. Inspired by successful applications of SAT/SMT solvers
to formal verification of large-scale programs, we leverage them to construct
efficient fault graph analysis algorithms. To empirically evaluate this claim,
we run RepAudit on a real-world cloud storage dataset and we observed that
RepAudit is 300 times more efficient than other state-of-the-art auditing tools.
Furthermore, the returned results are guaranteed to be 100% accurate within
the given fault graph.

References

[1] Ennan Zhai, Ruichuan Chen, David Isaac Wolinsky, Bryan Ford: Heading
Off Correlated Failures through Independence-as-a-Service. OSDI 2014: 317-
334

[2] Ennan Zhai, Ruzica Piskac, Ronghui Gu, Xun Lao, Xi Wang: An auditing
language for preventing correlated failures in the cloud. PACMPL 1(OOP-
SLA): 97:1-97:28 (2017)

Root Cause Analysis (RCA) for Future Networks: Tech-
nology, Vision and Challenges

Armen Aghasaryan, Nokia Bell Labs

Surveillance of complex dynamic communication networks is challenged by
high volumes of measurements and alarms to be processed and interpreted. In
the future, the number of possible failures will grow exponentially with the
increasing number of terminals (IoT), network elements (5G), and traffic vol-
umes. Delayed understanding of a software or hardware failure does not allow
to prevent end-to-end performance degradations, negatively impacts the user
satisfaction and can result in severe violations of service level agreements.

Today, instead of logically reasoning on the causes of observed data, cur-
rent Al approaches teach the machine to associate patterns to specific meaning.

11

This approach fails when the possibilities to learn are too many, and there is
not enough data evidence to generalize over the unobserved possibilities. True
machine intelligence must be built based on the ability to reason on why it
is observing a specific phenomenon and the ability to derive from where it is
originating. It can then focus the attention to causally relevant aspects of the
ever-growing information flow, instantaneously understand the current situa-
tion, and take the most appropriate decisions.

Root Cause Analysis (RCA) is a method of problem solving that aims at
diagnosing and correcting the root causes of undesirable events, as opposed to
simply addressing their symptoms. When the model of characterizing the rela-
tionships between the causes and the symptoms is known, then RCA becomes a
model inversion problem where given the symptom observations the most prob-
able underlying causes need to be identified. There is a plethora of techniques
and algorithms that can address this problem for various types of models : la-
belled automata, Petri Nets, Hidden Markov models, Bayesian Networks, etc.
However, in most of the practical cases, such a model is unknown and is it ex-
tremely hard to be designed manually. Therefore, for practical reasons, before
developing diagnosis algorithms one needs to develop methods for automated
causal model discovery. Here, we consider two types of environments. For ac-
tionable environments, we elaborate interventional learning techniques allowing
the discovery of stimulus-reaction behaviors of networked components through
injection of perturbations of computing resources. For passively observed en-
vironments, we can still infer some of the causal relationships under certain
assumptions of causal precedence in observations and availability of some topo-
logical knowledge . Open challenges in both contexts will be discussed.

12

2.3 Explainability and Accountability

Using Model-Based Testing for Doping Detection in Cyber-
Physical Systems

Mohammad Reza Mousavi, University of Leicester

Doping is a piece of software or system showing a behviour that is in conflict
with the user’s intentions and requirements and is caused by an intervention
by the manufacturer or malicious agents. Examples of doping include printer
or mobile manufacturers locking in users and forcing them to use their origi-
nal parts and also the infamous diesel emission scandal. Doping detection is a
timely subject matter that has been recently addressed by different researchers
and several techniques have been proposed for doping detection. I present an
overview of the different notions of conformance testing for cyber-phsycial sys-
tems and make a case why it makes stuiable tool for doping detection. We show
how using conformance testing improves upon a state of the art method for
detecting causality. We empirically evaluate our proposed technique on actual
data from NOx diesel emission tests and we show that using conformance test-
ing will lead to better use- and a more accurate interpretation of emission data,
leading to better results in doping detection.

Parameterized Protocol Analysis and Causal Reasoning

Richard Trefler, U Waterloo

Model checking network protocols is challenging due to state explosion. For
instance, when checking safety properties of single protocol instance, a model
checker must show that all reachable states of the protocol satisfy the given
safety property. However, the number of reachable states, even if finite, may be
exponential in the textual program description of the protocol instance. This
problem is exacerbated when analyzing whole families of protocol instances,
as the general problem becomes undecidable, for instance when the protocol
processes communicate over a ring network [8].

Local symmetry reduction [1, 2, 3, 4, 5, 6, 8] is an abstraction technique
that may offer substantial, even exponential savings. In essence, the technique
is used by first establishing a finite number of equivalence classes of the process
types that appear in any network instance. Then analysis is performed on indi-
vidual process representatives of each of the types. Using over approximations
of the reachable states of the representatives, local safety properties of the rep-
resentatives generalize to global safety properties of the entire network protocol,
and further more, to entire families of protocol instances.

When local symmetry reduction fails to prove a protocol correct a failure
trace is produced. Causal reasoning has been used to explain error traces found
in model checking [7]. In that case, causal reasoning can be used to pinpoint
the root causes of a bug. Essentially, the technique locates exactly which values
to program variables at which points in the protocol execution have led to the
occurrence of a bad state, a bug.

In the context of parametric protocol analysis, however, several added chal-
lenges arise. First, a failure to establish a proof of safety for a protocol may
occur because the local, abstract protocol instance is simply too abstract to

13

establish the proof of safety. More detail, more context between ‘distant’ neigh-
bors may be an essential part of the protocol. On the other hand, even if the
protocol is in fact buggy, it may be unclear what the minimum sized process
instance is where the bug arises. Addressing these challenges to using causal
reasoning to explain counter examples produced in local symmetry reduction
are the focus of ongoing research.

References

[1] Rylo Ashmore, Arie Gurfinkel, Richard J. Trefler: Local Reasoning for Pa-
rameterized First Order Protocols. NFM 2019: 36-53

[2] Kedar S. Namjoshi, Richard J. Trefler: Symmetry Reduction for the Local
Mu-Calculus. TACAS (2) 2018: 379-395

[3] Kedar S. Namjoshi, Richard J. Trefler: Parameterized Compositional Model
Checking. TACAS 2016: 589-606

[4] Kedar S. Namjoshi, Richard J. Trefler: Loop Freedom in AODVv2. FORTE
2015: 98-112

[5] Kedar S. Namjoshi, Richard J. Trefler: Analysis of Dynamic Process Net-
works. TACAS 2015: 164-178

[6] Kedar S. Namjoshi, Richard J. Trefler: Uncovering Symmetries in Irregular
Process Networks. VMCALI 2013: 496-514

[7] Tlan Beer, Shoham Ben-David, Hana Chockler, Avigail Orni, Richard J. Tre-
fler: Explaining counterexamples using causality. Formal Methods in System
Design 40(1): 20-40 (2012)

[8] Kedar S. Namjoshi, Richard J. Trefler: Local Symmetry and Compositional
Verification. VMCAT 2012: 348-362

[9] Krzysztof R. Apt, Dexter Kozen: Limits for Automatic Verification of Finite-
State Concurrent Systems. Inf. Process. Lett. 22(6): 307-309 (1986)

Using Causal Models for Accountability
Alexander Pretschner, Severin Kacianka, and Amjad Ibrahim, TU Munich

The power of modern information technology, and cyber-physical systems
is rooted, among other things, in the possibility to easily compose them using
software. The ease of composition is due to the virtual nature of software: if a
system provides an application programming interface, then other systems can
in principle directly interact with that system. It is inherently impractical to
specify all legal, or safe, or secure interactions with a system. In turn, this means
that the possibility of illegal, unsafe or insecure interactions cannot be excluded
at design time. As a consequence, we cannot ensure the adequate functioning
of such open systems; hence need to be prepared for failures of the system; and
therefore need accountability mechanisms that help us identify the root cause,
or responsibility, for such a failure [3].

14

Traditionally, safety and also security analysis of critical systems start by de-
termining the systems boundary. We will concentrate on the technical boundary
here. Any accessible software interface, or API, then is part of that boundary.
In practice, these interface descriptions are syntactic in nature. Among other
things, this means that they abstract from restrictions on the usage of the API.
For instance, a collection of data may need to be initialized before it is used,
which is a requirement that is not part of the syntactic interface but may require
additional specification in the form of sequencing requirements.

This example generalizes: Many restrictions on the potential usage of an
API are left implicit, or come as comments in the best case. The academic
community has therefore suggested, for a long time, to provide more detailed
interface descriptions. A typical example for such interfaces are contracts that
require the specification of preconditions and postconditions for the usage of a
specific piece of functionality. In practice, todays software interfaces continue
to be mostly syntactic, in spite of decades of research and impressive results
on richer notions of interfaces that also incorporate (more detailed descriptions
of) the behavior of a component. We prefer not to speculate about the lack
of adoption of these ideas in practice. Instead, we would like to remind that
any interface description provides a behavior abstractionand in this sense, the
syntactic interface, or API, provides such a coarse abstraction as well: data
elements of a certain type are mapped to data elements of another type. Ar-
guably, this is the coarsest abstraction of behavior that still is useful in practice.
At the other end of the spectrum of levels of abstraction, one may argue that
the finest possible abstraction is that of the code itself. However, we do share
the perspective that code itself provides an abstraction of behavior in that in
most programming languages it does not explicitly talk about time or resource
utilization. In this sense, code is not the finest possible abstraction of behavior.
Be that as it may, the above shows that there is a huge spectrum of possible
levels of abstraction for describing the behavior, or an interface, of a system.
It is important to remember that none of these levels as such is better than
another level: this depends on the purpose of the abstraction, as is the case for
any kind of model.

All this does not necessarily constitute novel insights. There is a conse-
quence, however, that we feel has been underestimated in the past and that is
the basis for the work presented here: Regardless of the level of abstraction of
an interface that we choose, there must, by definition, always be parts of the
behavior that are left unspecified. And this, in turn, means that the boundary
of a software-intensive system usually is not, should not, and most importantly:
cannot be specified without leaving open several degrees of freedom in terms
of how to legally use the system. It hence cannot be excluded that a system
S1 is used by another system S2 in a way that the developer of S1 has never
envisaged and which violates implicit assumptions that were made when devel-
oping S1, possibly leading to a runtime failure of S1 and, by consequence, also of
S2.2. One consequence is that software-rooted failures for composed, or open,
systems cannot be excluded by design. Because these systems are becoming
ever more complex, we consider it hence mandatory to provide mechanisms for
understanding the root causes of a failure, both for eliminating the underlying
(technical) problem and for assigning blame.

We call a system accountable that can help answer questions regarding the
root cause of some (usually undesired) event (other notions of accountability are

15

studied and formalized elsewhere). Accountability of a system requires at least
two properties: The system must provide evidence, usually in the form of logs,
that helps understand the reasons of the undesired event. Moreover, there must
be some mechanism that can reason about causality. Different forms of causality
are useful in our context. Just to mention two of them, Granger causality
identifies causality with a reduction of error when it comes to predicting one
time series on the grounds of another; and model-based diagnosis computes
candidate sets of potentially faulty components that can explain the failure of
a system. In this talk, we focus on one technical aspect of inferring one specific
kind of causality, namely Halpern-Pearl-style actual causality for counter-factual
arguments: Given a failure of a system (an effect) and a potential cause, we
efficiently compute if, by counterfactual argument, the potential cause is an
actual cause.

In order to perform this kind of post-hoc analysis, we need to provide causal
models. We argue that existing artifacts can be used as a baseline for these
models. (1) Using the example of drones, we show how fault trees automati-
cally inferred from an interpretation of the Four-Variable-Model by Parnas and
Madey can be used for causal inference [4], and how data analysis techniques
on drone logs can be used to infer further causal models. (2) We show how at-
tack trees can be derived from network structures [1]. (3) We show how Timed
Failure Propagation Graphs can server as a basis for causal models. We finally
hint at prior work that shows how to combine such models [2].

References

[1] Tbrahim, Amjad; Bozhinoski, Stevica; Pretschner, Alexander: Attack
graph generation for microservice architecture. Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing - SAC ’19, pages 1235-
1242, ACM, 2019.

[2] Tbrahim, Amjad; Kacianka, Severin; Pretschner, Alexander; Hartsell,
Charles; Karsai, Gabor: Practical Causal Models for Cyber-Physical Sys-
tems. In Nasa Formal Methods 2019, pages 211-227, Springer Lecture Notes
in Computer Science, 2019.

[3] Amjad Ibrahim, Simon Rehwald, Alexander Pretschner: Efficiently Check-
ing Actual Causality with SAT Solving. To appear in Engineering Secure
and Dependable Systems, 10S Press, 2020.

[4] Zibaei, Ehsan; Banescu, Sebastian; Pretschner, Alexander: Diagnosis of
Safety Incidents for Cyber-Physical Systems: A UAV Example. 2018 3rd
International Conference on System Reliability and Safety (ICSRS), IEEE,
2018.

16

2.4 Decision Making and Risk Management

Causality and decision-making

Samantha Kleinberg, Stevens Institute of Technology

Risk Structures: Concepts, Purpose, and Causality

Mario Gleirscher, University of York, United Kingdom

Autonomous machines have safety mechanisms to predict, detect, and react
to dangerous events autonomously until a situation-specific minimum risk state
is reached. Corresponding safety policies have to be werified against a specifi-
cation covering the variety of situations. Engineers could benefit from design
techniques integrating hazard analysis and risk assessment with the specification
and verified synthesis of policies for autonomous safety mechanisms.

My research aims at a design technique for autonomous safety mechanisms
based on models of the controlled process and of risk: The process model ab-
stracts from actions of the process and the risk model describes which of these
actions can increase or decrease risk in certain situations.

Risk Structures. Let V be a set of variables defining the concrete process
state space. While such states are the concrete outcomes of actions performed
by the process, we describe the process by a scenario model, a tuple (S, —y)
with the set S of (operational) situations, abstracting from physical dynamics
or other activity observable through V', and the transition relation —4 C S x .5,
abstracting from the process to sequences of situations.

For risk modelling, we use risk structures [1]. Let F be a set of risk factors,
a generalisation of safety-related faults. Each factor f € F defines a partition
of the state space over V. Each member of this partition can be described by a
predicate over V. Let R(F') be the set of risk states resulting from the Cartesian
product of the partitions described by F' [1]. Then, each risk state represents
the predicates a concrete process state satisfies.

A risk structure R is a tuple (X, M(F), <m,—) with the risk space ¥ C
S x R(F), the mitigation capability M(F) and an endangerment action T ¢
M(F), alinear mitigation order <, C ¥ x X, and the labelled transition relation
= €Y X M(F)U{r} x 2. Furthermore, let 1 C 3 be the set of mishaps.

Given m # 7, we call (o,m,0’) € —, a successful mitigation if o < o,
ineffective otherwise. Given a € M(F)U{7}, we call a transition (o, a,0’) € —,
an endangerment iff o/ <., o.

Risk structures aim at helping engineers in the modelling and examination of
risk scenarios. In support of the planning layer of an autonomous machine (col-
lective), risk structures aim at the design of mitigations, that is, safety monitors
and controllers for run-time handling of risk in such scenarios.

The construction of R involves the abstraction of actions with determined,
uncertain, or probabilistic outcomes into actions with risk-increasing and risk-
neutral outcomes with respect to F. My contribution to the seminar focused
on the abstraction used to construct risk structures, on the purpose of risk
structures, and on the relationship to causal reasoning.

17

Causal Reasoning in Risk Structures. A cause is any member of any
minimal set of actual conditions that are jointly sufficient, given the laws, for
the existence of the effect [2]. Lewis’ counterfactual conditional A O C is
non-vacuously true iff C' holds at all the closest A-worlds. In other words, a
counterfactual is non-vacuously true iff it takes less of a departure from actuality
to make C true along with A than it does to make A true without C [2].

In R, we consider dependencies between factors a,b € F. For example, the
activation of a (probably) causes the activation of b. After activating a, the
process performs actions that, without possible intervention (and at a certain
likelihood), activate b. Causal reasoning helps to identify risk factors, their roles
as causes and consequences of other risk factors, and the capability M (F).

Causal Abstraction. The choice of (F, M (F')) induces the distinction of in-
direct and direct causes or consequences. Let c¢,d € F; 0,0.,0-q, 04,0 € X;
a € p; m € M(F). For example, assume the following fragment in —.:

T
0d —— a

«;l (;‘

)

’ ’

.
o----30¢ O-d

Risk states separating direct causes of an active factor or separating a factor from
its direct consequences should belong to an equivalence class (i.e., highlighted
in grey and including o4,a) and, hence, shape the abstraction of R(F'). From
a probabilistic point of view, states immediately reachable by endangerments
with high likelihood (a) can be merged with states previously reached in the
process (o4). However, states where the system is capable of making mitigation
decisions (o.) are highly relevant for R(F). We call R causally indirect iff —,
has only indirect causal dependencies.

Mitigation and Counterfactuals. Assume that o4 contains at least one
cause d of mishap a; o, contains at least one indirect cause c likely leading
to o4 if not intercepted; m removes ¢ from o, by transition to o_g4; and o_g4
contains strictly less (or less likely) causes of a than o4. Then, we call m (of
d,a) successful, otherwise ineffective. Overall, we say that R is feasible if Vo €
S\pIo' e\ u,me M(F): (6,m,0’) € =, successful.

According to the notion of closest A-world [2], 04 O— a requires that o_g4
represents all worlds closest to o4 but with the cause d of a (indirectly) removed
by m (through removing c).

Safety Policies. A safety policy for R is a map P: ¥ — 277. We call P a
successful policy if it returns only successful mitigations. Given that a mitigation
m € M(F) can be described as a guarded statement and with o € X, we require
for all transitions (o,m,o’) € P(o) that m terminates and, for the weakest
predicate post where o = wp(m, post), that post = o’.

My research concerns the building blocks of a compositional method that
guides the step-wise construction of risk structures and their use for the synthesis
of successful safety policies deployed in an autonomous machine (collective).

18

References

[1] Mario Gleirscher. Risk structures: Towards engineering risk-aware au-
tonomous systems. Unpublished working paper, Department of Computer
Science, University of York, 2019.

[2] David Lewis. Causation. The Journal of Philosophy, 70(17):556, 10 1973.

19

2.5 Fault Localisation, Cause Mining, and Provenance

Finding Minimum Type Error Sources

Thomas Wies, New York University

Automatic type inference is a popular feature of functional programming
languages. However, compilers for these languages are notorious for generating
confusing type error messages. When the compiler detects a type error, it
typically reports the program location where the type checking failed as the
source of the error. Since other error sources are not even considered, the
actual root cause is often missed. In this talk, I present a general framework
for automatic localization of type errors. Our algorithm finds all minimum
error sources, where the exact definition of minimum is given in terms of a
compiler-specific ranking criterion. Our approach works by reducing the search
for minimum error sources to an optimization problem that we formulate in term
of weighted maximum satisfiability modulo theories (MaxSMT). Experiments
with a prototype implementation indicate that the technique has the potential
to significantly improve the quality of type error reports produced by state-of-
the-art compilers.

Cause Mining with STL
Ebru Aydin Gol, Middle East Technical University

Designing cyber-physical systems that achieve complex tasks is a difficult
and error prone process. The resulting models are, in general, complex and
composed of various sub-modules. Once the model is developed, its traces are
checked against the specifications for verification. While it is relatively easy to
simulate the system and mark the erroneous behaviors, it is extremely challeng-
ing to locate the root cause in the model that lead to the unexpected behaviors.
To expedite this process, we develop methods and tools to find temporal prop-
erties that lead to the unexpected behaviors from labeled system traces in an
automated way. We express these properties as past time Signal Temporal
Logic (ptSTL) formulas. A ptSTL formula consists of Boolean and past tem-
poral operators. Essentially, as opposed to the logics with future operators, a
ptSTL formula is evaluated with respect to the trace segment preceding the
current point of reference. Thus, it offers an intuitive formalization to express
the causes of the marked events.

We consider the following problem: given a set of labeled traces, i.e., time-
series data, find a ptSTL formula such that the evaluation of the formula along
the traces mimics the given labels. We develop unsupervised formula synthesis
methods for this problem. In particular, given the labeled dataset, we generate
a formula in a fully automated way. The first method we developed performs pa-
rameter optimization for each parametric formula with a given number of opera-
tors. The operator count, thus the formula expressivity, is increased iteratively
until a formula with sufficient fitness value is found. While this method can
potentially generate the optimal formula, it is computationally expensive due
to its greedy nature. The second method is performs parameter optimization
for a set of parametric formulas and iteratively combines optimized formulas.

20

Compared to the greedy approach, the second method generates sub-optimal
formulas with a significant improvement in the computation time.

We illustrate the proposed approaches on two examples. In the first example,
we consider an aircraft longitudinal flight control model and identify conditions
which cause the aircraft’s longitudinal motion to disturb. In the second example,
we consider the traces generated by a traffic simulator and generate formulas
describing events resulting in traffic congestion. In both cases, The properties
generated by our approach give an insight on the underlying cause.

Using Causal Models to Infer Data Provenance for Attack
Investigation

Ashish Gehani, SRI

Knowledge about the provenance of data has numerous applications. In di-
verse settings, such as databases, operating systems, and workflow managers, it
can help with a multitude of tasks, that include helping identify a computation’s
external dependencies, assessing the impact of a security breach, and tracking
cross-layer performance metrics. This has led to a number of provenance-focused
activities over the past two decades. Early workshops on the topic were held in
2002, 2003, and 2005 in Chicago, Edinburgh, and Boston, respectively. The bi-
ennial International Provenance and Annotation Workshop (IPAW) [17] started
in 2006. The U.K.’s eScience Institute sponsored a theme on the Principles of
Provenance [4], starting in 2008. It hosted a series of symposia locally, and led
to the creation of USENIX’s Theory and Practice of Provenance (TaPP) [31]
that has been held annually since 2009. A Dagstuhl Seminar on the Princi-
ples of Provenance [3] was organized in 2012. Starting in 2014, IPAW and
TaPP have been co-located as part of an umbrella ProvenanceWeek event [27],
along with other provenance-related satellite workshops, every other year. A
series of Provenance Challenge events [26] were held from 2006 to 2010, to
help study provenance capture, the interoperability of systems, and validate the
Open Provenance Model [24, 23]. The W3C standard PROV [28] was created
in 2013. To facilitate comparisons, Provenance Benchmark events [25] collected
traces in 2013 and 2014.

At SRI, we designed systems for certifying video provenance [5], trading
the storage overhead and reliability of provenance verification [6], performing
forensic analysis using provenance [7], optimizing cluster provenance replica-
tion [8], verifying multi-domain provenance [9], using provenance to track Grid
infections [10, 32], integrating scientific provenance [11], auditing provenance in
distributed environments [12], sketching provenance [21], collecting application-
level provenance using compiler-based instrumentation [33], minimizing work-
flow re-execution using provenance [20], using provenance for mobile diagnos-
tics [16], declaratively processing provenance [22], framing provenance integra-
tion as an optimization problem [14], vetting applications for sensitive data
flows [35], studying tradeoffs in byte-, function-, and system-call level prove-
nance tracking [30], scaling to “big provenance” streams [15], compressing prove-
nance [1], detecting Advanced Persistent Threats (APTs) using provenance [2],
and released cross-platform provenance data sets [13]. As with most efforts in
the community, the causal models used to infer provenance were based on expert

21

knowledge of target domains.

From 2015 to 2019, SRI's SPADE [29] was deployed in 5 engagements of
the DARPA Transparent Computing program [34]. It inferred data provenance
based on Linux Audit events. The underlying causal models used to detect
dependencies were constructed by studying the semantics of over 300 system
calls and crafting interpretations for 65 of them by hand. An alternate auto-
mated approach was studied, where model-based causality inference (MCI) [19]
is used to analyze operating system audit logs. It can be employed without
application instrumentation or kernel modification on a target system. Instead,
it leverages a lightweight dual execution (LDX) [18] engine to efficiently build
system-call-level causal models using a combination of counterfactual reasoning
and compiler instrumentation. LDX is used on a training system to acquire pre-
cise causal models of primitive behavior in applications that are expected to be
present in the target system. The causal models consist of explicit dependencies
that can be inferred directly from the audit records of system calls, as well as
implicit dependencies that arise due to in-memory data flow from one call to
another. Models can be described in regular, context-free, or context-sensitive
languages, with increasing parsing complexity. After the models are acquired on
a training system, they can be deployed to parse logs from a target system. The
provenance inferred using these causal models has higher precision than that
which could be derived from the target system’s audit logs alone. Of particular
note, the models can be combined to support parsing logs of composite behav-
ior in the target system. More precise provenance facilitates improved forensic
analysis, intrusion detection, and access control decisions.

References

[1] Raza Ahmad, Melanie Bru, and Ashish Gehani, Streaming Provenance
Compression, Provenance and Annotation of Data and Processes, Lecture
Notes in Computer Science, Vol. 11017, Springer, 2018.

[2] Mathieu Barre, Ashish Gehani, and Vinod Yegneswaran, Mining Data
Provenance to Detect Advanced Persistent Threats, 11th USENIX
Workshop on the Theory and Practice of Provenance (TaPP), 2019.

[3] Dagstuhl Principles of Provenance Seminar, https://www.dagstuhl.de/
12091

[4] U.K. eScience Institute Principles of Provenance Theme, https:
//web.archive.org/web/20150908020424/http://wiki.esi.ac.uk/
Principles_of_Provenance

[5] Ashish Gehani and Ulf Lindqvist, VEIL: A System for Certifying
Video Provenance, 9th IEEE International Symposium on Multimedia
(ISM), 2007.

[6] Ashish Gehani and Ulf Lindqvist, Bonsai: Balanced Lineage Authen-
tication, 23rd Annual Computer Security Applications Conference (AC-
SAC), IEEE Computer Society, 2007.

22

[7]

[15]

[16]

Ashish Gehani, Florent Kirchner, and Natarajan Shankar, System Sup-
port for Forensic Inference, 5th IFIP International Conference on Dig-
ital Forensics, 2009.

Ashish Gehani, Minyoung Kim, and Jian Zhang, Steps Toward Manag-
ing Lineage Metadata in Grid Clusters, 1st Workshop on the Theory
and Practice of Provenance (TaPP), 2009.

Ashish Gehani and Minyoung Kim, Mendel: Efficiently Verifying
the Lineage of Data Modified in Multiple Trust Domains, 19th
ACM International Symposium on High Performance Distributed Comput-
ing (HPDC), 2010.

Ashish Gehani, Basim Baig, Salman Mahmood, Dawood Tariq, and Fareed
Zaffar, Fine-Grained Tracking of Grid Infections, 11th ACM/IEEE
International Conference on Grid Computing (GRID), 2010.

Ashish Gehani, Dawood Tariq, Basim Baig, and Tanu Malik, Policy-
Based Integration of Provenance Metadata, 12th IEEE International
Symposium on Policies for Distributed Systems and Networks (POLICY),
2011.

Ashish Gehani and Dawood Tariq, SPADE: Support for Provenance
Auditing in Distributed Environments, 15th ACM/IFIP/USENIX In-
ternational Conference on Middleware, 2012.

Ashish Gehani and Dawood Tariq, Cross-Platform Provenance, Ist
ACM Provenance Benchmark Challenge, 2013.

Ashish Gehani and Dawood Tariq, Provenance-Only Integration, 6th
USENIX Workshop on the Theory and Practice of Provenance (TaPP),
2014.

Ashish Gehani, Hasanat Kazmi, and Hassaan Irshad, Scaling SPADE to
“Big Provenance”, 8th USENIX Workshop on the Theory and Practice
of Provenance (TaPP), 2016.

Nathaniel Husted, Sharjeel Qureshi, Dawood Tariq, and Ashish Gehani,
Android Provenance: Diagnosing Device Disorders, 5th USENIX
Workshop on the Theory and Practice of Provenance (TaPP), 2013.

International Provenance and Annotation Workshop, https://dblp.org/
db/conf/ipaw/

Yonghwi Kwon, Dohyeong Kim, William Sumner, Kyungtae Kim, Bren-
dan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu, LDX: Causality
Inference by Lightweight Dual Execution, 21st International Confer-
ence on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2016.

Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung Lee, Wen-Chuan
Lee, Shiqging Ma, Xiangyu Zhang, Dongyan Xu, Somesh Jha, Gabriela Cio-
carlie, Ashish Gehani, and Vinod Yegneswaran, M CI: Modeling-based
Causality Inference in Audit Logging for Attack Investigation,

23

[20]

[21]

[22]

[23]

[27]
[28]
[29]

[31]

[32]

25th Annual Network and Distributed System Security Symposium (NDSS),
2018.

Hasnain Lakhani, Rashid Tahir, Azeem Aqil, Fareed Zaffar, Dawood Tariq,
and Ashish Gehani, Optimized Rollback and Re-computation, 46th
IEEFE Hawaii International Conference on Systems Science (HICSS), IEEE
Computer Society, 2013.

Tanu Malik, Ashish Gehani, Dawood Tariq, and Fareed Zaffar, Sketching
Distributed Data Provenance, Data Provenance and Data Management
for eScience, Studies in Computational Intelligence, Vol. 426, Springer,
2013.

Scott Moore, Ashish Gehani, and Natarajan Shankar, Declaratively Pro-
cessing Provenance Metadata, 5th USENIX Workshop on the Theory
and Practice of Provenance (TaPP), 2013.

Luc Moreau, Ben Clifford, Juliana Freire, Yolanda Gil, Paul Groth, Joe
Futrelle, Natalia Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers,
Yogesh Simmhan, Eric Stephan, and Jan Van den Bussche, The Open
Provenance Model core specification (v1.1), Future Generation Computer
Systems, 2010.

Open Provenance Model, https://openprovenance.org/opm/
Provenance Benchmarks, https://sites.google.com/site/provbench/

Provenance Challenges, https://openprovenance.org/
provenance-challenge/WebHome .html

Provenance Week, http://provenanceweek.org
W3C PROV, http://wuw.w3.org/TR/prov-overview/

Support for Provenance Auditing in Distributed Environments,
http://spade.csl.sri.com

Manolis Stamatogiannakis, Hasanat Kazmi, Hashim Sharif, Remco Ver-
meulen, Ashish Gehani, Herbert Bos, and Paul Groth, Tradeoffs in Au-
tomatic Provenance Capture, Provenance and Annotation of Data and
Processes, Lecture Notes in Computer Science, Vol. 9672, Springer, 2016.

USENIX Theory and Practice of Provenance, https://dblp.org/db/
conf/tapp/

Dawood Tariq, Basim Baig, Ashish Gehani, Salman Mahmood, Rashid
Tahir, Azeem Aqil, and Fareed Zaffar, Identifying the provenance of corre-
lated anomalies, 26th ACM Symposium on Applied Computing, 2011.

Dawood Tariq, Maisem Ali, and Ashish Gehani, Towards Automated
Collection of Application-Level Data Provenance, jth USENIX
Workshop on the Theory and Practice of Provenance (TaPP), 2012.

DARPA Transparent Computing, https://www.darpa.mil/program/
transparent-computing

24

[35] Chao Yang, Guangliang Yang, Ashish Gehani, Vinod Yegneswaran, Da-
wood Tariq, and Guofei Gu, Using Provenance Patterns to Vet Sen-
sitive Behaviors in Android Apps, 11th International Conference on
Security and Privacy in Communication Networks (SecureComm,), 2015.

Automating Time Series Safety Analysis for Automotive
Control Systems using Weighted Partial Max-SMT

Shoji Yuen, Nagoya University

We propose a method to detect unexpected time-series signal disturbances
for a given unsafe property to assist safety analysis. A signal disturbance is
incorporated by an in-equivalences between internal variables of before and after
transitions. A signal disturbance exists if a value of variable z is altered by
another value. A cushion variable x' for x is introduced to hold the altered
value. With no signal disturbance, = 2’ holds, but = # 2’ holds if a signal
disturbance of x exists. A trace of the system is described, and we add these
extra equations to characterize the trace. We develop a method to efficiently
detect the signal disturbance by using a weighted partial maximum satisfiability
modulo theories (Max-SMT) technique as a set of variables altered by faults
resulting in an undesirable condition. By assigning the weights properly to
the equations, we control the derivation of signal disturbance patterns with the
required property. We present an experimental application of our method to a
simplified cruise control system as a practical case study following the system
theoretic process analysis (STPA) for the automatic detection of time-series
signal disturbances. (Joint work with Shuichi Sato, Yutaka InamorilTOYOTA
Central R& D], Shogo Hattori, and Hiroyuki Seki[Nagoya University]).

25

3 Summaries of Working Groups

Logics for Causality

Participants: Norine Coenen, Gregor Gossler, Stefan Leue, Ruzica Piskac, Richard
Trefler, and Thomas Wies.

Our main goal was to identify characteristics that a logic should have such
that it is suitable for causal reasoning in systems. In the following, we present
the most relevant aspects:

e Temporal Order: While no accepted definition of causality exists, all defi-
nitions respect the temporal order between cause and effect. A cause has
to always precede its effect. A logic for causality, thus, needs to have the
capability to capture this temporal aspect.

e (Close) Alternate Worlds / Counterfactuals: Counterfactual reasoning
compares the actual world in which cause and effect occur with a sim-
ilar alternate world in which cause and effect both do not occur. A logic
for causality, thus, needs to compare different worlds in order to express
the counterfactual reasoning.

e Minimality: Usually, we are interested in finding minimal causes for an
effect. However, it is not necessary to express that in the logic directly.
It is sufficient to express the causal dependency between a cause ¢ and an
effect e within the logic and, additionally, test that no causal dependency
between a cause ¢’ smaller than ¢ and e exists. Minimality can then be
expressed on the semantical level as logical entailment.

e Mechanization of the Logic: In order to benefit from automation in the
analysis of causal dependencies, it is important that the logic, or at least
a reasonable fragment thereof, is decidable.

e (No) Statistical Operators: Finding suitable candidate causes and effects
can be done using statistical techniques such as regression-based inference
in a preprocessing step. Given these candidates, we use the correspond-
ing logical formula to check whether there indeed is a causal dependency
between the suggested causes and effects.

HyperLTL [1] is a natural choice for a logic for causality. As a tempo-
ral logic for hyperproperties, HyperLTL already combines the temporal aspect
with the possibility to compare different system traces to identify the coun-
terfactuals. Moreover, at least fragments of HyperLTL are decidable [3], in-
cluding the fragment containing the causality formulation described in the talk
abstract “Causality and Hyperproperties” above, and useful tools for checking
satisfiability [3, 4, 6], model checking [2, 9, 10], synthesis [2, 5] and runtime
monitoring [7, 8, 11] exist.

References

[1] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K.
Micinski, Markus N. Rabe, and César Sanchez. Temporal logics for hyper-
properties. In Proceedings of POST, volume 8414 of LNCS, pages 265—284.
Springer, 2014.

26

2]

Norine Coenen, Bernd Finkbeiner, César Sanchez, and Leander Tentrup.
Verifying hyperliveness. In Isil Dillig and Serdar Tasiran, editors, Computer
Aided Verification - 31st International Conference, CAV 2019, New York
City, NY, USA, July 15-18, 2019, Proceedings, Part I, volume 11561 of
Lecture Notes in Computer Science, pages 121-139. Springer, 2019.

Bernd Finkbeiner and Christopher Hahn. Deciding hyperproperties. In
Proceedings of CONCUR, volume 59 of LIPIcs, pages 13:1-13:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

Bernd Finkbeiner, Christopher Hahn, and Tobias Hans. MGHyper: Check-
ing satisfiability of HyperLTL formulas beyond the 3*V* fragment. In Pro-
ceedings of ATVA, volume 11138 of LNCS, pages 521-527. Springer, 2018.

Bernd Finkbeiner, Christopher Hahn, Philip Lukert, Marvin Stenger, and
Leander Tentrup. Synthesizing reactive systems from hyperproperties. In
Proceedings of CAV, volume 10981 of LNCS, pages 289-306. Springer, 2018.

Bernd Finkbeiner, Christopher Hahn, and Marvin Stenger. EAHyper: Sat-
isfiability, implication, and equivalence checking of hyperproperties. In Pro-
ceedings of CAV, volume 10427 of LNCS, pages 564-570. Springer, 2017.

Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Ten-
trup. Monitoring hyperproperties. In Proceedings of RV, volume 10548 of
LNCS, pages 190-207. Springer, 2017.

Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Ten-
trup. RVHyper: A runtime verification tool for temporal hyperproperties.
In Proceedings of TACAS, volume 10806 of LNCS, pages 194—200. Springer,
2018.

Bernd Finkbeiner, Christopher Hahn, and Hazem Torfah. Model check-
ing quantitative hyperproperties. In Proceedings of CAV, volume 10981 of
LNCS, pages 144-163. Springer, 2018.

Bernd Finkbeiner, Markus N. Rabe, and César Sanchez. Algorithms for
model checking HyperLTL and HyperCTL*. In Proceedings of CAV, volume
9206 of LNCS, pages 30-48. Springer, 2015.

Christopher Hahn, Marvin Stenger, and Leander Tentrup. Constraint-
based monitoring of hyperproperties. In Proceedings of TACAS, volume
11428 of LNCS, pages 115-131. Springer, 2019.

27

4

List of Participants

Armen Aghasaryan, Nokia Bell Labs

Vitaliy Batusov, York University, CA

Georgiana Caltais, University of Konstanz

Norine Coenen, Saarland University

Ashish Gehani, SRI

Mario Gleirscher, University of York, UK

Gregor Gossler, INRIA

Ebru Aydin Gol, Middle East Technical University
Samantha Kleinberg, Stevens Institute of Technology
Stefan Leue, University of Konstanz

Mohammad Reza Mousavi, University of Leicester
Ruzica Piskac, Yale

Alexander Pretschner, TU Munich

Richard Trefler, U Waterloo

Thomas Wies, New York University

Shoji Yuen, Nagoya University

28

