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Abstract

A subset C of vertices in an undirected graph G = (V, E) is called a
1-identifying code if the sets I(v) = {u ∈ C : d(u, v) ≤ 1}, v ∈ V , are non-
empty and no two of them are the same set. It is natural to consider classes
of codes that retain the identification property under various conditions,
e.g., when the sets I(v) are possibly slightly corrupted. We consider two
such classes of robust codes. We also consider dynamic identifying codes,
i.e., walks in G whose vertices form an identifying code in G.

1 Introduction

Let G = (V,E) be an undirected graph, and denote by d(u, v) the graphic
distance in G, i.e., d(u, v) is the number of edges in any shortest path from u
to v (or ∞ if no such path exists). For all v ∈ V ,

Br(v) = {u ∈ V : d(u, v) ≤ r}.

Assume that C ⊆ V , which we call a code, is given. The elements of C are
called codewords. For all v ∈ V we denote

Ir(v) = Br(v) ∩ C.

The set Ir(v) is called the identifying set of v. When r = 1, we drop the
subscript. A code C ⊆ V is called r-identifying if all the sets Ir(v), v ∈ V , are
nonempty, and no two of them are the same set.

Definition 1 A subset C ⊆ V is called a t-edge-robust r-identifying code (in G)
if the code C is r-identifying in every graph G1 = (V,E1), where E1 = E 4 E′

and E′ ⊆ {{u, v} : u, v ∈ V, u 6= v} has size at most t. Here X 4 Y denotes the
symmetric difference, i.e., X 4 Y = (X \ Y ) ∪ (Y \ X).
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In other words, C must remain r-identifying in all graphs obtained by adding
or deleting at most t edges (i.e., the total number of additions and deletions
together must be at most t).

Theorem 1 A subset C ⊆ V is a t-edge-robust 1-identifying code in G if and
only if the following three conditions hold:

i) |I(u) 4 I(v)| ≥ t + 1 for every two different vertices u ∈ V and v ∈ V ,
ii) |I(u) 4 I(v)| ≥ t + 2 for every two different codewords u ∈ C and v ∈ C

which are not adjacent in G, and
iii) |I(u)| ≥ t + 1 for every u /∈ C.

Proof. This is easy to check. If in G we add or delete the edge between u and
v, and u and v are not both codewords, say u /∈ C, then I(u) remains the same,
or v is added to I(u), or v is removed from I(u); and I(v) remains the same. If
both u and v are codewords, and they are not adjacent, then adding the edge
between u and v removes u and v from I(u)4 I(v); and if u and v are adjacent
codewords and we delete the edge between them, then u and v are inserted to
I(u) 4 I(v). 2

Definition 2 A subset C ⊆ V is called a t-vertex-robust r-identifying code (in
G) if |Ir(v)| ≥ t + 1 for all v ∈ V and if for all u, v ∈ V , u 6= v, and A,B ⊆ V
with |A|, |B| ≤ t, we have Ir(u) 4 A 6= Ir(v) 4 B.

The condition |Ir(v)| ≥ t + 1 was not included in [46].
Clearly, the definition remains the same if we require that A,B ⊆ C instead

of A,B ⊆ V .
Equivalently [46], C is a t-vertex-robust r-identifying code, if |Ir(v)| ≥ t + 1

for all v ∈ V and if for all u, v ∈ V , u 6= v, we have |Ir(u) 4 Ir(v)| ≥ 2t + 1.
If t = 0, both definitions reduce to the definition of an r-identifying code.
If C is a t-vertex-robust 1-identifying code then it is also a t-edge-robust

1-identifying code.
It is important to notice the differences between the two definitions. Con-

sider, for instance, the case t = r = 1. Informally, in the second variant, the
identifying set is (possibly) corrupted by adding or deleting one codeword; like-
wise in the first variant, except that if c is a codeword, it cannot be deleted
from its own identifying set (because we only delete edges). Another difference
is that in the second variant we are given the corrupted identifying set I(v)
(where v is unknown) without any information how it has been corrupted, and
we should be able to uniquely determine v. In the first variant the situation is
different: we work separately in each given G1.

Identifying codes were introduced in Karpovsky, Chakrabarty and Levitin
[37]. The motivation for identifying codes comes from maintenance of multipro-
cessor architectures. Assume that each vertex of the graph G contains a proces-
sor, and each edge corresponds to a dedicated link between two processors. We
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square king triangular hexagonal
1-identifying 7/20 2/9 1/4 ≤ 3/7
1-edge-robust 1-identifying 1/2 ≤ 3/8 3/7 2/3
1-vertex-robust 1-identifying ≤ 5/8 1/2 ≤ 3/5 ≤ 41/50

dynamic 1-identifying 2/5 1/3 1/2

Table 1: Minimum possible densities in the four grids and meshes.

ask some of the vertices (the codewords) to test their r-neighbourhoods, and
each of them reports back to us by sending a 0, if it did not detect any problems,
and a 1, otherwise. If the codewords form an r-identifying code, then based on
these answers we can tell the location of the malfunctioning processor or tell
that there is none, under the assumption that the number of malfunctioning pro-
cessors is at most one. More generally, we wish to identify the malfunctioning
processors, provided that there are at most l of them.

Many results have been obtained about identifying codes in hypercubes [6],
[7], [25], [30], [34], [35], [38], [39], [40], [41], [44], [45], the square and king grids
and triangular and hexagonal meshes [2], [8], [9], [10], [13], [15], [16], [17], [18],
[26], [27], [28], [29], [32], [33], paths, cycles and trees [3], [4], directed graphs
[12], and identifying codes and complexity [11], [12], [18], [34], [35].

In the final section of the paper we are interested in performing the above
testing process (for l = r = 1) using a dynamic agent. For dynamic location

detection the sensor (or software for testing) is migrating within a network
according to a pre-computed walk in such a way that the set of vertices on
this walk is the corresponding identifying code. For the case of diagnosis in
multiprocessors, at every vertex v of the walk the dynamic agent reports to
the host if there is a faulty vertex in its neighbourhood B1(v), and the host
can identify the (at most one) faulty vertex by the end of the process. The
approach offers great flexibility and portability, and it is efficient for handling
dynamically changing environments. Dynamic agents implemented as mobile
software objects for monitoring and control of computer networks have been
described in [20], [21] and [22]. The new approach results in a drastic reduction
of the number of sensors (which is a major limitation for many applications of
identifying codes) at the expense of the time required for identification.

Table 1 summarizes some of our results in the four grids and meshes: with
the dynamic codes we are working with finite graphs, and the values in the table
are certain limits (cf. Section 4), but they are anyway included for comparison.
The results of the first row can be found in [13], [2]; [17], [10]; [37]; and [16].

In a closely related problem of r-locating-dominating sets, the sets Ir(v)
are required to be nonempty and pairwise different, but only for v /∈ C. In
this case, each processor c corresponding to a codeword sends a 2, if c itself is
malfunctioning, a 0, if it did not detect any problems, and a 1, otherwise. For
results on this problem, see, e.g., [3], [23], [43], [47], [48], [49]. The class of fault-

3



e

u

e

u

e

u

e

u

e

u

e

u

e

u

e

e

e

u

e

e

e

u

e

e

e

u

e

u

e

u

e

u

e

u

e

u

e

u

e

e

e

u

e

e

e

u

e

e

e

u

e

e

e

u

e

u

e

u

e

u

e

u

e

u

e

u

e

e

e

u

e

e

e

u

e

e

e

u

e

u

e

u

e

u

e

u

e

u

e

u

e

e

e

u

e

e

e

u

e

e

e

u

e

e

e

u

e

u

e

u

e

u

e

u

e

u

e

u

e

e

e

u

e

e

e

u

e

e

e

u

e

u

e

u

e

u

e

u

e

u

e

u

e

e

e

u

e

e

e

u

e

e

e

u

e

e

e

u

e

u

e

u

e

u

e

u

e

u

e

Figure 1: A 1-edge-robust 1-identifying code with density 3/8.

tolerant locating-dominating sets [49] can cope with the situation in which at
most one codeword incorrectly transmits a 0 instead of a 1 or 2. Fault-tolerant
identifying codes will be studied in [1].

The following two somewhat different versions have also been considered. A
code C ⊆ V in G = (V,E) is called strongly r-identifying (see [31], [39], [41]),
if the sets {Ir(v), Ir(v) \ {v}} are disjoint for v ∈ V , and none of them contains
the empty set: the idea being that if v is a codeword that corresponds to a
malfunctioning processor, then v may fail to report about problems. Here we
again think that each codeword transmits either a 0 or a 1 (i.e., 2’s are not
used). In another variant (see [31]), we assume that v in this case always fails
to report about problems.

Vertex-robust identifying codes have been used in [46] for location detec-
tion by emergency networks of sensors in the case of unpredictable changes of
topologies. A greedy algorithm for construction of irreducible vertex-robust
identifying codes has also been proposed in [46].

2 On edge-robust codes

Theorem 2 If G = (V,E) is a finite d-regular graph and d ≥ 2, and C ⊆ V is
a 1-edge-robust 1-identifying code in G, then

|C| ≥ 2|V |
d

.
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Proof. We denote N = V \ C, and

Ci = {c ∈ C : |I(c)| = i},

Ni = {x ∈ N : |I(x)| = i}.
We further denote

C≥i =
⋃

j≥i

Cj

and
N≥i =

⋃

j≥i

Nj .

By definition, every v ∈ N has at least two codeword neighbours.
There can be a codeword that belongs to C1, but not more than one: adding

an edge between any two such codewords would result in a graph in which C
is no longer identifying. If v ∈ C1, then d ≥ 2 implies that v has at least two
neighbours, say u ∈ N and u′ ∈ N . If u ∈ N2 and the other codeword neighbour
of u were w, then adding an edge between v and w would result in a graph in
which C is not identifying. Hence u ∈ N≥3, and similarly, u′ ∈ N≥3. We have
proved that

|N≥3| ≥ 2|C1|. (1)

Assume that v ∈ C2 and that its unique codeword neighbour is c. Then
c ∈ C≥4: if c ∈ C3 and I(c) = {v, c, u}, then adding an edge between v and u
would give a graph where C is no longer identifying. Moreover, any codeword
in C≥4 can have at most one neighbour that belongs to C2: otherwise adding
an edge between any two such neighbours would again give a graph where C is
not identifying. Hence we have

|C≥4| ≥ |C2|.

We can now prove the theorem by counting in two ways the number of pairs
(v, c), where v ∈ V , c ∈ C and d(v, c) ≤ 1. Using the two inequalities from
above we get

(d + 1)|C| =

d
∑

i=2

i|Ni| +
d+1
∑

i=1

i|Ci|

≥ |C≥4| + 3|C| − |C2| − 2|C1| + 2|N | + |N≥3|
≥ 3|C| + 2|N | = 3|C| + 2(|V | − |C|),

i.e.,
d|C| ≥ 2|V |

as claimed. 2

5



Example 1 Consider a finite square grid (with wrapping around), in which the
vertex set is ZZn ×ZZm, and two vertices (i, j) and (i′, j′) are neighbours if either
i = i′ and j − j′ = ±1 (mod m); or i− i′ = ±1 (mod n) and j = j′. Assume
that n ≥ 6 is even and m ≥ 5. If we take as codewords all the points (i, j) with i
even, then it is easy to check that we obtain a 1-edge-robust 1-identifying code.
This code has cardinality |V |/2, and is therefore the smallest possible by the
previous theorem.

We are often interested in infinite graphs. Consider, for instance, the infinite
square grid whose vertex set is ZZ

2 and in which two vertices are adjacent if their
Euclidean distance equals 1. In this graph we denote

Qn = {(i, j) | |i| ≤ n, |j| ≤ n}

and the density D of a code C ⊆ ZZ
2 is

D = lim sup
n→∞

|C ∩ Qn|
|Qn|

.

Theorem 3 The smallest possible density of a 1-edge-robust 1-identifying code
in the infinite square grid is 1/2.

Proof. It is easy to check that the code that consists of all points (i, j) ∈ ZZ
2

such that i is even is a 1-edge-robust 1-identifying code and has density 1/2.
Assume now that C is a 1-edge-robust 1-identifying code in the infinite

square grid. Using the same argument as in the proof of Theorem 2 we get the
inequality |C2 ∩ Qn| ≤ |C≥4 ∩ Qn+1| ≤ 8n + 8 + |C≥4 ∩ Qn| — as some of the
codeword neighbours of the points in C2∩Qn may not be in Qn, but are anyway
in Qn+1, and |Qn+1 \ Qn| = 8n + 8. Instead of the first inequality (1), we just
use the fact that |C1| ≤ 1. Using these we get (where now d = 4)

(d + 1)|C ∩ Qn| + (d + 1)(8n + 8)

≥ (d + 1)|C ∩ Qn+1|

≥
d

∑

i=2

i|Ni ∩ Qn| +
d+1
∑

i=1

i|Ci ∩ Qn|

≥ |C≥4 ∩ Qn| + 3|C ∩ Qn| − |C2 ∩ Qn| − 2 + 2|N ∩ Qn|
≥ 3|C ∩ Qn| + 2|N ∩ Qn| − (8n + 8) − 2,

and
|C ∩ Qn|
|Qn|

≥ 2

d
− (d + 2)(8n + 8) + 2

d|Qn|
,

resulting in the lower bound 2/d = 1/2 on the density. 2

The next theorem is about the infinite king grid, where the vertex set is ZZ
2,

and two vertices are adjacent if their Euclidean distance equals 1 or
√

2.
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Figure 2: An optimal 1-edge-robust 1-identifying code with density 3/7.

Theorem 4 In the infinite king grid there is a 1-edge-robust 1-identifying code
with density 3/8.

Proof. See Figure 1. 2

Consider the infinite triangular mesh T for which

V = {i(1, 0) + j(
1

2
,

√
3

2
) | i, j ∈ ZZ}

and two edges are adjacent if their Euclidean distance is 1. In T we denote

Tn = {i(1, 0) + j(
1

2
,

√
3

2
) | |i| ≤ n, |j| ≤ n}.

The density D of a code C ⊆ T is defined by

D = lim sup
n→∞

|C ∩ Tn|
|Tn|

.

Theorem 5 ([24]) The minimal density of a 1-edge-robust 1-identifying code
in the infinite triangular mesh is 3/7.

Proof. The proof can be found in [24]. For completeness, the construction
from [24] is given in Figure 2. 2
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Figure 3: An optimal 1-edge-robust 1-identifying code with density 2/3.

Theorem 6 The minimal density of a 1-edge-robust 1-identifying code in the
infinite hexagonal mesh is 2/3.

Proof. It is easy to check that the code in Figure 3 is a 1-edge-robust 1-
identifying code and has density 2/3. The lower bound on the density follows
from the proof of Theorem 2 in the same way as in the proof of Theorem 3. For
the exact definition of density in this case, see, e.g., [16]. 2

Denote by K(n,R) the minimum cardinality of a binary code of length n
with covering radius R, and

V (n, r) =

r
∑

i=0

(

n

i

)

.

Theorem 7 Assume that t ≥ 1. In the binary n-dimensional cube ZZ
n
2 with

n ≥ t + 3 there is a t-edge-robust 1-identifying code with cardinality at most
2V (n − 1, t)K(n − 1, t + 1).

Proof. We use a small modification of a construction from [37].
Denote by Bt the set of all binary words of length n− 1 and weight at most

t. Let A be a code attaining the bound K(n − 1, t + 1).
We define

C = {a + x : a ∈ A, x ∈ Bt} ⊕ ZZ2.

Obviously, the cardinality of C is at most 2V (n − 1, t)K(n − 1, t + 1), and we
claim that it is a t-edge-robust 1-identifying code in ZZ

n
2 .
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We denote
F (a) = {a + x : x ∈ Bt} ⊕ ZZ2.

We now consider any fixed graph G1 which is as in Definition 1. Let I(v) denote
the identifying set of v in G and J(v) in G1.

Let v = (x, y), where x ∈ ZZ
n−1
2 and y ∈ ZZ2.

By definition of A, there is a codeword a ∈ A such that d(a, x) ≤ t + 1. One
immediately checks that

|I(v) ∩ F (a)| =







n + 1 if d(x, a) < t
t + 2 if d(x, a) = t
t + 1 if d(x, a) = t + 1.

(2)

In particular, the sets J(v) are nonempty for all v. We prove that no two of
them are the same (in the fixed G1).

Let v′ = (x′, y′) ∈ ZZ
n
2 , v′ 6= v, where x′ ∈ ZZ

n−1
2 and y′ ∈ ZZ2, be another

vertex.
Assume first that v′ is a vertex such that I(v′)∩F (a) = ∅. If G1 was obtained

by deleting i edges and adding j edges, then by (2),

|J(v) ∩ F (a)| ≥ t + 1 − i > t − i ≥ j ≥ |J(v′) ∩ F (a)|,

and we are done.
It therefore suffices to consider the vertices v′ for which I(v′) ∩ F (a) 6= ∅.
We claim that J(v) ∩ F (a) 6= J(v′) ∩ F (a). Consider the size of (I(v) ∩

F (a)) 4 (I(v′) ∩ F (a)). Adding or deleting one edge when changing from G to
G1 can decrease it by at most one — except when both v and v′ are in F (a),
and the edge to be added is {v, v′} and d(v, v′) ≥ 2 (i.e., v and v′ were not
adjacent), in which case the quantity decreases by two. All in all, when moving
from G to G1, the quantity may decrease by at most t + 1, and by at most t if
we do not add {v, v′} as an edge.

Assume first that x = x′. Then d(v, v′) = 1 and it suffices to show that
|(I(v)∩F (a))4 (I(v′)∩F (a))| > t. If w(x) = t+1, then I(v)∩I(v′)∩F (a) = ∅,
and

|(I(v) ∩ F (a)) 4 (I(v′) ∩ F (a))|
= |I(v) ∩ F (a)| + |I(v′) ∩ F (a)| − 2|I(v) ∩ I(v′) ∩ F (a)|
≥ (t + 1) + (t + 1) − 0 = 2t + 2 > t.

If w(x) ≤ t, then

|(I(v) ∩ F (a)) 4 (I(v′) ∩ F (a))| ≥ (t + 2) + (t + 2) − 4 = 2t > t.

Assume then that x 6= x′.
If d(x, a) < t or d(x′, a) < t, then

|(I(v) ∩ F (a)) 4 (I(v′) ∩ F (a))| ≥ (n + 1) + (t + 1) − 4 > t + 1,

9



and we are done; so assume that d(x, a), d(x′, a) ∈ {t, t+1}. Then |I(v)∩I(v′)∩
F (a)| ≤ 1.

If d(x, a) = d(x′, a) = t + 1, then v /∈ F (a) and v′ /∈ F (a), and

|(I(v) ∩ F (a)) 4 (I(v′) ∩ F (a))| ≥ (t + 1) + (t + 1) − 2 = 2t > t,

and we are done. In all other cases,

|(I(v) ∩ F (a)) 4 (I(v′) ∩ F (a))| ≥ (t + 2) + (t + 1) − 2 = 2t + 1 > t + 1,

completing the proof. 2

Denote by ME(n, t) the minimum cardinality of any binary t-edge-robust
1-identifying code C ⊆ ZZ

n
2 .

If C is a t-edge-robust 1-identifying code in G = (V,E), then for every x /∈ C
we have |I(x)| ≥ t + 1. Hence

(d + 1)|C| ≥ (t + 1)(|V | − |C|)

and

|C| ≥ (t + 1)|V |
d + t + 2

.

Applying this to ZZ
n
2 we get

ME(n, t) ≥ (t + 1)2n

n + t + 2
.

If the conjecture

lim
n→∞

K(n,R)

2n/
∑R

i=0

(

n
i

)
= 1 (3)

holds for R = t + 1, then using Theorem 7 we get

ME(n, t) =
(t + 1)2n

n
(1 + f(n)),

where f(n) → 0, when n → ∞. Anyway, we know from [50] (the construction is
also explained in [14, Section 4.5]) that there is a family of values ni for which
ni → ∞ and

lim
i→∞

K(ni, 2)

2ni/
∑2

j=0

(

ni

j

) = 1.

As we shall see in Section 3, the minimum cardinality MV (n, t) of any 1-
vertex-robust 1-identifying code C ⊆ ZZ

n
2 satisfies the equation

MV (n, t) =
(t + 2)2n

n
(1 + g(n)), (4)

where g(n) → 0, when n → ∞, provided that the conjecture (3) holds for
R = t + 2.
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Theorem 8 Assume that G = (V,E) is any connected graph with at least two
vertices, and that C is a (1,≤ 2)-identifying code in G, i.e., the sets I(F ) :=
∪x∈F I(x) are different for all F of size at most two (I(∅) = ∅). Then C is
1-edge-robust 1-identifying.

Proof. Assume that C is (1,≤ 2)-identifying. Denote by I(v) the identifying
set of a vertex v in G and by J(v) in G1.

Because the graph is connected and has at least two vertices, we know that
for all v ∈ V we have |I(v)| ≥ 2 (and hence J(v) 6= ∅). Indeed, assume that
I(v) = {c}. If c = v, and u is any neighbour of v, then I(u, c) = I(u); if c 6= v,
then I(c, v) = I(c), both contrary to our assumption.

Let u, v ∈ V , u 6= v. Clearly, I(u) 6= I(v), so C is identifying in G.
Assume that G1 is obtained by deleting an edge e from G. If e is incident

to neither u nor v, then J(u) = I(u) 6= I(v) = J(v). If e is the edge between
u and v, then the fact that I(u) 6= I(v) implies that there is a vertex w 6= u, v
such that w ∈ I(u) \ I(v) or w ∈ I(v) \ I(u), and the existence of such a vertex
w shows that J(u) 6= J(v). If e is incident to exactly one of the vertices u
and v, say u, and the other endpoint of e is w, then J(u) = J(v) would imply
I(u,w) = I(v, w) against our assumption.

Assume then that G1 is obtained by adding an edge e to G. If e is incident
to neither u nor v, there is again nothing to prove. If e is incident to exactly
one of them, say u, and w is the other endpoint of e, then J(u) = J(v) would
imply I(u,w) = I(v, w). Assume finally that e is the edge between u and v
(and hence that there was no edge between them in G) and that J(u) = J(v).
Because |I(u)| ≥ 2, there is a vertex w which is neither u nor v but is adjacent
to both of them. But then I(u,w) = I(v, w), contrary to our assumption. 2

Theorem 9 i) ME(3, 1) = 6,
ii) ME(4, 1) = 9, and
iii) ME(5, 1) ≤ 16.

Proof. i) It is easy to check that the code ZZ
3
2 \ {000, 111} is 1-edge-robust

1-identifying. The lower bound follows from Theorem 2.
ii) It is not difficult to check that the 9-element code

0000, 1010, 1001, 0110, 0101, 1110, 1101, 1011, 0111

is a 1-edge-robust 1-identifying code. By Theorem 2, the cardinality of a 1-
edge-robust 1-identifying code of length four is at least eight, and if there is
such a code, then equality holds in Theorem 2. Assume that C is a 1-edge-
robust 1-identifying code of length four with eight codewords. From the proof
of Theorem 2 we see that this implies that |C≥5| = 0 and |N≥3| ≤ 2. We first
observe that C1 = ∅: if c ∈ C1, then (as we saw in the proof of Theorem 2)

11



its four non-codeword neighbours would all belong to N≥3. Since C1 = ∅, the
argument of Theorem 2 shows that N = N2.

We consider two possibilities: either there is a codeword in C2 or C = C≥3.
If c ∈ C2, then without loss of generality c = 0000, 1000 ∈ C, 0100 /∈ C,

0010 /∈ C and 0001 /∈ C. From the proof of Theorem 2 we know that 1000 ∈ C≥4.
But since we know that C≥5 = ∅, we can without loss of generality assume that
1100 ∈ C, 1010 ∈ C and 1001 /∈ C. Since 0100 ∈ N = N2, we know that
0110 /∈ C and 0101 /∈ C. Since 0010 ∈ N = N2, we know that 0011 /∈ C. But
then 0001 ∈ N1, which is a contradiction.

Assume then that C = C3 (and N = N2). Without loss of generality,
0000 /∈ C, 1000 ∈ C, 0100 ∈ C, 0010 /∈ C, 0001 /∈ C.

We now complete C in two ways. First, if 0011 /∈ C, then 0010 ∈ N2 implies
that 0110 ∈ C and 1010 ∈ C; 0001 ∈ N2 implies that 0101 ∈ C and 1001 ∈ C;
1000 ∈ C3 implies that 1100 /∈ C; 0011 ∈ N2 implies that 0111 ∈ C and 1011 ∈
C; 1100 ∈ N2 implies that 1110 /∈ C and 1101 /∈ C; and finally 1101 ∈ N2 implies
that 1111 /∈ C. The resulting code, however, is not 1-edge-robust 1-identifying,
because I(1010) = {1010, 1000, 1011} and I(1001) = {1001, 1000, 1011}, and
adding an edge between 1010 and 1001 violates the identification property.

Assume instead that 0011 ∈ C. By symmetry we can assume that 1010
is the other codeword in I(0010). Then 0110 /∈ C; 0100 ∈ C3 implies that
0101 ∈ C and 1100 ∈ C; 1000 ∈ C3 implies that 1001 /∈ C; 1100 ∈ C3 implies
that 1110 /∈ C and 1101 /∈ C; 0011 ∈ C3 implies that 0111 ∈ C and 1011 ∈
C; and finally 1110 ∈ N2 implies that 1111 /∈ C. Again, the resulting code
is not 1-edge-robust 1-identifying, because I(1011) = {1011, 0011, 1010} and
I(0010) = {0011, 1010}, and adding an edge between 1011 and 0010 violates
the identification property.

iii) We know from [45] that there is a (1,≤ 2)-identifying code of cardinality
16 in ZZ

5
2, and the result immediately follows from Theorem 8. 2

Consider next the q-ary cube whose vertex set is ZZ
n
q and two vertices (x1, . . . , xn)

and (y1, . . . , yn) are adjacent if xi = yi for all indices except one, say j, and
xj − yj ≡ ±1 (mod q).

Theorem 10 Assume that A ⊆ ZZ
n−1
2 is a binary code with covering radius 1.

Let q > 4 and
E(0) = {0, 2, 4, . . . , q − 2}
E(1) = {1, 3, 5, . . . , q − 1}

if q is even, and
E(0) = {0, 2, 4, . . . , q − 1}

E(1) = {0, 1, 3, 5, . . . , q − 2}

12



if q is odd. Then

C = ZZq ⊕
⋃

(x1,...,xn−1)∈A

E(x1) ⊕ . . . ⊕ E(xn−1)

is a 1-edge-robust 1-identifying code in the q-ary cube.

Proof. In the nonbinary hypercube the code C is clearly 1-identifying: if
v = (v1, . . . , vn), and v ∈ C, then the set I(v) contains three elements with the
same last n−1 coordinates, namely, (v1−1, v2, . . . , vn), v and (v1+1, v2, . . . , vn),
and, if v /∈ C, then I(v) contains the words (v1, . . . , vi−1, vi − 1, vi+1, . . . , vn)
and (v1, . . . , vi−1, vi + 1, vi+1, . . . , vn) for some i ≥ 2, and in both cases there is
a unique vertex within distance one from these words (because q > 4).

Assume that we delete one edge — and let I(v) now refer to the new graph. If
the set I(v) contains more than one vertex with the same last n−1 coordinates,
we know that v is a codeword. If the deleted vertex does not connect two
codewords, then the sets I(v) for all v ∈ C are the same as in the original
graph, and we are done. If the edge does connect two codewords u and u′,
then I(u) and I(u′) may only contain two codewords with the same last n − 1
coordinates, but then u /∈ I(u) \ I(u′), and we can still uniquely identify v. If
I(v) does not contain any two elements with the same last n − 1 coordinates,
then v is a non-codeword, and since there is at most one non-codeword v for
which I(v) does not contain the words (v1, . . . , vi−1, vi − 1, vi+1, . . . , vn) and
(v1, . . . , vi−1, vi + 1, vi+1, . . . , vn) for some i ≥ 2, we are again done.

Assume that we add one edge to the original hypercube. If I(v) in this new
graph contains at least three codewords with the same last n − 1 coordinates,
then v is a codeword. If the added edge does not connect two codewords, we
are again done. If the edge indeed connects two codewords u and u′, then I(u)
and I(u′) may contain more than three codewords with the same last n − 1
coordinates. If u = (u1, u2, . . . , un), then (u1 − 1, u2, . . . , un) ∈ I(u) and (u1 +
1, u2, . . . , un) ∈ I(u), but they cannot both belong to I(u′). Hence the case when
v is a codeword is clear. If, finally, I(v) contains at most two codewords with the
same last n−1 coordinates, then v is a non-codeword, and we know that in I(v)
there are some two codewords of the form (v1, . . . , vi−1, vi − 1, vi+1, . . . , vn) and
(v1, . . . , vi−1, vi+1, vi+1, . . . , vn) for some i ≥ 2. Consequently, we conclude that
given I(v), there is a unique vertex within distance one from all the codewords
in I(v) — except that there may be one (but only one) v such that for I(v)
there is no such vertex, but then we can identify v, because it is the unique
non-codeword with that property. 2

Corollary 1 If q > 4 is even and n = 2s, s ≥ 2, then the minimum possible
size of a 1-edge-robust 1-identifying code in the q-ary cube equals qn/n.

Proof. Take in the previous theorem A to be a perfect binary code of length
2s − 1; the lower bound follows from Theorem 2. 2

13



Corollary 2 If q > 4 is even, then for this fixed q the minimum possible cardi-
nality of a 1-edge-robust 1-identifying code in the q-ary cube equals

qn

n
(1 + g(n)),

where g(n) → 0 when n → ∞.

Proof. By Theorem 2, the minimum possible cardinality is at least qn/n. On
the other hand, by Theorem 10 there is such a code with cardinality at most
qK(n − 1, 1)(q/2)n−1. According to [36],

K(n − 1, 1)n

2n−1
→ 1

when n → ∞, from which the claim follows. 2

3 On vertex-robust codes

We begin with a general lower bound.

Theorem 11 Assume that G = (V,E) is a d-regular graph, t > 0, and that C
is a t-vertex-robust 1-identifying code with cardinality K in G. Then

K ≥ (t + 2)|V |
d + 1 + 2−t2

(t+1)(2t+3)

.

Proof. We use the same notations Ci, Ni and C≥i as in the proof of Theorem
2.

We first observe that no codeword can have two neighbours u1 and u2 that
both belong to Ct+1 ∪ Nt+1: otherwise |I(u1) 4 I(u2)| ≤ 2t.

By definition, C0 = C1 = . . . = Ct = ∅. If c ∈ Ct+1, and u is a code-
word neighbour of c, then u ∈ C≥t+4, because |I(u) 4 I(c)| ≥ 2t + 1. By our
preliminary observation, we therefore have

t|Ct+1| ≤ |C≥t+4|. (5)

In the same way we see that vertices from Ct+2 can have codeword neigh-
bours only from C≥t+3. Counting in two ways the number of edges between the
vertices in Ct+1 ∪ Ct+2 and the vertices in C we see that

t|Ct+1|+(t+1)|Ct+2| ≤ (t+2)|Ct+3|+(t+3)|C≥t+4|+
d+1−t
∑

i=5

(i− 4)|Ct+i|. (6)
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By definition, N0 = N1 = . . . = Nt = ∅. Vertices from Nt+1 cannot have
neighbours from Ct+1. Counting the number of codeword neighbours of Nt+1 ∪
Ct+1 and again using our preliminary observation we get the inequality

K − |Ct+1| ≥ (t + 1)|Nt+1| + t|Ct+1|,

i.e.,

|Nt+1| ≤
K

t + 1
− |Ct+1|. (7)

Counting the pairs (c, x) such that c ∈ C, x ∈ V , d(c, x) = 1, we get

Kd ≥ t|Ct+1| + (t + 1)|Ct+2| + (t + 2)|Ct+3| + (t + 3)|C≥t+4|

+

d+1−t
∑

i=5

(i − 4)|Ct+i| + (t + 1)|Nt+1| + (t + 2)(|V | − K − |Nt+1|).(8)

Combining (7) and (8) we obtain

Kd ≥ t|Ct+1| + (t + 1)|Ct+2| + (t + 2)|Ct+3| + (t + 3)|C≥t+4|

+(t + 2)(|V | − K) − K

t + 1
+ |Ct+1| +

d+1−t
∑

i=5

(i − 4)|Ct+i|. (9)

Now, multiply (5) by −z, and (6) by −y (y, z ≥ 0), and add with (9) to obtain

Kd ≥ a1|Ct+1| + a2|Ct+2| + a3|Ct+3| + a4|C≥t+4|

+(1 − y)

d+1−t
∑

i=5

(i − 4)|Ct+i| − (t + 2)K − K

t + 1
+ (t + 2)|V |

≥ K

(

min{a1, a2, a3, a4} − (t + 2) − 1

t + 1

)

+ (t + 2)|V |,

provided that y ≤ 1. Here

a1 = (1 + y + z)t + 1, a2 = (1 + y)(t + 1),
a3 = (1 − y)(t + 2), a4 = (1 − y)(t + 3) − z.

It is readily seen that

max
y,z

min{a1, a2, a3, a4} = (t + 1)(1 +
1

2t + 3
),

and the maximum is achieved for y = 1/(2t + 3), y/t ≤ z ≤ 1 − y. In fact, a2

or a3 is smaller than (t + 1)(1 + 1/(2t + 3)) unless y = 1/(2t + 3). We have
therefore obtained the bound

Kd ≥ K

(

−1 − 1

t + 1
+

t + 1

2t + 3

)

+ (t + 2)|V |
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Figure 4: A 3-regular graph with 26 vertices and a 1-vertex-robust 1-identifying
code with 20 codewords. The big solid circles denote codewords in C4, the small
solid circles codewords in C3.

as claimed. 2

In particular, for t = 1,

K ≥ 30|V |
10d + 11

,

and for t = 2,

K ≥ 84|V |
21d + 19

.

So, for d = 3, t = 1 we get K/|V | ≥ 30/41, for d = 4, t = 1 we get K/|V | ≥ 10/17
and for d = 6, t = 1 we get K/|V | ≥ 30/71.

The case d = 3, t = 1, can be improved. Indeed, then |C2| = 0 because
|C≥5| = 0, and 2|N2| + 3|N3| = |C3|, and 2|C3| ≤ 3|C4|. It follows that |N2| ≤
|C3|/2 ≤ 3K/10. Then, from the inequality

3K ≥ 2|C3| + 3|C4| + 3(|V | − K) − |N2|
it follows that K/|V | ≥ 10/13. This bound is tight: there exists a 3-regular
graph that has a code attaining this bound, as shown in Figure 4.

Theorem 12 For all n ≥ t + 3 there is a t-vertex-robust 1-identifying code
C ⊆ ZZ

n
2 whose cardinality is at most K(n, t + 2)V (n, t + 1).

Proof. Let A be a code attaining the bound K(n, t + 2) and take

C =
⋃

a∈A

(a + Bt+1),

16



t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

Figure 5: A 1-vertex-robust 1-identifying code with density 5/8.

where Bt+1 denotes the set of all binary words of length n and weight at most
t + 1. It is not difficult to check that |I(x)4 I(y)| ≥ 2t + 2 whenever x, y ∈ ZZ

n
2

and x 6= y. 2

Theorem 13 Let t ≥ 1 be fixed. If the conjecture (3) holds for R = t + 2, we
have

MV (n, t) =
(t + 2)2n

n
(1 + g(n)),

where g(n) → 0 when n → ∞.

Proof. The upper bound follows from the previous theorem, and the lower
bound from Theorem 11. 2

Theorem 14 In the infinite square grid there is a 1-vertex-robust 1-identifying
code with density 5/8.

Proof. See Figure 5. 2

Theorem 15 The smallest possible density of a 1-vertex-robust 1-identifying
code in the infinite king grid is 1/2.
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Figure 6: A 1-vertex-robust 1-identifying code with density 1/2.
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Figure 7: A 1-vertex-robust 1-identifying code with density 3/5.
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Proof. For a construction, see Figure 6. Conversely, assume that C is a 1-
vertex-robust 1-identifying code in the infinite king grid. For all i and j, the set
B1((i, j))4B1((i+1, j)) has size 6 and contains at least 3 codewords of C, and
the lower bound on the density follows. 2

Theorem 16 In the infinite triangular mesh there is a 1-vertex-robust 1-identifying
code with density 3/5.

Proof. See Figure 7. 2

Theorem 17 Consider the infinite hexagonal mesh H.
(i) A code C is a 1-vertex-robust 1-identifying in H if and only if there are

no two non-codewords whose graphic distance equals two or three.
(ii) In H there is a 1-vertex-robust 1-identifying code with density 41/50.

Proof. (i) Assume first that C ⊆ V is a 1-vertex-robust 1-identifying code
in H, and let u /∈ C and v /∈ C be any two non-codewords. If d(u, v) = 2,
then there is a unique vertex x which is adjacent to both. Let w be the third
neighbour of x. Now |I(x) 4 I(w)| ≤ 2. If d(u, v) = 3, let x and w be the two
middle vertices on a shortest path connecting u and v. Then |I(x)4 I(w)| ≤ 2.

Conversely, assume that C ⊆ V and that there are no two non-codewords
whose graphic distance would be two or three. First, for every v ∈ V , we have
|I(v)| ≥ 2: of the three neighbours of v, at least two must be in C, because the
pairwise distance between any two of its neighbours equals two.

Let u, v ∈ V , u 6= v, be arbitrary. If d(u, v) ≥ 3, then |I(u)4I(v)| ≥ 2+2 = 4
by what we have already proved.

Assume that d(u, v) = 2. If u /∈ C, then by our distance requirement, v ∈ C,
and the two of its neighbours that are at distance three from u are also in C and
hence |I(u)4 I(v)| ≥ 3. Assume then that u ∈ C. Out of the two neighbours of
u that are at distance three from v, at least one is in C (because their pairwise
distance is two). For the same reason, out of the two neighbours of v that are
at distance three from u, at least one is in C. Again |I(u) 4 I(v)| ≥ 3.

Assume finally that d(u, v) = 1. If |I(u)4 I(v)| ≤ 2, then u (resp. v) would
have two non-codeword neighbours — which cannot be since their distance is
two — or u has a neighbour other than v which is a non-codeword and v has
a neighbour other than u which is a non-codeword — but their distance equals
three.

Hence C is a 1-vertex-robust 1-identifying code.
(ii) This follows from Figure 8. 2

We next determine the smallest possible densities for the square and king
grids and triangular and hexagonal meshes when r = 1 and t > 1.

19



v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

Figure 8: A 1-vertex-robust 1-identifying code with density 41/50.
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Figure 9: Patterns that each contain at most one non-codeword.

Theorem 18 In the infinite square grid the smallest 2-vertex-robust 1-identifying
code has density 11/12 — and no t-vertex-robust 1-identifying codes exist if
t > 2.

Proof. Let u and v be any two neighbouring points in ZZ
2. Then |B1(u) 4

B1(v)| = 6 and the points in B1(u) 4 B1(v) form the pattern given in the left-
hand figure of Figure 9 (here u and v are d4 and e4) — up to rotation. We see
that it is not possible that |I(u) 4 I(v)| ≥ 7, which proves the second claim.

Assume that C is a 2-vertex-robust 1-identifying code. Then |I(u)4I(v)| ≥ 5
for all u, v ∈ ZZ

2, u 6= v, and hence each of the 6-element patterns discussed
above must contain at most one non-codeword.

The same must be true for all the 6-element patterns given in the middle
figure of Figure 9 (and the ones obtained from it by rotation), because they can
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Figure 10: An optimal 2-vertex-robust 1-identifying code with density 11/12.

be obtained as sets B1(u)4B1(v), when the Euclidean distance between u and
v is

√
2.

These two facts together prove that at most one of the points in the third
pattern S given in the rightmost figure of Figure 9 can be a non-codeword:
given any two of its points, we can always choose one of our 6-element patterns
that contains both of them. By considering the translates (x, y) + S, we see
that the density of C is at least 11/12 (cf. [8]). The bound is exact, because it
is easy to check that the code in Figure 10 has density 11/12, and that it is a
2-vertex-robust 1-identifying code. 2

Theorem 19 (i) The smallest possible density of a 2-vertex-robust 1-identifying
code in the king grid is 5/6.

(ii) No t-vertex-robust 1-identifying codes with t > 2 exist in the king grid.

Proof. (i) It is easy to check that the code

C = {(i, j) : i − j 6≡ 0 mod 6}

in Figure 11 has density 5/6 and that it is 2-vertex-robust 1-identifying code.
Assume conversely that we have any 2-vertex-robust 1-identifying code A.

Then for all (i, j) ∈ ZZ
2, the set

B1((i, j)) 4 B1((i + 1, j)) (10)

= {(i − 1, j − 1), (i − 1, j), (i − 1, j + 1), (i + 2, j − 1), (i + 2, j), (i + 2, j + 1)}

must contain at least five codewords. The same argument as in the proof of
Theorem 18 shows that the density of A must be at least 5/6.
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Figure 11: An optimal 2-vertex-robust 1-identifying code with density 5/6.

(ii) This immediately follows from (10). 2

Theorem 20 Consider the infinite triangular mesh T .
(i) A code C ⊆ T is a 2-vertex-robust 1-identifying code if and only if the

graphic distance between any two different non-codewords is at least four.
(ii) The smallest possible density of a 2-vertex-robust 1-identifying code in

T is 11/12.
(iii) No t-vertex-robust 1-identifying codes with t > 2 exist in T .

Proof. Let u and v be any two neighbouring points in T = (V,E). Then
|B1(u)4B1(v)| = 6 and the points in B1(u)4B1(v) form the pattern given in
the left-hand figure of Figure 12 (here u and v are d4 and e4) — up to rotation.
We see that — even if all the vertices in T were codewords — it is not possible
that |I(u) 4 I(v)| ≥ 7, which proves (iii).

Consider the case t = 2, and assume that C ⊆ V is a 2-vertex-robust 1-
identifying code in T . Then |I(u) 4 I(v)| ≥ 5 for all u, v ∈ V , u 6= v, and
hence each of the 6-element patterns discussed above must contain at most
one non-codeword. Then the graphic distance between any two non-codewords
must be at least four: given any two points with graphic distance three or less,
we can choose such a 6-element pattern that contains both of them. Assume
conversely that C ⊆ V has the property that the graphic distance between
any two non-codewords is at least four. Let u, v ∈ V be arbitrary. By the
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Figure 12: Two patterns both containing at most one non-codeword.

assumption, B1(u) and B1(v) can contain at most one non-codeword each, and
hence |I(u)| ≥ 6 and |I(v)| ≥ 6. If the graphic distance d(u, v) is at least two,
then |B1(u) ∩ B1(v)| ≤ 2, and consequently, |I(u) 4 I(v)| ≥ 8. If d(u, v) = 1,
then |B1(u) ∩ B1(v)| = 4, and |I(u) 4 I(v)| ≥ 4, but equality can only hold, if
there is exactly one non-codeword in I(u) \ I(v) and one in I(v) \ I(u), which
is not possible, because the graphic distance between any two non-codewords is
bigger than three. This proves (i).

Assume that C is a 2-vertex-robust 1-identifying code in T . By (i), the
pattern S of 12 points given in the right-hand figure of Figure 12 can contain at
most one non-codeword. But then by considering the translates (x, y)+S we see
that the density of C is at least 11/12 (cf. [8]). The bound is exact, because the
code in Figure 13 clearly has density 11/12, and the graphic distance between
any two non-codewords is at least four. 2

In the hexagonal mesh, no t-vertex-robust 1-identifying codes exist for t ≥
2, because for any two neighbouring points u and v the symmetric difference
B1(u) 4 B1(v) only contains four points.

If G is finite, and C ⊆ V has K elements, and C = {c1, c2, . . . , cK}, it is
sometimes convenient to think of the sets Ir(v) as incidence vectors

a(v) = (a1(v), a2(v), . . . , aK(v)) ∈ ZZ
K
2

where ai(v) = 1 if ci ∈ Ir(v), and 0, otherwise. Then |Ir(u) 4 Ir(v)| equals
the Hamming distance between the vectors a(u) and a(v). We denote the set
{a(v) : v ∈ V } by C+.

Consider finally the following problem: given the number of vertices, how
should we choose the edges so that there would be as small a t-vertex-robust
1-identifying code as possible. This is an important problem if codewords are
expensive, and we can choose the graph topology.
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Figure 13: An optimal 2-vertex-robust 1-identifying code with density 11/12.

Theorem 21 Assume that r ≥ 3 and N satisfies the inequalities

22r−2

2r − 1
≤ N ≤ 22r−r−1 − 1.

Then in any graph with N vertices all 1-vertex-robust 1-identifying codes have
at least 2r − 1 codewords; and there is a graph G with N vertices such that in
G there is a 1-vertex-robust 1-identifying code with exactly 2r − 1 codewords.

Proof. Assume that G is any graph with N vertices, and that C is a 1-vertex-
robust 1-identifying code with K codewords in G. The code C+ has length K,
cardinality N and minimum distance at least 3. By the sphere-packing bound,
N ≤ 2K/(K + 1) and therefore K ≥ 2r − 1 as claimed.

We now construct such a graph and code. Denote k = 2r − r − 1, and let H

be an r× k matrix whose columns are all the binary vectors in ZZ
r
2 with at least

two 1’s. Denote

B =

(

Ik HT

H Ir

)

,

where Is denotes the s × s identity matrix. The first k columns of B generate
the binary Hamming code of length 2r − 1. Moreover, it is easy to check that
the last r columns belong to this Hamming code. Namely, consider the i-th
column of B, where k < i. To get it as a linear combination of the first k
columns of B, we have to add the columns where the i-th row of B has 1’s
(because B is symmetric). But this linear combination gives exactly the right
r last components, because every row in H has an odd number of 1’s, and any
two different rows of H both have 1’s in an even number of places.

Because B is symmetric, we can define that the codeword vertices in our
graph G are vi, i = 1, 2, . . . , 2r − 1, and that vi and vj (i 6= j) are adjacent in
G if and only if the (i, j)-entry in B equals 1. Next, we take any N − (2r − 1)
different non-zero linear combinations of the first k columns of B that do not
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occur as a column in B: and let them correspond to the words a(u), u /∈ C
of C+; i.e., they tell us the edges between codewords and non-codewords in G.
The edges between non-codewords can be chosen freely.

By the construction, the resulting code C in G has the property that all the
codewords in C+ are non-zero codewords in the Hamming code of length 2r −1,
and therefore C is clearly a 1-vertex-robust 1-identifying code. 2

We can also take t > 1 and use the same construction. We then assume that
(Ik,HT ) is a generator matrix for a code with |V |+ 1 codewords and minimum
distance at least 2t + 1 and that H has the property that HHT = Ir, i.e., the
number of 1’s in each row is odd, and the number of 1’s in common for any two
different rows is even.

Example 2 Assume that we wish to construct a graph with 212 − 1 vertices
with as small a 3-vertex-robust 1-identifying code as possible.

If C is a 3-vertex-robust 1-identifying code in a graph with 212 − 1 vertices,
then |C+| = 212 − 1 and the minimum distance of C+ is at least 7 (and all
codewords have weight at least four). By the sphere-packing bound, the length
n of C+ must satisfy 2n/(

(

n
3

)

+
(

n
2

)

+ n + 1) ≥ 212 − 1, i.e., n ≥ 23. In other
words, |C| ≥ 23.

To construct a graph G with 212 − 1 vertices and a 3-vertex-robust 1-
identifying code C with 23 codewords in G we use the binary Golay code. It is
easy to check that we can proceed in the same way as in the previous proof but
now using the 11 × 12 matrix H whose rows are the last eleven columns of the
matrix in [42, Figure 2.13].

4 Dynamic identifying codes

Definition 3 Assume that G is finite. A sequence c1, c2, . . . , cM of vertices
such that

i) d(ci, ci+1) = 1 for all i = 1, 2, . . . ,M − 1, i.e., c1, c2, . . . , cM

form a walk in G,

ii) {c1, c2, . . . , cM} is an r-identifying code in C,

is called a dynamic r-identifying code in G.

The elements c1, c2, . . . , cM are called codewords. If r = 1, we just speak
of a dynamic identifying code.

For a similar study of covering codes instead of identifying codes using dy-
namic agents we refer to [5] and [19].

From now on, we will call the usual codes static codes, i.e., a static code is
just a subset of vertices, whereas a dynamic code is a walk in G. We say that the
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density of the dynamic code in Definition 3 is M/N , where N is the number
of vertices in G. If A is a dynamic identifying code, we denote its density by
D(A). Given G, we would like to determine the smallest possible density of a
dynamic identifying code in G.

The integer M in Definition 3 is called the length of the dynamic code.
The corresponding static r-identifying code {c1, c2, . . . , cM} may have fewer
than M codewords, since our walk through the graph may take us through the
same vertex more than once.

Example 3 Assume that we wish to find a graph with N > 3 vertices, and as
small a dynamic identifying code as possible. Clearly, the length of a dynamic
identifying code must be at least log2(N + 1). Take M = dlog2(N + 1)e.

First take M vertices and connect them so that they form a path. We choose
this path c1, c2, . . . , cM as our dynamic code. The I-sets of the codewords
are certain 2- and 3-element sets, and no two are the same. Take N −M other
nonempty subsets of the set {c1, c2, . . . , cM}, and corresponding to each of them
create a new vertex and connect it to the elements of the subset. Clearly the
resulting graph G has N vertices and the code is a dynamic identifying code of
length M in G. 2

Denote the degree of a vertex v in G by dG(v).

Theorem 22 Assume that G = (V,E) is a graph with N vertices and that
dG(v) ≤ d for all v ∈ V . If there is a dynamic identifying code of length M in
G, then M ≥ 2(N − 1)/(d + 1).

Proof. Assume that c1, c2, . . . , cM is such a dynamic code. Let C denote
the subgraph of G consisting of the vertices ci (i = 1, 2, . . . ,M) and the edges
between them (in G). Let v1, v2, . . . , vK (K ≤ M) denote the different vertices
in C.

Count the number of pairs (u, v), where u, v ∈ V , u /∈ C, v ∈ C, and
d(u, v) = 1. Clearly, this number is at most

K
∑

i=1

(d − dC(vi)).

On the other hand, corresponding to each i, there can be at most one vertex
u /∈ C such that I(u) = {vi}: hence there are at most K vertices u /∈ C whose
I-set is a singleton set, and all the others contain at least two codewords. We
obtain the inequality

K
∑

i=1

(d − dC(vi)) ≥ K · 1 + (N − 2K) · 2. (11)
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Figure 14: A dynamic identifying code in Q̂7.

Since C is connected, it has a spanning tree C ′, and

K
∑

i=1

dC(vi) ≥
K

∑

i=1

dC′(vi) = 2(K − 1).

Substituting this in (11) we get

Kd − 2(K − 1) ≥ K + 2(N − 2K),

i.e., K(d + 1) ≥ 2(N − 1), as claimed. 2

It is known that the minimum possible density of a static identifying code
in the infinite square grid is 7/20; see [13], [2].

In the context of dynamic codes we consider the subgraphs Qn, and the
graphs Q̂n (n ≥ 1) with the same vertex set but where now coordinates are
modulo 2n + 2, so that each vertex (i, j) has exactly four neighbours (i − 1, j),
(i + 1, j), (i, j − 1), (i, j + 1).

Example 4 It is easy to check that the code in Figure 14 is a dynamic identi-
fying code in Q̂7.

27



a b c d e f g

1

2

3

4

5

6

7

w

g g

w g

Figure 15: Proof of Theorem 3.

Theorem 23 If An is a dynamic identifying code in Qn with the smallest pos-
sible density, then D(An) → 2/5, when n → ∞. If Ân is a dynamic identifying
code in Q̂n with the smallest possible density, then D(Ân) → 2/5, when n → ∞.

Proof. In both cases the lower bound follows from Theorem 22.
The set

C = {(x, y) ∈ ZZ
2 : x ≡ 0, 2 (mod 5)}

is clearly a static identifying code in the infinite square grid (cf. Figure 14, where
we have formed a ”snake”; in this asymptotical proof a very simple argument
will suffice). Assume that n ≥ 2. It is not difficult to check that the union of
C ∩ Qn−1 and Qn \ Qn−1 is a static identifying code both in Qn and Q̂n, and
it is easy to form a walk that goes through all the codewords and has length at
most 2

5 (2n + 1)2 + 8(2n + 1). 2

Consider next the infinite triangular mesh T and its subgraphs Tn. The
smallest possible density of a static identifying code in T is 1/4; see [37].

Let T̂n (n ≥ 1) be the graph with the same vertex set as Tn in which every
vertex v(i, j) has the six neighbours

v(i − 1, j + 1), v(i, j + 1), v(i + 1, j), v(i + 1, j − 1), v(i, j − 1), v(i − 1, j),

but now the indices are modulo 2n + 2. We say that T̂n is obtained from Tn by
wrapping around.
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Figure 16: A static identifying code with density 1/3 in the infinite triangular
mesh.

Theorem 24 Assume that c1, c2, . . . , cM is a sequence of vertices in T (or
Tn, or T̂n) and that d(ci, ci+1) = 1 for all i = 1, 2, . . . ,M − 1. Then

∣

∣

∣

∣

∣

M
⋃

i=1

B1(ci)

∣

∣

∣

∣

∣

≤ 3M + 4.

Proof. The claim is clear for M = 1. Assume that M ≥ 2 and that the claim
is true for M − 1, and let c1, c2, . . . , cM be any sequence of vertices such
that d(ci, ci+1) = 1 for all i = 1, 2, . . . ,M − 1. By the induction hypothesis
| ∪M−1

i=1 B1(ci)| ≤ 3M + 1. Without loss of generality, cM is the vertex d5 in
Figure 15 and cM−1 is the vertex d4. But then B1(cM ) \ ∪M−1

i=1 B1(ci) consists
of at most three vertices, namely the ones denoted by open circles, and hence
| ∪M

i=1 B1(ci)| ≤ 3M + 4. 2

Of course, for the vertices v(1, 0), v(2, 0), . . . , v(M, 0) of T equality holds in
the formula of the previous theorem.

Theorem 25 If n → ∞, and An is the dynamic identifying code in Tn with the
smallest possible density, then D(An) → 1/3. If Ân is the dynamic identifying
code in T̂n with the smallest possible density, then D(Ân) → 1/3.

Proof. Assume that n ≥ 3.
Consider the graph Tn. If A is the code in Figure 16, we claim that

C = (Tn \ Tn−2) ∪ (A ∩ Tn−2)

is a static identifying code in Tn. Clearly, I(v) 6= ∅ for all v ∈ Tn (here I(v)
always refers to C). Whenever I(v) contains two codewords whose Euclidean
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Figure 17: A static identifying code in the infinite hexagonal mesh.

distance equals 2, we can immediately conclude that v must be the middle
point of the line segment connecting these two codewords. In particular, if
v ∈ Tn \ Tn−2, this is always the case, except when v is one of the four corners
of Tn, but then it is otherwise immediately clear from the set I(v) what v is. So
it suffices to check that I(u) 6= I(v) whenever u, v ∈ Tn−2, u 6= v. Because the
original code A is identifying, there is a codeword c ∈ A which is within graphic
distance one from u or from v but not from both. But the same codeword
c ∈ Tn−1 is also in C and ensures that I(u) 6= I(v).

It is clear that using this static identifying code we can construct a dynamic
identifying code in Tn whose density tends to 1/3, when n → ∞.

The lower bound immediately follows from Theorem 24.
The claim for T̂n is proved in exactly the same way by using the code (Tn \

Tn−1) ∪ (A ∩ Tn−1). 2

Consider next hexagonal meshes. Figure 17 shows a certain static identifying
code in the infinite hexagonal mesh H. Define a sequence H2, H3, . . . of finite
subgraphs of H. The graphs H2, H3 and H4 are shown in Figure 18 (where
we have labeled one vertex of H by 0). The graph Hm consists of 2m2 + 4m
vertices, and the number of vertices in the perimeter of Hm is 8m−2. Moreover,
H2 ⊆ H3 ⊆ H4 ⊆ . . ., and the union of the graphs Hm, m ≥ 2, is H.

Theorem 26 If n → ∞, and An is a dynamic identifying code in Hn with the
smallest possible density, then D(An) → 1/2.
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Figure 18: The graphs H2, H3 and H4.

Proof. The lower bound 1/2 follows from Theorem 22. When we superpose
Figure 17 on Hn, and also take as codewords all the vertices in the perimeter
of Hn that were not already codewords, we obtain a static identifying code in
Hn. From these codes we easily construct dynamic identifying codes Cn with
D(Cn) → 1/2 when n → ∞. 2

It is known that the density of a static identifying code in the infinite hexag-
onal mesh must be at least 16/39, and that there are static identifying codes
with density 3/7; see [16].

From [6] we know that if C is a static identifying code in ZZ
n
2 , then C ⊕ ZZ

m
2

is a static identifying code in ZZ
n+m
2 for all m ≥ 2. Using the known static

identifying codes from [37] and the exactly same technique as in [5], we obtain
the following result.

Theorem 27 If the conjecture (3) holds for R = 2, then the minimum possible
length M(n) of a dynamic identifying code in the binary n-dimensional cube ZZ

n
2

satisfies

M(n) =
2n+1

n
(1 + f(n)),

where f(n) → 0, when n → ∞.
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