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Abstract—There is an increasing number of network-enabled 
computing devices in homes and offices, driven by continued 
improvements in device capabilities and network connectivity. 
By exploiting the virtualization technologies that have begun to 
pervade even the mobile domain, these devices’ hardware 
components, such as displays, input devices, disks, or 
processors, can be decoupled from the physical platforms on 
which they reside to form a resource pool or device cloud. By 
drawing on the composite resources of device clouds,  
applications can leverage the heterogeneity present in the cloud 
to exploit hardware/device differences in terms of power 
consumption, computational speeds, display sizes, or the 
presence of certain accelerators, and can take advantage of 
software diversity in terms of the different operating 
environments and applications that efficiently operate on 
individual devices. This paper implements and evaluates the 
concept of device clouds, in which virtual execution platforms 
dynamically composed from sets of devices are built for 
applications, using automated methods that are based on 
simple policies. Experimental results identify the basic 
overheads associated with device clouds and their use, and 
demonstrate the advantages of dynamically constructed virtual 
platforms rather than individual machines, both in terms of 
improvements in system properties like power usage and 
improvements in user experiences for media delivery and 
playout.  

Keywords-device cloud; virtualization; management; virtual 
platform;  virtualized resources 

I.  INTRODUCTION 
Today’s mobile and home computing devices are highly 

diverse in terms of their hardware configurations and 
capabilities, ranging from media players like iPods, to 
mobile phones, large-screen TVs with set top boxes, 
notebooks or laptops, home PCs with convenient keyboards 
and large disks. While these network-enabled devices can 
interoperate with each other as well as with remote servers, 
current systems and software remain lacking in terms of their 
ability to freely combine their capabilities to form the virtual 
platforms that provide the most current value to end users. It 
should be straightforward, for instance, to take a movie 
resident on a mobile device and display it on a home’s large-
screen TV, as soon as the person using the device enters her 
home. It should be similarly easy to evict battery-consuming 
actions using a device on the mobile phone and instead, 
move them to a device attached to the home PC. 

This paper describes the concept of virtual platforms, 
along with the Stratus framework that dynamically 
constructs - synthesizes - them from the sets of network-
enabled devices, device clouds, present in end user 
environments like homes or offices. Driven by the 
management software and user policies shown in Fig. 1, with 
Stratus, virtual platforms are constructed in ways that: 

• exploit the difference properties and capabilities of 
distributed devices to efficiently provide desired 
functionality, e.g., to minimize the use of battery 
energy or to improve performance by using the high 
definition(HD) video decoders/encoders already 
present in mobile systems along with the powerful 
processors and large disks in home PCs; 

• provide improved experiences to end users, e.g., by 
substituting a high resolution for a low resolution 
display and/or by removing the need for user 
involvement to make good use of available devices; 

• offload from end users the need to deal with manual 
composition actions such as device docking or 
complex steps for  being slaving devices or similar 
actions, by providing a single device cloud within 
which they can utilize the aggregate resources of the 
many devices they routinely use in their homes or 
office environments[1][2]. 
 

Inherent properties of device clouds are: (i) they are 
comprised of sets of devices that can participate[2] in 
common and dynamically synthesized virtual platforms so as 
to deliver (ii) a seamless user experience across multiple 
devices and machines[3][4]; (iii) participating entities need 
not be entire machine, but may provide only some of their 
components, like displays or storage devices, toward the 
common virtual platform (i.e., device clouds); and (iv) 
virtual platforms are automatically constructed and 
continuously managed, to obtain the desired global 
properties stated by user policies, like minimal battery usage 
and/or the delivery of end user experiences at desired levels 
of quality.  To illustrate, consider a user who wants to edit 
video clips using devices available in his home. Toward this 
end, the Stratus framework can construct a virtual platform 
optimized for clip handling, composed of say, the processor 
of the high end media laptop that has an MPEG 
decoder/encoder, the large disk on the home PC, and the TV 
as a display screen.  
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Stratus shares with current cloud solutions its vendor-
neutral approach of exploiting virtualization technology, by 
synthesizing and managing virtual platforms at hypervisor 
level.  

Further, platforms are elastic in terms of their capabilities 
and performance, where elasticity is obtained by modifying 
virtual to physical component mappings and existing virtual 
machine migration. Elasticity is driven by end user desires 
expressed in user policies that determine the features a 
virtual platform should include (e.g., the policy for 
processing HD video clips is designed to establish a virtual 
platform that includes a HD accelerator and a large screen) 
and additional performance or power attributes (e.g., the 
platform should use minimal amounts of battery 
consumption).  

Stratus uses policies along with information about current 
device availabilities to construct suitable platforms and in 
addition, to dynamically configure them when devices arrive 
or leave or when requirements change. The policies differ 
from prior work on SLA- or SLO-driven system 
management[10] in that they are used both for constructing 
and for managing platforms. A long battery life policy, for 
instance, might build platforms that minimize battery 
consumption, whereas a performance policy would create the 
fastest platforms possible. We use several such policies in 
the technical evaluations in Section III. Policies may be 
formulated by users or administrators, to enforce desired 
global properties or to act on behalf of certain classes of 
applications or for certain workload characteristics [7][8][9]. 

The current implementation of the device cloud extends 
the Xen[5] hypervisor present on all participating machines 
with additional control and data channels for device 
interaction and management. A control channel is used for 
commands and for status reports between participating 
Stratus nodes and the Stratus master. The master maintains 
the resource information about each participating node, 
evaluates resource capabilities, and constructs and configures 
virtual platforms built from these resources.  

Performance evaluations in Section III demonstrate the 
utility of policy-driven platform construction and 
configuration, where simple policy changes can dramatically 
change virtual platforms into alternative configurations more 
suitable for those policies. Further, by exploiting device 
heterogeneity, performance can be improved beyond that of 
single machines or devices. Experimental results for instance, 
show a 92% reduction of time, a 11.7% reduction of power 
consumption, and a 15% battery life enhancement when 
operating on a Stratus virtual platform vs. on single devices. 

 
The remainder of this paper is organized as follows. 

Section II presents an overview of a representative virtual 
platform generated by Stratus, to illustrate the utility of 
device clouds and virtual platforms and to explain platform 
construction and configuration. Section III experimentally 
demonstrates the relative advantages of distributed virtual to 
single physical platforms. Related work appears in Section 
IV, followed by conclusions and future work. 

 
Figure 1. Stratus and Device Cloud 

II. DEVICE CLOUDS AS BASIS FOR VIRTUAL PLATFORMS 

A. Motivation and Use Case  
With increased heterogeneity in systems and devices 

accessible to end users, it becomes difficult to decide which 
devices may be most suitable for which tasks (e.g., because 
they may have 3D accelerators, gyro sensors, or GPS 
receivers), and then, to deal with device peculiarities and 
differences to carry out those tasks. The device cloud 
addresses these problems in two ways: (i) device 
composition into virtual platforms is independent of 
operating systems, middleware, or applications, because it is 
carried out at hypervisor level, and (ii) there is limited end 
user involvement, in that runtime composition and 
configuration are drive by user-defined policies that guide 
hypervisor’s actions. 

To illustrate, consider a user watching a video on a 
smartphone on the way home. Upon arrival, Stratus 
components detect additional devices available in the home. 
Guided by a user-specified policy that demands increased 
video quality, for instance, Stratus assembles a more 
appropriate virtual platform from the home’s device cloud 
including home PCs with large monitors and disks (in which 
the desired video may already be present), in addition,  the 
smartphone’s input pad. To provide continuous service, the 
new virtual platform is activated by first migrating the virtual 
machine on the smartphone - containing all relevant playout 
state - to the home PC, then re-wiring the media store to the 
home PC’s disk rather than streaming it via the mobile 
phone’s radio. Alternatively, the same video could be fetched 
from a cloud-enabled media provider offering services to 
home users via say, their set top boxes, or from Internet TVs. 
Source selection is driven by user preferences stated in 
policies. An additional set of actions may even enable live 
editing of selected video frames present on the video, on a 
virtual platform composed on a PC or laptop also present in 
the home. 
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To offer the flexibility in device use and seamlessness of 
operation required to easily realize usage examples like those 
above, Stratus implements cooperative behaviors across the 
multiple per-platform hypervisors present on home devices, 
such as those on PCs, smartphones, or laptops. The purpose 
of cooperation is to better use all resources present in 
Stratus-enabled systems to provide to end users exactly the 
virtual platforms they desire. We use the term device cloud 
to emphasize the fact that any device attached to a Stratus-
enabled machine can participate in a virtual platform, as long 
as the device itself (e.g., the wide-screen TV) is dynamically 
discoverable and shareable (e.g., because it is attached to a 
machine that can manage it via its hypervisor - such as the 
home PC or some media box). Stated differently, device 
cloud participants are those entities that are Stratus-enabled, 
which in our current implementation, requires them to be 
attached to or on machines that run hypervisors with 
embedded Stratus node support. One such node will act as 
Stratus master. One method to attain seamlessness in 
operation is via runtime virtual machine migration. This 
makes it possible to move arbitrary applications and systems, 
without having to depend on the availability of specific 
features of say, media players or editing software that permit 
internal state to be externalized. Ease of use is derived from 
the aforementioned user policies.  

 
We next explain how we construct, maintain, and 

configure virtual platforms, and the basis on which they run, 
resulting in a user-accessible cloud of devices discovered by 
and participating in virtual platforms. 

B. Design Principles and Assumptions 
The hypervisor-level functionality of Stratus includes (i) 

Discovery: methods and mechanisms for runtime device 
discovery, inclusion, and exclusion in virtual platforms, (ii) 
Management: software for dynamic platform construction 
and configuration, including to monitor the current properties 
and capabilities of participating devices and thus, the 
composite properties of the virtual platforms into which they 
are assembled, and (iii) Automation: executable encodings of 
user policies to drive (i) and (ii).  

 
Additional useful functionality like authorization and 

rights management may show benefit in controlling and 
enforcing security policies for shared devices that may not be 
wholly owned by a certain user, the secure and reliable 
inclusion of open facilities like those offered by public 
clouds, and multi-site device clouds like those spanning 
multiple homes or offices. The current implementation 
addresses single, private device clouds, assumes that all 
participating devices to be trustworthy, and considers 
network delays to be negligible, with sufficiently high intra-
cloud network bandwidths.  

 

C. Components of Stratus 
Abstractions include the Stratus master, Stratus node, 

Features, communication channels, and Policies. 
 

1) Stratus Master 
The Stratus master: (i) maintains the latest information 

about Stratus nodes, (ii) builds optimized virtual platforms 
(VPs) as per user policies or to reject their construction, and 
(iii) manages virtual platforms through their lifecycles. These 
actions are performed via the common management channel. 

2) Stratus Node 
Stratus nodes contribute Features to each VP. New 

devices, i.e., nodes, export their Features to the master upon 
discovery and registration. Each node has its own a unique 
identification (ID). 

3) Features  
Each Feature describes a virtualized resource as the basic 

building block of a certain VP, for example, a processor or a 
display. A virtual platform (VP), therefore, can be described 
as a set of Features coordinated by the Stratus master. Each 
Stratus node must have at least one Feature identified with a 
unique ID. Each Feature has attributes describing its status 
and properties. 

4) Management Channel 
The management channel connecting Stratus nodes and 

master must be reliable, robust, and light-weight. Low 
overhead is particularly important for thin Stratus nodes with 
resource limitations like smartphones. The channel used in 
this paper is an improved implementation of the M-Channels 
described in [6]. 

5) Event Forwarding 
Different Features of a VP can reside on different nodes, 

e.g., input devices of a VP may be on the Stratus node (N) 
while its CPU is on the Stratus node (N+1). This requires the 
events raised on input devices to be forwarded to the CPU on 
a different node. Event forwarding is done via the Stratus 
management channel. 

6) User Policies 
A Policy describes the Features desired for a certain VP 

along with certain quantifiable Feature attributes. Policies 
can be defined dynamically and are used by sending them to 
the Stratus master.  When master receives a policy, it reviews 
available resources (Features) and if sufficient resources 
(Features) exist, it establishes an appropriate VP by 
combining its available Features. Current policies appear in  
TABLE I. Fig. 2 depicts how Stratus components are 
connected with each other.  

D. Virtual Platform Use 
To understand how virtual platforms are established, 

consider an end user with a Stratus-enabled smartphone with 
HD recording functionality. The phone was used to record 
HD videos, which the user now wants to edit. 

TABLE I. POLICY EXAMPLES  

Policy Description 

High Performance A performance oriented platform 

Power Efficiency The VP should minimize device cloud power 
usage, instead of maximizing performance.

Mobility 
A user decides to leave a device cloud in which 
she operates, causing the master to migrate the 
appropriate VP to the mobile device being used.
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Figure 2. Relation between Stratus Components 

1) Joining a Device Cloud 
When the user enters the home, the location-based 

Stratus service in the phone permits it to join the home-based 
device cloud. The first step is to register the device at the 
Stratus master as a Stratus node. The device reports its 
Features and in addition, it receives from the Stratus master 
information about available Features in the device cloud it is 
joining, such as shared storage, for instance. Once it accepts 
the shared storage Feature, the user can freely access said 
storage in order to store the HD videos present in the phone. 
The user need not know where in the device cloud the shared 
storage is located. 

 
2) Creation of Virtual Platform 

As mentioned earlier, to conveniently edit HD videos 
present on a phone, a user requires a virtual platform with a 
large screen and a high performance CPU. The HD video 
editing policy stating these requirements is sent to the Stratus 
master, which then establishes the appropriate virtual 
platform using the devices present in the home. This policy 
states the following requirements; “full size input devices”, 
“large screen”, and “HD editing software”. Given these 
requirements, the Stratus master decides whether the policy 
is able to be accepted or not, by inspecting the resource pool 
of the Stratus device cloud it manages. If accepted, the 
master sends a notification to the Stratus nodes that have the 
required Features in order to check whether they are still 
available. Such lazy availability checking serves to reduce 
intra-Stratus management communication.  

Unlike the first two requirements in the HD video editing 
policy (input devices and large screen), the third requirement 
targets software. This means that the master must inspect 
shared storage for a virtual machine image with such 
software. If available, that image will be booted on the 
virtual platform established based on the first two 
requirements. Another option is to migrate to the phone’s 
own virtual machine. In either case, the user does not need to 
know where the platform’s CPU and memory are located. 
Once the VP has been successfully established, the input 
device and screen satisfying the policy are assigned into the 
VP by the Stratus master. From now on, the user is able to 
edit HD videos from the shared storage on the VP, using a 

large screen and full size keyboard rather than the small 
screen and touch screen interface present on the phone. A 
final step taken by the Stratus master is to update the status 
of Features in its resource pool. 

3) Termination of virtual platform 
If the user finishes video editing and wants to stop using 

the virtual platform, the master starts terminating it. This 
involves releasing the Features assigned to the virtual 
platform and suspending the platform’s software state into a 
virtual machine image file on shared storage. There are two 
cases of VP termination: (i) normal termination is based on a 
request from the VP’s user, and (ii) abnormal termination is 
caused by unexpected events like power failures or system 
halt of devices in the cloud.  A watch-dog scheme detects 
abnormal terminations. 

4) Leaving a Device Cloud 
An entity can quit a device cloud explicitly by sending a 

quit notification to the master. Otherwise, an implicit 
departure is one in which the master does not receive a reply 
from a device within some time interval of checking the 
availability of Features. Those cause device removal from 
the cloud’s resource pool which master has to handle. 

III. EXPERIMENTAL EVALUATION 
A potential advantage of device clouds is to provide to 

end users virtual platforms with inherently different or better 
properties than what can be provided by single machines. 
The experimental evaluations in this section demonstrate this 
advantage, and they also assess the overheads of VPs, both 
concerning their use and their construction. 

A. Testbed 
Our testbed is comprised of machines typically found in 

mobile and home computing systems: 
• a quad core desktop with a high resolution (720p) 

display (Desktop #1 in TABLE II); 
• a dual core desktop with an XGA screen (Desktop 

#2 in TABLE II); 
• a netbook with a SWVGA screen and an Intel Atom 

processor, representing the mobile device in our 
settings (Mobile Device in TABLE II); and 

• an NSF file server accessible by all home machines, 
which can store data as well as the virtual machine 
images being used. 

 
Detailed device specifications appear in TABLE II.  A 

netbook is used in place of an ARM-based handheld devices 
since its ISA is consistent with that of other machines. The 
netbook uses the Z5xx series Atom processors designed for 
battery-operated handheld devices.  

 
For simplicity, the netbook is connected to other 

machines via a 100Mbit wired network rather than using its 
wireless connection. This bandwidth is in keeping with 
existing wireless connectivity available for home systems 
(e.g., consider that recent wireless standards can support up 
to 300Mbps bandwidth from IEEE 801.11n). All devices 
mount their root file system to the file server via NFS. 
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TABLE II. PARTICIPANTS OF THE DEVICE CLOUD 

Devices 
Desktop #1 

(DT#1) 
Desktop #2 

(DT#2) 
Mobile
Device

Processor Quad Core Dual Core Atom Z530 

Memory 6GB 2GB 768MB 

Storage 650GB 200GB 16GB 

Network 1Gbit 1Gbit 100Mbit 

 
There is one Stratus master (Desktop #1) and three 

Stratus nodes, jointly providing seven different types of 
Features: processor, memory, screen, keyboard, network, 
storage, mobility, and accelerator. Each Feature defines its 
status with respect to its usefulness to cloud participants (e.g., 
how much storage others can use). Such status describes the 
feature’s innate capability, whether the feature can be shared, 
whether it is present in a VP, as well as its current utilization. 
For this evaluation, a processor’s innate capability is 
computed by multiplying its number of cores with its clock 
speed, a memory's capability as its size in megabytes, and a 
screen's capability as its vertical resolution, etc. 

There are two Features: mobility and accelerator. A 
Stratus node with a mobility Feature is considered as a 
mobile device by the Stratus master. An accelerator Feature 
means that the corresponding node has a special purpose 
hardware accelerator (e.g., encoding or decoding codec, 3D 
graphics).  The accelerator Feature is under development.  

B. Evaluation Results 
There are many ways for users to gain advantages from 

using device clouds and their virtual platforms. This section 
evaluates the opportunities and overheads implied in device 
cloud use. The section is organized by presenting useful 
policies that driving platform composition. 

1) High Performance Platforms 
The purpose of the High Performance Policy in Stratus is 

to give users access to high end devices present in the cloud. 
As a motivating example, consider content captured on a 
portable device like a netbook that should be compressed 
before it is stored on disk. Using the netbook for that purpose 
will be slow, whereas a virtual platform that includes say, the 
home PC’s fast processor, would perform much better. 

To be more precise, to carry out such dynamically 
determined and computationally expensive tasks, several 
items of information are needed, including (i) which device 
in the cloud has the potential and (ii) the current resources to 
quickly complete such tasks, and (iii) how to move the user’s 
dynamic state to where the computation is best performed. 
Further, such state movement should preserve the user’s 
current working environment (e.g., personal settings), which 
implies that both data and working environment should be 
moved in unison.   

The Stratus High Performance Policy achieves (i)-(iii) 
first by composing a high performance virtual platform 
based on current device availability and state and second by 
transparently migrating the user’s computing environment to 
the platform’s processing engine. In this case, the first step 
composes a VP that includes the home PC and the second 

step involves migrating the VM from the netbook to the 
home PC to carry out the tasks desired by end users. The 
platform composition is determined by maximizing the 
aggregate Performance Index of the nodes involved. For 
each node, this index is computed as (1): 

 
Performance Index = 

)}_1({
1

n

N

n
n CoreUtilfCoreClockFreqoMemorySize −×+�

=

    (1) 

* N is the number of the cores of processor in a device 

ClockFreqofCoren and Util_Coren represent the clock 
frequency and  the average of last five-minute utilization of 
the n-th core of a processor in a device. MemorySize 
represents the amount of device for a VP. The Performance 
Index used above is useful for certain classes of applications. 
For others, 3D games for instance, Stratus permits definition 
of alternative indices, such as GPU performance. 

Note that with this policy, Stratus does not attempt to 
adjust the operating frequencies of participating nodes, the 
idea being that VP composition should be done in ways that 
preserve the local policies governing nodes’ operation. 
Furthermore, users can explicitly state preferences for 
input/output devices, which means that the node that 
provides the screen Feature need not be the same as the node 
providing CPU and memory. The current implementation of 
Stratus attains this end by using a VNC-compatible protocol 
to forward the virtual screen of an established VP to 
whichever larger screen an end user wishes to use.  Finally, 
all such actions are subject to admission control checks. For 
instance, if a node requests a maximum Performance Index 
not currently available in the cloud, such requests will be 
rejected. Similarly, if screen forwarding exceeds available 
network bandwidth, the composition of a VP requiring such 
an action will not be allowed. Stratus achieves this by 
actively monitoring capacity and bandwidth availability.  

When the High Performance Policy is issued by the 
netbook device with the device cloud shown in TABLE II, 
the following actions are taken: (i) the Stratus master in 
DT#1 finds the largest screen and the node with the 
maximum Performance Index. Using the following 
description of Feature assignments for the VP - <node#, 
Feature#> - this results in a VP described as <1, 1>, <1, 2> , 
and <1, 3>. Stratus also prompts the user to select an input 
device (keyboard) among <1, 4>, <2, 4>. The final VP 
consists of  four virtual cores, 512MB memory, a 720P 
screen, and a full-size keyboard. To use it, Stratus performs 
live migration of the user’s virtual machine image from the 
netbook to the composed VP.  

 
VP composition for the small-scale systems present in 

homes occurs with latencies not noticeable to end users. The 
current version of Stratus (not fully optimized) takes 5,004µs 
to find the Features for the high performance VP, and the 
live migration to the VP took 15,451ms for the VM image 
present on the netbook. In Section III.C, we discuss how 
much time is consumed by each stage during establishing the 
VP.  
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At the same time, substantial performance improvements 
can result from using the newly constructed VP vs. 
continued operation on the netbook. These are evident when 
uncompressing a large size file (bzip2 compressed file 
system image, the size is 4.4GB) using 7zip with multithread 
option (-mmt), and transcoding a video file (360MB 720P 
resolution from mpeg4 into H.264). As shown in TABLE  III 
the high performance platform conducts these tasks in 7.9% 
for uncompressing and 11.25% for transcoding of the time 
compared to running these on the netbook. In other words, 
the overheads of platform composition and VM migration 
are almost amortized by this single high end decompression 
task. A final interesting note is that the performance policy 
will always prefer using DT#1 because of its vastly superior 
performance index, unless of course, that machine is already 
heavily used by other VPs present in the system (resulting in 
its Performance Index being low). In such cases, machines 
like DT#2 will be selected. 

2) Reducing Power Consumption in Device Cloud 
Stratus can automatically generate a power-efficient VP, 

without requiring users to understand device power usage 
characteristics. This is initiated by the user’s activation of the 
Power Efficiency Policy. This policy uses the Performance 
Index maintained by Stratus to assess node and device power 
consumption, thus making the simplifying assumption that 
the index is proportional to the voltage and clock-speeds of 
its processors[11], and memory power consumption. The 
Stratus decision engine uses the following procedure to 
compose low power VPs: 

• first, find the node with the lowest maximum 
performance index in the device cloud; 

• confirm that the utilization of that node’s processor 
Feature  is less than 70%1  and if yes, assign it as the  
representative node for the new VP; if not, find the 
second best node; etc. 

 
Consider the following case to evaluate this policy. 

Suppose a user wants a VP that plays SVGA content from a 
steaming service but to do so with the Power Efficiency 
Policy.  To emulate a streaming service like YouTube or 
Hulu.com, we add a streaming server to the testbed, and 
activate the policy at a time when all nodes in the cloud are  
in idle states. Then Xen hypervisor on each node runs its 
local on-demand power management option. The outcome of 
the experiment is shown in TABLE IV, which depicts the 
comparative power consumption of the Performance and 
Power Efficiency policies. It is evident from these results that 
VPs can be composed so as to obtain reduced power without 
causing performance problems for users, such as frame 
dropping. The video file for this evaluation is encoded via 
XviD codec with SVGA resolution. TABLE V depicts 
additional results when using 5 VPs with the same video 
workload, to simulate a multi-user scenario. In the first case, 
in TABLE IV a 3% power savings is obtained, whereas the 
second case in TABLE V shows a 10.5% improvement in 
power usage. The second case shows increased frame drops, 
but at a low level barely noticeable by end users.  

                                                           
1 The utilization of 70% is an empirical value. 

TABLE III. PERFORMANCE COMPARISON:VP VS. NETBOOK 

Performace Netbook Virtual Platform 

Decompressing Time  (Sec) 4845 383 

Transcoding Time (Sec) 12312 1386 

TABLE IV. POWER COMSUMPTION COMPARISON - SINGLE VP 

Policy Idle Power 
Efficiency Performance 

Power Consumption (watt) 177.2 178.3 183.4 
Drop Frames/Total

(drop-rate%) - 0/34631 
(0%) 

0/34631
(0%)

TABLE V. POWER COMSUMPTION COMPARISON - 5 VPS  

Policy Power Efficiency Performance 

Power Consumption (W) 201.5 225.2 
Drop Frames/Total

(drop-rate%) 9/34631  (�0%) 3/34631  (�0%) 

Further, VPs on same node have to share a screen 
Feature since there are only 3 screens in this device cloud. 
Finally, although DT#1 could support additional VPs in 
terms of its computational power, it has insufficient memory 
to host 5 VPs, causing the 5th VP to be established on DT#2 
as shown in TABLE VI.  

There are several reasons for the relatively small power 
savings obtained with this policy. First, the policy only 
considers processors and memory, ignoring other hardware 
like graphics cards. Second, there is currently no runtime re-
configuration, to replace power hungry nodes with power-
efficient ones used by existing VPs (e.g., at times when 
power-efficient systems were not available). The earlier 
work in [10] presents methods with which such dynamic 
reconfiguration can be done. Third, in order to avoid 
situations in which power efficient policies create VPs with 
insufficient performance, our current implementation asks 
users to provide information about the kind of work VPs will 
be asked to perform, such as OFFICE SUITES, WEB 
BROWSING, PLAYING CONTENTS, OTHER, where a 
request labeled as OTHERS is not accepted by a power 
efficient VP. In summary, this case demonstrates the 
potential for energy savings with Stratus, but additional work 
is needed to create a robust energy savings policy and 
implementation.   

3) Enhanced Battery Life of Devices in Device Cloud 
A straightforward idea is to offload computing from 

mobile to stationary devices, whenever possible. Such 
offloading is done by the Long Lasting Battery Policy. When 
issued by mobile devices, this policy attempts to maximally 
extend their battery lives, by first creating a new VP with the 
same or better Performance Index as the existing one and 
then migrating the virtual machine image to the established 
VP. The mobile device, then, merely acts as an input and 
output device, permitting its processors to operate at lower 
frequencies. 
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TABLE VI. DISTRIBUTION OF VPS BASED ON DIFFERENT POLICIES 

Policy Power Efficiency Performance 

DT#1 0 4 

DT#2 3 1 

Netbook 2 0 

TABLE VII. COMPARISON: BATTERY LASTING TIME 

Environment Netbook Battery Policy 

Battery Lasting Time (min) 92.8 124 

Power Consumption (W) 16.2 13.3 

We evaluate the utility of this policy by playing VGA 
resolution movie clips continuously until the battery of the 
netbook becomes completely discharged. As shown in 
TABLE VII we can achieve almost 18% less power 
consumption and 15% more operation time with almost the 
same number of frame-drops. 

4) Enabling Virtual Platform Mobility 
The Mobility Policy permits users to continue with 

mobility whatever actions they have been taking within some 
home or office device cloud. This is done by first 
establishing a new VP on the node with battery and wireless 
network Features and then moving the virtual machine 
image from the node issuing the policy to new mobile VP.  
When multiple mobile nodes are present, we now prompt the 
user, but other means like accelerator-based sensing of pick 
up actions could be used. At present, when prompting users, 
Stratus provides several useful items of information, 
including remaining battery capacity, estimated battery 
operation time, and maximum Performance Index.  

C. Overhead  
Establishing a VP involves several steps.  
S1. Requesting a VP: a node in a device cloud issues a 

request for a new VP to the master. 
S2. Reporting status to the master: the master asks all 

participants in a device cloud to provide information 
about their Features. 

S3. Exploiting the decision engine and generating 
machine description: after gathering information 
from all nodes, the master tries to allocate the  best 
Features for the VP being constructed, as per the 
user policy being used. 

S4. VP notification: the machine description is sent to 
the representative node of the VP being established.  
 

TABLE  VIII shows the time consumed for each stage 
when the High Performance  Policy is issued in the testbed 
shown in Section III.A. Additional results shown TABLE  
IX establish that VP construction overheads are almost 
identical for VPs with larger numbers of nodes (i.e., 5 in this 
case). These measurements show that total overheads are 
moderate (about 5ms) and that with these overheads, even 
the current Stratus solution will likely scale to the ~100 
devices expected in homes or small office systems. 

 

TABLE VIII. DELAYS IN ESTABLISHING A HIGH PERFORMANCE VP 

Step S1 S2 S3 S4 Misc. Total 

Delay (us) 51 4786 136 11 20 5004 

TABLE IX. CONSTRUCTION OVERHEAD (LARGER NUMBERS OF NODES) 

Numbers of 
Nodes 2 3 4 5 

Delays ( us ) 5084 5004 5126 5296 

 
Alternative implementations and additional optimizations 

are needed for larger configurations; these include 
approaches in which device clouds are zoned with zone 
masters relating to each other as peers[10], of pre-
constructed VPs, push-based updates to information about 
Features, etc. 

IV. RELATED WORK 

A. Seamless User Experience based on Virtualization  
Prior work has used virtualization technologies to 

provide users with seamless computing environments. 
ISR[12], the Collective project[13], SoulPad[14], 
Keychain[15], Spirits[18], and Cloudlets[20] store all of a 
user's computing environment and state in virtual machines, 
using VM migration to move VMs to the device the user 
wants to use. VMs can be migrated through a network 
connection, via storage devices like USB disks, and they 
may be assisted by nearby resources so as to avoid the 
potential high overheads arising from accessing remote cloud 
resources[18][20].  

All of these approaches target single physical platforms, 
however, in contrast to the Stratus approach in which 
multiple platforms’ devices are utilized to gain improved end 
user experiences. Also missing from such work is the 
automation via user policies shown in our work.  

Building on previous work like thin-client computing, an 
alternative model offered by cloud computing is to rely on 
remote server systems to provide needed functionality like 
Amazon EC2. Device clouds simply extend those models to 
also exploit locally available devices in addition to using 
remote services. This may also help deal with the privacy 
and security issued raised for cloud systems, by differentially 
using local vs. remote service capabilities. 

B. Resource Allocation in Distributed Systems 
Stratus leverages well-established techniques for 

managing the resources of distributed and media 
systems[16][17][22]. There remain many open issues with its 
current implementation, however, including those pertaining 
to dynamic platform reconfiguration, the use of richer and 
thus, more capable formulations of policies, and additional 
work on runtime management to provide virtual platforms 
that are more robust and/or capable in service offerings 
compared to the single platforms now used by end users. The 
HTML 5 device APIs enable web applications to access each 
device in low level.  
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V. CONCLUSIONS AND FUTURE WORK 
Device clouds give rise to virtual platforms that provide 

end user services superior to those offered by single physical 
devices. Advantages include higher performance, better 
availability in lieu of say, improved end user experiences. 
These properties are due to the elastic and dynamic nature of 
virtual platforms, driven by policies encoding end user needs. 
Stratus is evaluated with several policies useful in the home 
or office settings targeted by device clouds, with 
experimental results establishing the relative advantages of 
virtual vs. physical platforms as well as the overheads 
implied in VP construction and use. 

There are extensive opportunities for future work. The 
current implementation of device clouds has not been 
integrated with remote cloud infrastructures. Specifically, of 
interest to the media-centric examples studied in our work is 
improved flexibility in content delivery, to obtain content 
from both local (e.g., the home PC disk) and remote sources. 
Many factors can be considered to achieve such 
integration.(e.g. cost[21]) Another direction is to exploit the 
VM-based encapsulation to address security and privacy 
concerns when a user’s VM is employed outside her home. 
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