
STRATUS: Assembling Virtual Platforms from Device Clouds

Minsung Jang, Karsten Schwan
Center for Experimental Research in Computer Systems

Georgia Institute of Technology
minsung@gatech.edu karsten.schwan@cc.gatech.edu

Abstract—There is an increasing number of network-enabled
computing devices in homes and offices, driven by continued
improvements in device capabilities and network connectivity.
By exploiting the virtualization technologies that have begun to
pervade even the mobile domain, these devices’ hardware
components, such as displays, input devices, disks, or
processors, can be decoupled from the physical platforms on
which they reside to form a resource pool or device cloud. By
drawing on the composite resources of device clouds,
applications can leverage the heterogeneity present in the cloud
to exploit hardware/device differences in terms of power
consumption, computational speeds, display sizes, or the
presence of certain accelerators, and can take advantage of
software diversity in terms of the different operating
environments and applications that efficiently operate on
individual devices. This paper implements and evaluates the
concept of device clouds, in which virtual execution platforms
dynamically composed from sets of devices are built for
applications, using automated methods that are based on
simple policies. Experimental results identify the basic
overheads associated with device clouds and their use, and
demonstrate the advantages of dynamically constructed virtual
platforms rather than individual machines, both in terms of
improvements in system properties like power usage and
improvements in user experiences for media delivery and
playout.

Keywords-device cloud; virtualization; management; virtual
platform; virtualized resources

I. INTRODUCTION
Today’s mobile and home computing devices are highly

diverse in terms of their hardware configurations and
capabilities, ranging from media players like iPods, to
mobile phones, large-screen TVs with set top boxes,
notebooks or laptops, home PCs with convenient keyboards
and large disks. While these network-enabled devices can
interoperate with each other as well as with remote servers,
current systems and software remain lacking in terms of their
ability to freely combine their capabilities to form the virtual
platforms that provide the most current value to end users. It
should be straightforward, for instance, to take a movie
resident on a mobile device and display it on a home’s large-
screen TV, as soon as the person using the device enters her
home. It should be similarly easy to evict battery-consuming
actions using a device on the mobile phone and instead,
move them to a device attached to the home PC.

This paper describes the concept of virtual platforms,
along with the Stratus framework that dynamically
constructs - synthesizes - them from the sets of network-
enabled devices, device clouds, present in end user
environments like homes or offices. Driven by the
management software and user policies shown in Fig. 1, with
Stratus, virtual platforms are constructed in ways that:

• exploit the difference properties and capabilities of
distributed devices to efficiently provide desired
functionality, e.g., to minimize the use of battery
energy or to improve performance by using the high
definition(HD) video decoders/encoders already
present in mobile systems along with the powerful
processors and large disks in home PCs;

• provide improved experiences to end users, e.g., by
substituting a high resolution for a low resolution
display and/or by removing the need for user
involvement to make good use of available devices;

• offload from end users the need to deal with manual
composition actions such as device docking or
complex steps for being slaving devices or similar
actions, by providing a single device cloud within
which they can utilize the aggregate resources of the
many devices they routinely use in their homes or
office environments[1][2].

Inherent properties of device clouds are: (i) they are
comprised of sets of devices that can participate[2] in
common and dynamically synthesized virtual platforms so as
to deliver (ii) a seamless user experience across multiple
devices and machines[3][4]; (iii) participating entities need
not be entire machine, but may provide only some of their
components, like displays or storage devices, toward the
common virtual platform (i.e., device clouds); and (iv)
virtual platforms are automatically constructed and
continuously managed, to obtain the desired global
properties stated by user policies, like minimal battery usage
and/or the delivery of end user experiences at desired levels
of quality. To illustrate, consider a user who wants to edit
video clips using devices available in his home. Toward this
end, the Stratus framework can construct a virtual platform
optimized for clip handling, composed of say, the processor
of the high end media laptop that has an MPEG
decoder/encoder, the large disk on the home PC, and the TV
as a display screen.

2011 IEEE 4th International Conference on Cloud Computing

978-0-7695-4460-1/11 $26.00 © 2011 IEEE

DOI 10.1109/CLOUD.2011.70

476

Stratus shares with current cloud solutions its vendor-
neutral approach of exploiting virtualization technology, by
synthesizing and managing virtual platforms at hypervisor
level.

Further, platforms are elastic in terms of their capabilities
and performance, where elasticity is obtained by modifying
virtual to physical component mappings and existing virtual
machine migration. Elasticity is driven by end user desires
expressed in user policies that determine the features a
virtual platform should include (e.g., the policy for
processing HD video clips is designed to establish a virtual
platform that includes a HD accelerator and a large screen)
and additional performance or power attributes (e.g., the
platform should use minimal amounts of battery
consumption).

Stratus uses policies along with information about current
device availabilities to construct suitable platforms and in
addition, to dynamically configure them when devices arrive
or leave or when requirements change. The policies differ
from prior work on SLA- or SLO-driven system
management[10] in that they are used both for constructing
and for managing platforms. A long battery life policy, for
instance, might build platforms that minimize battery
consumption, whereas a performance policy would create the
fastest platforms possible. We use several such policies in
the technical evaluations in Section III. Policies may be
formulated by users or administrators, to enforce desired
global properties or to act on behalf of certain classes of
applications or for certain workload characteristics [7][8][9].

The current implementation of the device cloud extends
the Xen[5] hypervisor present on all participating machines
with additional control and data channels for device
interaction and management. A control channel is used for
commands and for status reports between participating
Stratus nodes and the Stratus master. The master maintains
the resource information about each participating node,
evaluates resource capabilities, and constructs and configures
virtual platforms built from these resources.

Performance evaluations in Section III demonstrate the
utility of policy-driven platform construction and
configuration, where simple policy changes can dramatically
change virtual platforms into alternative configurations more
suitable for those policies. Further, by exploiting device
heterogeneity, performance can be improved beyond that of
single machines or devices. Experimental results for instance,
show a 92% reduction of time, a 11.7% reduction of power
consumption, and a 15% battery life enhancement when
operating on a Stratus virtual platform vs. on single devices.

The remainder of this paper is organized as follows.

Section II presents an overview of a representative virtual
platform generated by Stratus, to illustrate the utility of
device clouds and virtual platforms and to explain platform
construction and configuration. Section III experimentally
demonstrates the relative advantages of distributed virtual to
single physical platforms. Related work appears in Section
IV, followed by conclusions and future work.

Figure 1. Stratus and Device Cloud

II. DEVICE CLOUDS AS BASIS FOR VIRTUAL PLATFORMS

A. Motivation and Use Case
With increased heterogeneity in systems and devices

accessible to end users, it becomes difficult to decide which
devices may be most suitable for which tasks (e.g., because
they may have 3D accelerators, gyro sensors, or GPS
receivers), and then, to deal with device peculiarities and
differences to carry out those tasks. The device cloud
addresses these problems in two ways: (i) device
composition into virtual platforms is independent of
operating systems, middleware, or applications, because it is
carried out at hypervisor level, and (ii) there is limited end
user involvement, in that runtime composition and
configuration are drive by user-defined policies that guide
hypervisor’s actions.

To illustrate, consider a user watching a video on a
smartphone on the way home. Upon arrival, Stratus
components detect additional devices available in the home.
Guided by a user-specified policy that demands increased
video quality, for instance, Stratus assembles a more
appropriate virtual platform from the home’s device cloud
including home PCs with large monitors and disks (in which
the desired video may already be present), in addition, the
smartphone’s input pad. To provide continuous service, the
new virtual platform is activated by first migrating the virtual
machine on the smartphone - containing all relevant playout
state - to the home PC, then re-wiring the media store to the
home PC’s disk rather than streaming it via the mobile
phone’s radio. Alternatively, the same video could be fetched
from a cloud-enabled media provider offering services to
home users via say, their set top boxes, or from Internet TVs.
Source selection is driven by user preferences stated in
policies. An additional set of actions may even enable live
editing of selected video frames present on the video, on a
virtual platform composed on a PC or laptop also present in
the home.

477

To offer the flexibility in device use and seamlessness of
operation required to easily realize usage examples like those
above, Stratus implements cooperative behaviors across the
multiple per-platform hypervisors present on home devices,
such as those on PCs, smartphones, or laptops. The purpose
of cooperation is to better use all resources present in
Stratus-enabled systems to provide to end users exactly the
virtual platforms they desire. We use the term device cloud
to emphasize the fact that any device attached to a Stratus-
enabled machine can participate in a virtual platform, as long
as the device itself (e.g., the wide-screen TV) is dynamically
discoverable and shareable (e.g., because it is attached to a
machine that can manage it via its hypervisor - such as the
home PC or some media box). Stated differently, device
cloud participants are those entities that are Stratus-enabled,
which in our current implementation, requires them to be
attached to or on machines that run hypervisors with
embedded Stratus node support. One such node will act as
Stratus master. One method to attain seamlessness in
operation is via runtime virtual machine migration. This
makes it possible to move arbitrary applications and systems,
without having to depend on the availability of specific
features of say, media players or editing software that permit
internal state to be externalized. Ease of use is derived from
the aforementioned user policies.

We next explain how we construct, maintain, and

configure virtual platforms, and the basis on which they run,
resulting in a user-accessible cloud of devices discovered by
and participating in virtual platforms.

B. Design Principles and Assumptions
The hypervisor-level functionality of Stratus includes (i)

Discovery: methods and mechanisms for runtime device
discovery, inclusion, and exclusion in virtual platforms, (ii)
Management: software for dynamic platform construction
and configuration, including to monitor the current properties
and capabilities of participating devices and thus, the
composite properties of the virtual platforms into which they
are assembled, and (iii) Automation: executable encodings of
user policies to drive (i) and (ii).

Additional useful functionality like authorization and

rights management may show benefit in controlling and
enforcing security policies for shared devices that may not be
wholly owned by a certain user, the secure and reliable
inclusion of open facilities like those offered by public
clouds, and multi-site device clouds like those spanning
multiple homes or offices. The current implementation
addresses single, private device clouds, assumes that all
participating devices to be trustworthy, and considers
network delays to be negligible, with sufficiently high intra-
cloud network bandwidths.

C. Components of Stratus
Abstractions include the Stratus master, Stratus node,

Features, communication channels, and Policies.

1) Stratus Master
The Stratus master: (i) maintains the latest information

about Stratus nodes, (ii) builds optimized virtual platforms
(VPs) as per user policies or to reject their construction, and
(iii) manages virtual platforms through their lifecycles. These
actions are performed via the common management channel.

2) Stratus Node
Stratus nodes contribute Features to each VP. New

devices, i.e., nodes, export their Features to the master upon
discovery and registration. Each node has its own a unique
identification (ID).

3) Features
Each Feature describes a virtualized resource as the basic

building block of a certain VP, for example, a processor or a
display. A virtual platform (VP), therefore, can be described
as a set of Features coordinated by the Stratus master. Each
Stratus node must have at least one Feature identified with a
unique ID. Each Feature has attributes describing its status
and properties.

4) Management Channel
The management channel connecting Stratus nodes and

master must be reliable, robust, and light-weight. Low
overhead is particularly important for thin Stratus nodes with
resource limitations like smartphones. The channel used in
this paper is an improved implementation of the M-Channels
described in [6].

5) Event Forwarding
Different Features of a VP can reside on different nodes,

e.g., input devices of a VP may be on the Stratus node (N)
while its CPU is on the Stratus node (N+1). This requires the
events raised on input devices to be forwarded to the CPU on
a different node. Event forwarding is done via the Stratus
management channel.

6) User Policies
A Policy describes the Features desired for a certain VP

along with certain quantifiable Feature attributes. Policies
can be defined dynamically and are used by sending them to
the Stratus master. When master receives a policy, it reviews
available resources (Features) and if sufficient resources
(Features) exist, it establishes an appropriate VP by
combining its available Features. Current policies appear in
TABLE I. Fig. 2 depicts how Stratus components are
connected with each other.

D. Virtual Platform Use
To understand how virtual platforms are established,

consider an end user with a Stratus-enabled smartphone with
HD recording functionality. The phone was used to record
HD videos, which the user now wants to edit.

TABLE I. POLICY EXAMPLES

Policy Description

High Performance A performance oriented platform

Power Efficiency The VP should minimize device cloud power
usage, instead of maximizing performance.

Mobility
A user decides to leave a device cloud in which
she operates, causing the master to migrate the
appropriate VP to the mobile device being used.

478

Figure 2. Relation between Stratus Components

1) Joining a Device Cloud
When the user enters the home, the location-based

Stratus service in the phone permits it to join the home-based
device cloud. The first step is to register the device at the
Stratus master as a Stratus node. The device reports its
Features and in addition, it receives from the Stratus master
information about available Features in the device cloud it is
joining, such as shared storage, for instance. Once it accepts
the shared storage Feature, the user can freely access said
storage in order to store the HD videos present in the phone.
The user need not know where in the device cloud the shared
storage is located.

2) Creation of Virtual Platform

As mentioned earlier, to conveniently edit HD videos
present on a phone, a user requires a virtual platform with a
large screen and a high performance CPU. The HD video
editing policy stating these requirements is sent to the Stratus
master, which then establishes the appropriate virtual
platform using the devices present in the home. This policy
states the following requirements; “full size input devices”,
“large screen”, and “HD editing software”. Given these
requirements, the Stratus master decides whether the policy
is able to be accepted or not, by inspecting the resource pool
of the Stratus device cloud it manages. If accepted, the
master sends a notification to the Stratus nodes that have the
required Features in order to check whether they are still
available. Such lazy availability checking serves to reduce
intra-Stratus management communication.

Unlike the first two requirements in the HD video editing
policy (input devices and large screen), the third requirement
targets software. This means that the master must inspect
shared storage for a virtual machine image with such
software. If available, that image will be booted on the
virtual platform established based on the first two
requirements. Another option is to migrate to the phone’s
own virtual machine. In either case, the user does not need to
know where the platform’s CPU and memory are located.
Once the VP has been successfully established, the input
device and screen satisfying the policy are assigned into the
VP by the Stratus master. From now on, the user is able to
edit HD videos from the shared storage on the VP, using a

large screen and full size keyboard rather than the small
screen and touch screen interface present on the phone. A
final step taken by the Stratus master is to update the status
of Features in its resource pool.

3) Termination of virtual platform
If the user finishes video editing and wants to stop using

the virtual platform, the master starts terminating it. This
involves releasing the Features assigned to the virtual
platform and suspending the platform’s software state into a
virtual machine image file on shared storage. There are two
cases of VP termination: (i) normal termination is based on a
request from the VP’s user, and (ii) abnormal termination is
caused by unexpected events like power failures or system
halt of devices in the cloud. A watch-dog scheme detects
abnormal terminations.

4) Leaving a Device Cloud
An entity can quit a device cloud explicitly by sending a

quit notification to the master. Otherwise, an implicit
departure is one in which the master does not receive a reply
from a device within some time interval of checking the
availability of Features. Those cause device removal from
the cloud’s resource pool which master has to handle.

III. EXPERIMENTAL EVALUATION
A potential advantage of device clouds is to provide to

end users virtual platforms with inherently different or better
properties than what can be provided by single machines.
The experimental evaluations in this section demonstrate this
advantage, and they also assess the overheads of VPs, both
concerning their use and their construction.

A. Testbed
Our testbed is comprised of machines typically found in

mobile and home computing systems:
• a quad core desktop with a high resolution (720p)

display (Desktop #1 in TABLE II);
• a dual core desktop with an XGA screen (Desktop

#2 in TABLE II);
• a netbook with a SWVGA screen and an Intel Atom

processor, representing the mobile device in our
settings (Mobile Device in TABLE II); and

• an NSF file server accessible by all home machines,
which can store data as well as the virtual machine
images being used.

Detailed device specifications appear in TABLE II. A

netbook is used in place of an ARM-based handheld devices
since its ISA is consistent with that of other machines. The
netbook uses the Z5xx series Atom processors designed for
battery-operated handheld devices.

For simplicity, the netbook is connected to other

machines via a 100Mbit wired network rather than using its
wireless connection. This bandwidth is in keeping with
existing wireless connectivity available for home systems
(e.g., consider that recent wireless standards can support up
to 300Mbps bandwidth from IEEE 801.11n). All devices
mount their root file system to the file server via NFS.

479

TABLE II. PARTICIPANTS OF THE DEVICE CLOUD

Devices
Desktop #1

(DT#1)
Desktop #2

(DT#2)
Mobile
Device

Processor Quad Core Dual Core Atom Z530

Memory 6GB 2GB 768MB

Storage 650GB 200GB 16GB

Network 1Gbit 1Gbit 100Mbit

There is one Stratus master (Desktop #1) and three

Stratus nodes, jointly providing seven different types of
Features: processor, memory, screen, keyboard, network,
storage, mobility, and accelerator. Each Feature defines its
status with respect to its usefulness to cloud participants (e.g.,
how much storage others can use). Such status describes the
feature’s innate capability, whether the feature can be shared,
whether it is present in a VP, as well as its current utilization.
For this evaluation, a processor’s innate capability is
computed by multiplying its number of cores with its clock
speed, a memory's capability as its size in megabytes, and a
screen's capability as its vertical resolution, etc.

There are two Features: mobility and accelerator. A
Stratus node with a mobility Feature is considered as a
mobile device by the Stratus master. An accelerator Feature
means that the corresponding node has a special purpose
hardware accelerator (e.g., encoding or decoding codec, 3D
graphics). The accelerator Feature is under development.

B. Evaluation Results
There are many ways for users to gain advantages from

using device clouds and their virtual platforms. This section
evaluates the opportunities and overheads implied in device
cloud use. The section is organized by presenting useful
policies that driving platform composition.

1) High Performance Platforms
The purpose of the High Performance Policy in Stratus is

to give users access to high end devices present in the cloud.
As a motivating example, consider content captured on a
portable device like a netbook that should be compressed
before it is stored on disk. Using the netbook for that purpose
will be slow, whereas a virtual platform that includes say, the
home PC’s fast processor, would perform much better.

To be more precise, to carry out such dynamically
determined and computationally expensive tasks, several
items of information are needed, including (i) which device
in the cloud has the potential and (ii) the current resources to
quickly complete such tasks, and (iii) how to move the user’s
dynamic state to where the computation is best performed.
Further, such state movement should preserve the user’s
current working environment (e.g., personal settings), which
implies that both data and working environment should be
moved in unison.

The Stratus High Performance Policy achieves (i)-(iii)
first by composing a high performance virtual platform
based on current device availability and state and second by
transparently migrating the user’s computing environment to
the platform’s processing engine. In this case, the first step
composes a VP that includes the home PC and the second

step involves migrating the VM from the netbook to the
home PC to carry out the tasks desired by end users. The
platform composition is determined by maximizing the
aggregate Performance Index of the nodes involved. For
each node, this index is computed as (1):

Performance Index =

)}_1({
1

n

N

n
n CoreUtilfCoreClockFreqoMemorySize −×+�

=

 (1)

* N is the number of the cores of processor in a device

ClockFreqofCoren and Util_Coren represent the clock
frequency and the average of last five-minute utilization of
the n-th core of a processor in a device. MemorySize
represents the amount of device for a VP. The Performance
Index used above is useful for certain classes of applications.
For others, 3D games for instance, Stratus permits definition
of alternative indices, such as GPU performance.

Note that with this policy, Stratus does not attempt to
adjust the operating frequencies of participating nodes, the
idea being that VP composition should be done in ways that
preserve the local policies governing nodes’ operation.
Furthermore, users can explicitly state preferences for
input/output devices, which means that the node that
provides the screen Feature need not be the same as the node
providing CPU and memory. The current implementation of
Stratus attains this end by using a VNC-compatible protocol
to forward the virtual screen of an established VP to
whichever larger screen an end user wishes to use. Finally,
all such actions are subject to admission control checks. For
instance, if a node requests a maximum Performance Index
not currently available in the cloud, such requests will be
rejected. Similarly, if screen forwarding exceeds available
network bandwidth, the composition of a VP requiring such
an action will not be allowed. Stratus achieves this by
actively monitoring capacity and bandwidth availability.

When the High Performance Policy is issued by the
netbook device with the device cloud shown in TABLE II,
the following actions are taken: (i) the Stratus master in
DT#1 finds the largest screen and the node with the
maximum Performance Index. Using the following
description of Feature assignments for the VP - <node#,
Feature#> - this results in a VP described as <1, 1>, <1, 2> ,
and <1, 3>. Stratus also prompts the user to select an input
device (keyboard) among <1, 4>, <2, 4>. The final VP
consists of four virtual cores, 512MB memory, a 720P
screen, and a full-size keyboard. To use it, Stratus performs
live migration of the user’s virtual machine image from the
netbook to the composed VP.

VP composition for the small-scale systems present in

homes occurs with latencies not noticeable to end users. The
current version of Stratus (not fully optimized) takes 5,004µs
to find the Features for the high performance VP, and the
live migration to the VP took 15,451ms for the VM image
present on the netbook. In Section III.C, we discuss how
much time is consumed by each stage during establishing the
VP.

480

At the same time, substantial performance improvements
can result from using the newly constructed VP vs.
continued operation on the netbook. These are evident when
uncompressing a large size file (bzip2 compressed file
system image, the size is 4.4GB) using 7zip with multithread
option (-mmt), and transcoding a video file (360MB 720P
resolution from mpeg4 into H.264). As shown in TABLE III
the high performance platform conducts these tasks in 7.9%
for uncompressing and 11.25% for transcoding of the time
compared to running these on the netbook. In other words,
the overheads of platform composition and VM migration
are almost amortized by this single high end decompression
task. A final interesting note is that the performance policy
will always prefer using DT#1 because of its vastly superior
performance index, unless of course, that machine is already
heavily used by other VPs present in the system (resulting in
its Performance Index being low). In such cases, machines
like DT#2 will be selected.

2) Reducing Power Consumption in Device Cloud
Stratus can automatically generate a power-efficient VP,

without requiring users to understand device power usage
characteristics. This is initiated by the user’s activation of the
Power Efficiency Policy. This policy uses the Performance
Index maintained by Stratus to assess node and device power
consumption, thus making the simplifying assumption that
the index is proportional to the voltage and clock-speeds of
its processors[11], and memory power consumption. The
Stratus decision engine uses the following procedure to
compose low power VPs:

• first, find the node with the lowest maximum
performance index in the device cloud;

• confirm that the utilization of that node’s processor
Feature is less than 70%1 and if yes, assign it as the
representative node for the new VP; if not, find the
second best node; etc.

Consider the following case to evaluate this policy.

Suppose a user wants a VP that plays SVGA content from a
steaming service but to do so with the Power Efficiency
Policy. To emulate a streaming service like YouTube or
Hulu.com, we add a streaming server to the testbed, and
activate the policy at a time when all nodes in the cloud are
in idle states. Then Xen hypervisor on each node runs its
local on-demand power management option. The outcome of
the experiment is shown in TABLE IV, which depicts the
comparative power consumption of the Performance and
Power Efficiency policies. It is evident from these results that
VPs can be composed so as to obtain reduced power without
causing performance problems for users, such as frame
dropping. The video file for this evaluation is encoded via
XviD codec with SVGA resolution. TABLE V depicts
additional results when using 5 VPs with the same video
workload, to simulate a multi-user scenario. In the first case,
in TABLE IV a 3% power savings is obtained, whereas the
second case in TABLE V shows a 10.5% improvement in
power usage. The second case shows increased frame drops,
but at a low level barely noticeable by end users.

1 The utilization of 70% is an empirical value.

TABLE III. PERFORMANCE COMPARISON:VP VS. NETBOOK

Performace Netbook Virtual Platform

Decompressing Time (Sec) 4845 383

Transcoding Time (Sec) 12312 1386

TABLE IV. POWER COMSUMPTION COMPARISON - SINGLE VP

Policy Idle Power
Efficiency Performance

Power Consumption (watt) 177.2 178.3 183.4
Drop Frames/Total

(drop-rate%) - 0/34631
(0%)

0/34631
(0%)

TABLE V. POWER COMSUMPTION COMPARISON - 5 VPS

Policy Power Efficiency Performance

Power Consumption (W) 201.5 225.2
Drop Frames/Total

(drop-rate%) 9/34631 (�0%) 3/34631 (�0%)

Further, VPs on same node have to share a screen
Feature since there are only 3 screens in this device cloud.
Finally, although DT#1 could support additional VPs in
terms of its computational power, it has insufficient memory
to host 5 VPs, causing the 5th VP to be established on DT#2
as shown in TABLE VI.

There are several reasons for the relatively small power
savings obtained with this policy. First, the policy only
considers processors and memory, ignoring other hardware
like graphics cards. Second, there is currently no runtime re-
configuration, to replace power hungry nodes with power-
efficient ones used by existing VPs (e.g., at times when
power-efficient systems were not available). The earlier
work in [10] presents methods with which such dynamic
reconfiguration can be done. Third, in order to avoid
situations in which power efficient policies create VPs with
insufficient performance, our current implementation asks
users to provide information about the kind of work VPs will
be asked to perform, such as OFFICE SUITES, WEB
BROWSING, PLAYING CONTENTS, OTHER, where a
request labeled as OTHERS is not accepted by a power
efficient VP. In summary, this case demonstrates the
potential for energy savings with Stratus, but additional work
is needed to create a robust energy savings policy and
implementation.

3) Enhanced Battery Life of Devices in Device Cloud
A straightforward idea is to offload computing from

mobile to stationary devices, whenever possible. Such
offloading is done by the Long Lasting Battery Policy. When
issued by mobile devices, this policy attempts to maximally
extend their battery lives, by first creating a new VP with the
same or better Performance Index as the existing one and
then migrating the virtual machine image to the established
VP. The mobile device, then, merely acts as an input and
output device, permitting its processors to operate at lower
frequencies.

481

TABLE VI. DISTRIBUTION OF VPS BASED ON DIFFERENT POLICIES

Policy Power Efficiency Performance

DT#1 0 4

DT#2 3 1

Netbook 2 0

TABLE VII. COMPARISON: BATTERY LASTING TIME

Environment Netbook Battery Policy

Battery Lasting Time (min) 92.8 124

Power Consumption (W) 16.2 13.3

We evaluate the utility of this policy by playing VGA
resolution movie clips continuously until the battery of the
netbook becomes completely discharged. As shown in
TABLE VII we can achieve almost 18% less power
consumption and 15% more operation time with almost the
same number of frame-drops.

4) Enabling Virtual Platform Mobility
The Mobility Policy permits users to continue with

mobility whatever actions they have been taking within some
home or office device cloud. This is done by first
establishing a new VP on the node with battery and wireless
network Features and then moving the virtual machine
image from the node issuing the policy to new mobile VP.
When multiple mobile nodes are present, we now prompt the
user, but other means like accelerator-based sensing of pick
up actions could be used. At present, when prompting users,
Stratus provides several useful items of information,
including remaining battery capacity, estimated battery
operation time, and maximum Performance Index.

C. Overhead
Establishing a VP involves several steps.
S1. Requesting a VP: a node in a device cloud issues a

request for a new VP to the master.
S2. Reporting status to the master: the master asks all

participants in a device cloud to provide information
about their Features.

S3. Exploiting the decision engine and generating
machine description: after gathering information
from all nodes, the master tries to allocate the best
Features for the VP being constructed, as per the
user policy being used.

S4. VP notification: the machine description is sent to
the representative node of the VP being established.

TABLE VIII shows the time consumed for each stage
when the High Performance Policy is issued in the testbed
shown in Section III.A. Additional results shown TABLE
IX establish that VP construction overheads are almost
identical for VPs with larger numbers of nodes (i.e., 5 in this
case). These measurements show that total overheads are
moderate (about 5ms) and that with these overheads, even
the current Stratus solution will likely scale to the ~100
devices expected in homes or small office systems.

TABLE VIII. DELAYS IN ESTABLISHING A HIGH PERFORMANCE VP

Step S1 S2 S3 S4 Misc. Total

Delay (us) 51 4786 136 11 20 5004

TABLE IX. CONSTRUCTION OVERHEAD (LARGER NUMBERS OF NODES)

Numbers of
Nodes 2 3 4 5

Delays (us) 5084 5004 5126 5296

Alternative implementations and additional optimizations

are needed for larger configurations; these include
approaches in which device clouds are zoned with zone
masters relating to each other as peers[10], of pre-
constructed VPs, push-based updates to information about
Features, etc.

IV. RELATED WORK

A. Seamless User Experience based on Virtualization
Prior work has used virtualization technologies to

provide users with seamless computing environments.
ISR[12], the Collective project[13], SoulPad[14],
Keychain[15], Spirits[18], and Cloudlets[20] store all of a
user's computing environment and state in virtual machines,
using VM migration to move VMs to the device the user
wants to use. VMs can be migrated through a network
connection, via storage devices like USB disks, and they
may be assisted by nearby resources so as to avoid the
potential high overheads arising from accessing remote cloud
resources[18][20].

All of these approaches target single physical platforms,
however, in contrast to the Stratus approach in which
multiple platforms’ devices are utilized to gain improved end
user experiences. Also missing from such work is the
automation via user policies shown in our work.

Building on previous work like thin-client computing, an
alternative model offered by cloud computing is to rely on
remote server systems to provide needed functionality like
Amazon EC2. Device clouds simply extend those models to
also exploit locally available devices in addition to using
remote services. This may also help deal with the privacy
and security issued raised for cloud systems, by differentially
using local vs. remote service capabilities.

B. Resource Allocation in Distributed Systems
Stratus leverages well-established techniques for

managing the resources of distributed and media
systems[16][17][22]. There remain many open issues with its
current implementation, however, including those pertaining
to dynamic platform reconfiguration, the use of richer and
thus, more capable formulations of policies, and additional
work on runtime management to provide virtual platforms
that are more robust and/or capable in service offerings
compared to the single platforms now used by end users. The
HTML 5 device APIs enable web applications to access each
device in low level.

482

V. CONCLUSIONS AND FUTURE WORK
Device clouds give rise to virtual platforms that provide

end user services superior to those offered by single physical
devices. Advantages include higher performance, better
availability in lieu of say, improved end user experiences.
These properties are due to the elastic and dynamic nature of
virtual platforms, driven by policies encoding end user needs.
Stratus is evaluated with several policies useful in the home
or office settings targeted by device clouds, with
experimental results establishing the relative advantages of
virtual vs. physical platforms as well as the overheads
implied in VP construction and use.

There are extensive opportunities for future work. The
current implementation of device clouds has not been
integrated with remote cloud infrastructures. Specifically, of
interest to the media-centric examples studied in our work is
improved flexibility in content delivery, to obtain content
from both local (e.g., the home PC disk) and remote sources.
Many factors can be considered to achieve such
integration.(e.g. cost[21]) Another direction is to exploit the
VM-based encapsulation to address security and privacy
concerns when a user’s VM is employed outside her home.

REFERENCES
[1] Dearman, D. and Pierce, J. S. "It's on my other computer!:

computing with multiple devices," In Proceeding of the
Twenty-Sixth Annual SIGCHI Conference on Human Factors
in Computing Systems. CHI '08. ACM, New York, NY, 767-
776.

[2] Pierce, J. S. and Nichols, J. "An infrastructure for extending
applications' user experiences across multiple personal
devices," In Proceedings of the 21st Annual ACM
Symposium on User interface Software and Technology.
UIST '08. ACM, New York, NY, 101-110.

[3] Oulasvirta, A. and Sumari, L. "Mobile kits and laptop trays:
managing multiple devices in mobile information work," In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. CHI '07. ACM, New York, NY, 1127-
1136.

[4] Song, X. and Ramachandran, U. "MobiGo: A Middleware for
Seamless Mobility," In Proceedings of the 13th IEEE
international Conference on Embedded and Real-Time
Computing Systems and Applications. RTCSA. IEEE
Computer Society, Washington, DC, 249-256.

[5] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho,
A., Neugebauer, R., Pratt, I., and Warfield, A. "Xen and the
art of virtualization," In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles. SOSP '03.
ACM, New York, NY, 164-177.

[6] Kumar, S., Talwar, V., Ranganathan, P., and Ripal Nathuji, K.
S. "M-channels and m-brokers: Coordinated management in
virtualized systems," In Workshop on Managed Multi-Core
Systems (June 2008)

[7] Padala, P., Hou, K., Shin, K. G., Zhu, X., Uysal, M., Wang,
Z., Singhal, S., and Merchant, A. "Automated control of
multiple virtualized resources," In Proceedings of the 4th
ACM European Conference on Computer Systems. EuroSys
'09. ACM, New York, NY

[8] Soror, A. A., Minhas, U. F., Aboulnaga, A., Salem, K.,
Kokosielis, P., and Kamath, S. "Automatic virtual machine
configuration for database workloads," ACM Trans. Database
Syst. 35, 1 (Feb. 2010), 1-47.

[9] Rolia, J., Cherkasova, L., Arlitt, M., and Andrzejak, A. "A
capacity management service for resource pools," In
Proceedings of the 5th international Workshop on Software
and Performance. WOSP '05. ACM, New York, NY, 229-
237.

[10] Sanjay Kumar, Vainsh Talwar, Vibhore Kumar, Partha
Ranganathan, Karsten Schwan. "vManage: Loosely Coupled
Platform and Virtualization Management in Data Centers," In
6th International Conference on Autonomic Computing &
Communications (ICAC), Barcelona, Spain, 2009.

[11] Pillai, P. and Shin, K. G. 2001. "Real-time dynamic voltage
scaling for low-power embedded operating systems," In
Proceedings of the Eighteenth ACM Symposium on
Operating Systems Principles. SOSP '01. ACM, New York,
NY, 89-102.

[12] Kozuch, M. and Satyanarayanan, M. 2002. "Internet
Suspend/Resume," In Proceedings of the Fourth IEEE
Workshop on Mobile Computing Systems and Applications.
WMCSA. IEEE Computer Society, Washington, DC, 40.

[13] Chandra, R., Zeldovich, N., Sapuntzakis, C., and Lam, M. S.
"The collective: a cache-based system management
architecture," In Proceedings of the 2nd Conference on
Symposium on Networked Systems Design & Implementation
- Volume 2. USENIX Association, Berkeley, CA, 259-272.

[14] Cáceres, R., Carter, C., Narayanaswami, C., and Raghunath,
M. "Reincarnating PCs with portable SoulPads," In
Proceedings of the 3rd international Conference on Mobile
Systems, Applications, and Services.MobiSys '05. ACM, New
York, NY, 65-78

[15] Muthukarrupan Annamalai, Andrew Birrell, Dennis Fetterly,
and Ted Wobber, "Implementing Portable Desktops: a New
Option and Comparisons," no. TR-2006-151, October 2006,
Microsoft Corporation

[16] Poellabauer, C., Abbasi, H., and Schwan, K. 2002.
"Cooperative run-time management of adaptive applications
and distributed resources," In Proceedings of the Tenth ACM
international Conference on. MULTIMEDIA '02. ACM, New
York, NY, 402-411.

[17] Xu, D., Wichadakul, D., and Nahrstedt, K. 2000. "Multimedia
Service Configuration and Reservation in Heterogeneous
Environments," In Proceedings of the the 20th international
Conference on Distributed Computing Systems ICDCS 2000.
IEEE Computer Society, Washington, DC, 512.

[18] Raj, H., Seshasayee, B., O'Hara, K., Nathuji, R., Schwan, K.,
and Balch, T. 2006. "Spirits: Using Virtualization and
Pervasiveness to Manage Mobile Robot Software Systems,"
In Proceedings of the Second IEEE International Workshop
on Self-Managed Networks, Systems & Services (SelfMan, in
conjunction with ICAC). June 2006

[19] Kannan, S., Badu, K., Gavrilovska, A., and Schwan, K.,
"VStore++: Virtual Storage Services for Mobile Devices," In
Proceedings of International Workshop on Mobile Computing
and Clouds (Oct 28, 2010) MobiCloud 2010, ICST, Santa
Clara, CA

[20] Satyanarayanan, M., Bahl, P., Caceres, R., and Davies, N.
2009. "The Case for VM-Based Cloudlets in Mobile
Computing," IEEE Pervasive Computing 8, 4, 14-23.

[21] Pandey, S., Barker, A., Gupta, K.K., Buyya, R. "Minimizing
Execution Costs when Using Globally Distributed Cloud
Services,", 24th IEEE International Conference on Advanced
Information Networking and Applications, 2010, 222-229

[22] Hyunjoo Kim, Yaakoub el-Khamra, Shantenu Jha, and
Manish Parashar."Exploring application and infrastructure
adaptation on hybrid grid-cloud infrastructure," In
Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing (HPDC '10). ACM,
New York, NY, USA, 402-412

483

