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Abstract—We propose a new biased discriminant analysis
(BDA) using composite vectors for eye detection. A composite
vector consists of several pixels inside a window on an image.
The covariance of composite vectors is obtained from their inner
product and can be considered as a generalization of the covari-
ance of pixels. The proposed composite BDA (C-BDA) method
is a BDA using the covariance of composite vectors. We con-
struct a hybrid cascade detector for eye detection, using Haar-
like features in the earlier stages and composite features obtained
from C-BDA in the later stages. The proposed detector runs in real
time; its execution time is 5.5 ms on a typical PC. The experimental
results for the CMU PIE database and our own real-world data
set show that the proposed detector provides robust performance
to several kinds of variations such as facial pose, illumination,
eyeglasses, and partial occlusion. On the whole, the detection rate
per pair of eyes is 98.0% for the 3604 face images of the CMU
PIE database and 95.1% for the 2331 face images of the real-
world data set. In particular, it provides a 99.7% detection rate
for the 2120 CMU PIE images without glasses. Face recognition
performance is also investigated using the eye coordinates from the
proposed detector. The recognition results for the real-world data
set show that the proposed detector gives similar performance to
the method using manually located eye coordinates, showing that
the accuracy of the proposed eye detector is comparable with that
of the ground-truth data.

Index Terms—Biased discriminant analysis (BDA), composite
feature, composite vector, eye detection, face recognition.

I. INTRODUCTION

ECENTLY, SEVERAL studies have been performed on
eye detection as a preprocessing step for face recognition
[1]-[8]. After detecting faces in an image, it iS necessary
to align the faces for recognition. Face alignment is usually
performed by warping the image so that the eye positions
line up with predefined image coordinates, and the accuracy
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of the eye coordinates greatly affects the performance of a
face recognition system [5], [9], [10]. The location of the eye
is commonly measured at the iris or pupil center [11], [12].
According to recent results in the field of face recognition,
state-of-the-art methods provide robust performance to several
kinds of variations, such as facial expression and illumination,
when using manually located eye coordinates [9], [13]. When
the eye coordinates were shifted randomly, the face recognition
rates degraded rapidly [9], [14], [10]. From these results, we
can see that eye detection is very important in face recognition
systems. However, as pointed out in [11], eye detection remains
a very challenging task due to several variations. The shape
and appearance of the eye vary with identity, race, viewing
direction, illumination condition, eye motion, etc. Occlusions
due to eyeglasses or glare on the glasses can also cause a severe
problem [15].

In previous studies, appearance-based methods have been
popularly used to discriminate between eyes and noneyes. The
appearance-based methods use the photometric appearance as
characterized by the pixel intensity distribution or filter re-
sponses of the eye and its surroundings [11]. Pentland et al.
used the eigeneyes, eigennoses, and eigenmouths, based on
principal component analysis (PCA), to detect the eyes, nose,
and mouth [4]. Huang and Wechsler used wavelet packets for
eye representation and radial basis functions for subsequent
classification of eyes and noneyes [2]. Ma et al. used Haar-
like features to detect eyes [3]. Zhu and Ji used a support
vector machine to discriminate eyes from noneyes [8]. Wang
and Ji constructed a cascade detector for eye detection, using
Haar-like features and features obtained from the recursive non-
parametric discriminant analysis [6], [7]. Choi and Kim used
a cascade detector for eye detection, using features obtained
from the modified census transform (MCT) [16]. Song et al.
also used a cascade detector, employing Haar-like features and
rectangle features obtained from a visual-context pattern [17].

In object detection problems such as face and eye detection,
a sliding window detection approach [18] is commonly used on
an image pyramid because the location and size of the object are
unknown. A large number of windows are used for detection,
the vast majority of which do not contain target objects. In this
case, a cascade detector is an efficient way to detect the object,
where a simple classifier with a small number of features is
used to reject the majority of detection windows at the first
stage [19]-[22]. When constructing a cascade detector, Haar-
like features are most frequently used in face and eye detection
due to their computational efficiency. Haar-like features use
binary rectangles on an image, computing feature values by
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summing the pixel values inside the white rectangle(s) and
subtracting the pixel values inside the black rectangle(s) [20],
[22], [23]. Integral images provide a very efficient method of
calculating these features [22]. However, in the later stages of
the cascade detector, it is very difficult to reject false positives
arising near the eye position because the feature values are
so similar. Therefore, more powerful features are essential to
remove false positives in the later stages of the cascade detector.

Alternatively, Kim and Choi introduced a new method of
extracting composite features for classification problems [9],
[24]. In their study, a composite vector consists of a number
of primitive variables which correspond to pixels inside a
window on an image. The covariance of composite vectors is
obtained from their inner product, and a new linear discriminant
analysis (LDA) technique is derived by using the covariance
of composite vectors. In the derived composite LDA (C-LDA),
features are obtained by linear combinations of the composite
vectors; these features are called composite features because
each feature is a vector whose dimension is equal to the
dimension of the composite vector. According to their results,
composite features by C-LDA showed good performance in
classification problems when adjacent primitive variables are
strongly correlated as in image data sets or the sonar data set
[9], [24]. However, it is inappropriate to apply C-LDA to eye
detection directly. C-LDA is an effective method when samples
in each class are normally distributed. In eye detection, positive
samples for eyes are similar, and they can be assumed to be
normally distributed, while negative samples are not. In this
case, it is better to use the objective function in biased dis-
criminant analysis (BDA) [25]. BDA was originally proposed
for a (1 + x)-class problem in content-based image retrieval
[25]-[27], and recently, several variants of BDA have been
proposed to solve the small sample size problem [28], [29] and
to improve the retrieval performance by considering the local
geometry of positive samples [30]-[32]. BDA tries to find a
linear transform that makes the scatter of the positive samples
as small as possible while keeping negative samples as far away
from the positive samples as possible. BDA does not assume
that the negative samples are normally distributed and can be an
appropriate method in detection problems as well as in image
retrieval.

In this paper, we propose a new BDA approach using
composite vectors. We call this approach composite BDA
(C-BDA). C-BDA is derived from BDA by using the covariance
of composite vectors instead of the covariance of pixels. To
detect the eye coordinates in a face image, we construct a hybrid
cascade detector. At the earlier stages in the hybrid cascade
detector, Haar-like features are used to remove the majority of
noneyes. At the later stages, composite features obtained from
C-BDA are used to discriminate between eyes and noneyes,
which are difficult to discriminate by Haar-like features. The
experimental results for the CMU PIE database [33] and the
real-world data set show that the proposed detector provides
robust performance to several kinds of variations such as facial
pose, illumination, glasses, and partial occlusion. On the whole,
the detection rate per pair of eyes is 98.0% for the 3604 face
images of the CMU PIE database and 95.1% for the 2331 face
images of the real-world data set. Face recognition performance
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is also investigated on the real-world data set using the eye
coordinates from the proposed detector. The recognition results
for the real-world data set show that the proposed detector gives
better performance than other methods and gives similar perfor-
mance to the method using manually located eye coordinates.
This implies that the accuracy of the proposed eye detector is
comparable with that of the ground-truth data.

In the following section, we explain how patterns are repre-
sented using composite vectors and derive C-BDA. Experimen-
tal results are described in Section III, and conclusions follow
in Section IV. A portion of this paper was presented in [15],
and the differences between this paper and [15] are as follows:
1) More details of the proposed C-BDA method are included,
and the posterior probability of the C-BDA feature space is
investigated in Section II; 2) a glare reduction technique in
order to minimize the influence of glare on glasses is proposed,
and more explanations on the proposed cascade detector are
added in Section III-A; and 3) experimental results on eye
detection and face recognition using the real-world data set are
added in Section III-C.

II. BDA USING COMPOSITE VECTORS

In this section, we first define composite vectors and their
covariance in an image. Then, we derive C-BDA which is a
BDA using the covariance of composite vectors. Unlike [24],
we differentiate the composite feature from the composite
vector in order to avoid confusion in terminology.

A. Composite Vectors and Their Covariance

In general, a pattern is represented by a set of variables,
which are called primitive variables [24]. In appearance-based
models, the intensity of each pixel in an image is used as
a primitive variable. Conventional methods such as PCA and
LDA use the covariance of pixels, i.e., the covariance of prim-
itive variables. Fig. 1(a) shows an example of the primitive
variables. The size of the image is 40 x 40 (pixels), and
thus, there are 1600 primitive variables. As can be seen in
this figure, neighboring pixels are highly correlated. If we
use the covariance of these pixels, there is a huge number
of combinations (1600C2 = 1279200). Since there are high
correlations between neighboring pixels, it is redundant to use
all of these 1279 200 combinations.

Let us consider a composite vector composed of a number
of primitive variables and the covariance of composite vectors
instead of the covariance of primitive variables. Table I shows a
summary of variables, vectors, and matrices used in Section II.
Let A € R *% denote an image, where a, and a. are the
height and width of the image. Let H denote a set of windows
{H|,H>,...,H,} in the image. Each window H; € R"r*he
has I(= h, x h.) pixels, where h, and h. are the height and
width of the window. If there is no overlap of windows, the
number of windows n is p/l where p is the total number
of pixels in A. Obviously, more windows can be obtained if
neighboring windows overlap each other. Then, the composite
vector x; is obtained from H; as

X = OC(Hi) (D
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(b) Composite vectors (windows)

Fig. 1. Primitive variables versus composite vectors: Size of each image is
40 x 40 (pixels), and the window sizes of (a) and (b) are 1 X 1 and 4 x 4,
respectively. (a) Primitive variables (pixels). (b) Composite vectors (windows).

TABLE 1
SUMMARY OF VARIABLES, VECTORS, AND
MATRICES USED IN SECTION II

symbol dimension definition
A R&rXae image having a, X a. pixels
H; Rhrxhe window defined on A, having hy X h¢
pixels (1 =1,...,n)

X R! composite vector obtained from H;
(i=1,...,n)

l 1 size of the composite vector
(I = hy X he)

n 1 number of the composite vectors in A

X RnxL set of composite vectors in A

X RrR"™ column vector of X, subsampled

version of A (j =1,...,1)

where O, (+) is the lexicographic ordering operator that trans-
forms a matrix into a vector by ordering the rows of the
matrix one after the other [34]. Therefore, x; becomes an
[-dimensional vector. Fig. 1(b) shows an example of the com-
posite vectors. In this image, 4 x 4 windows are used for
making composite vectors, and there are 100 composite vectors
in total.

The covariance of composite vectors x; and x; is defined
as [24]

=B xi—%) (5 -%;)],  ii=12...0 @
where X; and X; are the mean vectors of x; and x;, respectively.
Note that ¢;; corresponds to the total sum of covariances
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between the corresponding pixels in H; and H;. It contains
information on statistical dependence among multiple pixels.
When [ is 1, x; becomes a scalar, and c;; in (2) is the same as
the covariance of primitive variables. Therefore, the covariance
of composite vectors can be considered as a generalization of
the covariance of primitive variables.

Let C denote a covariance matrix based on the composite
vectors. For a sample set of IV images, the covariance matrix C
is computed as

N
C= =S (X(h) - M)(X(k) - O

N
k=1

where X (k) = [x1(k) ... x,(k)]” for the kth sample and M =
[X1...%,]T. Note that X (k) € R**! and C € R"*",

B. Analysis of the Covariance Matrix Based
on Composite Vectors

We now investigate the covariance matrix C' in (3), based
on composite vectors, comparing it with the covariance matrix
based on primitive variables. Let x;(k), m; € R" denote the
column vectors of X (k) and M, respectively. Then, X (k) =
[x1(k)...x;(k)],and M = [my; ... my]. We rewrite (3) as

N 1
C= 3 b - my) o -my) @

k=1 j=1

The number of outer products of vectors in (4) is NI, which
is [ times larger than that in the covariance matrix based on
primitive variables. This is because X (k) has [ column vectors
of x;(k). Fig. 2 shows [ images of x (k) for some k. Since
X, (k) takes the jth element from each of the n windows, it
is a subsampled version of the image A(k). In this case, [ and
n are 16 and 361 (19 x 19), respectively, because the 4 x 4
windows are used for making the composite vectors in the
40 x 40 image and they overlap either horizontally or vertically
by 50%. For the purpose of visualization, x;(k)’s are repre-
sented as images. As can be seen in Fig. 2, there is a small
variation in eye positions of x; (k) images. All these 16 images
are used to compute C'in (4) as if they were individual samples.
If [ becomes larger, more images with a larger variation are used
for computing C.

From this perspective, the proposed approach is similar to the
traditional approach using [ times more images of smaller size.
The difference is m; in (4), which is dependent on j unlike
in the covariance matrix based on primitive variables. Refer to
[35] for further details on the difference between the composite
vector-based and primitive variable-based covariance matrices.

Let us further investigate C' in (4). We rewrite (4) as

C=>5, ©)

Jj=1

N
where Sj = (1/N) 2= (x; (k) — my)(x; (k) — my)".
Here, S; is the primitive covariance matrix which corresponds
to the covariance matrix based on primitive variables. Since
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Composite vector
on the image A(k),
where [=16 (4x4)

x(k), for j=1, ..., 16

Fig. 2.
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s . Reduced
Projection Composite .
composite
vector feature
feature

Schematic diagram of C-BDA: In the leftmost image, the size of image A(k) is 40 x 40, and a 4 x 4 window is overlaid on the image. Since the 4 x

4 windows are used for making the composite vectors and they overlap either horizontally or vertically by 50%, the size of the composite vector [ is 16, and the
number of composite vectors n is 361 (19 x 19). In the second column, x; (k) € R361 (j =1,...,16) is represented as a 19 x 19 image for visualization. The
projection vector is obtained by C-BDA and is represented as a 19 x 19 image in the figure. The composite feature in the figure is obtained by projecting x; (k)’s
onto the projection vector. Thus, the composite feature is a 16-D vector as the composite vector and is represented as a 4 X 4 image in the figure. Finally, the
composite feature is further reduced by applying a downscaling operator. In this case, the downscaling factor 7 is set to 16, so the 4 X 4 elements of the composite

feature are represented by their average value.

C' can be represented as the sum of [ S;’s, it is a composite
of primitive covariance matrices. This is due to the definition
of the covariance of composite vectors in (2), where the
covariance c;; is defined as the sum of / covariances between
the corresponding pixels in x; and x;.

C. BDA Using the Covariance of Composite Vectors (C-BDA)

The composite vectors and their covariance were defined
in Section II-A. In the following, a new discriminant analysis
approach using the covariance of composite vectors is derived
for eye detection. In eye detection, positive samples for eyes
are similar, and they can be assumed to be normally distributed,
while negative samples are not. In this case, it is better to use
the objective function in BDA [25]. BDA tries to find a linear
transform that makes the scatter of the positive samples as small
as possible while keeping negative samples as far away from
the positive samples as possible. BDA does not assume that
the negative samples are normally distributed and can be an
appropriate method in detection problems.

Let us now derive C-BDA, which is a BDA using the
covariance of composite vectors. In eye detection, X (k) =
[x1(k)...x,(k)]" is either a positive or negative sample. Let
Xp(k) € R and Xy (k) € R™*! denote the sets of com-
posite vectors of the kth positive sample and the kth negative
sample, respectively. In C-BDA, the set of projection vectors
W is obtained by

WTCNW|

WICHW| ©

Wp = arg max
& W

where Wg = [wy ... w,,] € R"™"™ and the covariance matri-
ces Cp € R™"™ and Cy € R™*™ are defined as

Np
Cp = N% ,; (Xp(k) = Mp) (Xp(k) = Mp)", (D

NN

Z (Xn(k) — Mp) (Xn (k) — Mp)" . (8)
k=1

1

CN:NiN

Here, Mp = (1/Np) 3o, Xp(k) is the mean of the positive
samples, and Np and Ny are the number of positive and
negative samples, respectively. C'p and C'y correspond to the
covariance matrices of positive and negative samples, respec-
tively. The optimization problem of (6) can be computed in
two steps as in C-LDA [24]. First, C'p is transformed to an
identity matrix by $O~(1/2) where ¥ and © are the eigen-
vector and diagonal eigenvalue matrices of Cp, respectively.
Let C'» and C'y; denote the covariance matrices of positive and
negative samples after whitening, respectively. Then, C'p = I,
and C'y = (\I/@’(l/z))TCN (0~(1/2)), Second, C'), is diago-
nalized by ®, which is the eigenvector matrix of Cﬁv. Therefore,
W g is expressed with m column vectors of ¥O~(1/2)®, corre-
sponding to the m largest eigenvalues of C'y. Note that C, = I
and C}, = (we-1/28) Cy (Ve (1/2)®), where CY, and
C\; denote the covariance matrices of positive and negative
samples after diagonalization of C'y, respectively. In summary,
C-BDA finds a linear transform by which the covariance matrix
of positive samples becomes an identity matrix and negative
samples are as far away from the mean of the positive samples
as possible.

Once W is determined, the set of features Y (k) is obtained
from X (k) as

Y (k) = WEX(k), k=1,2,...,N )
where Y (k) € R™*! has m features [y (k). ..y.m(k)]T. Here,
the feature y; (k) € R is called a composite feature because it
is a vector obtained from the linear combination of composite
vectors in X (k) from x;(k) to x,(k). Since C-BDA with
[ =1 is the same as BDA, C-BDA can be considered as a
generalization of BDA.

The first projection vector w; is represented in Fig. 2. In
this case, n is 361, and x;(k)’s are 361-D vectors. Therefore,
w1 is a 361-D vector and is represented as a 19 x 19 image
in the figure. The composite feature in the figure is obtained
by projecting x;(k)’s onto the projection vector. Thus, the
composite feature is a 16-D vector as the composite vector
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and is represented as a 4 x 4 image in the figure. Since the
differences between adjacent (k) images are very small,
the correlations between adjacent elements of the composite
feature are very strong. This coincides with the analysis in
[35]. Therefore, the dimension of the composite feature can be
reduced significantly. Let [, denote (I/7). Then, Y (k) becomes

Z(k) = [z1(k) . .. zm (k)]" (10)
where z;(k) = O;[Op){O;' (yi(k))}] € Rlr, (i=
1,...,m). Here, Op) is a downscaling operator with

factor r, where r elements are represented by their average
value. As a result of Op((-), the number of elements in
O, (yi(k)) is reduced from [ to I,.. In Fig. 2, the downscaling
factor r is set to 16, so the 4 x 4 elements of each composite
feature are represented by their average value. Note that Z (k)
corresponds to the set of reduced composite features of the kth
image.

If r is appropriately chosen, the reduced composite feature
can be obtained directly without projecting all the x;(k)’s
onto the projection vector. For example, the reduced composite
feature in Fig. 2 is obtained by projecting only the mean of
the 16 x; (k) images onto the projection vector. Therefore, the
computation time to obtain composite features can be reduced
significantly.

D. Posterior Probability in the Feature Space of C-BDA

In the previous section, we derived C-BDA using the covari-
ance of composite vectors for eye detection. For a given sample
X (k) = [x1(k) ... x,(k)]T € R™!, we obtained the set of re-
duced composite features Z(k) = [z1(k) ...z, (k)]T € Rm™*!r
by C-BDA. Let us investigate the posterior probability of Z(k),
which is a good indicator to decide whether the given sample
X (k) belongs to the positive class or not. Let c¢p and ¢y denote
the positive class and negative class, respectively. Let us focus
on p(cp|Z(k)) because p(cy|Z(k)) can be easily computed
from p(cp| Z(k)) by using plex|Z(k)) = 1 — plcp|Z(k)). As
mentioned in Section II-C, the covariance matrix of positive
samples C', becomes an identity matrix in the C-BDA feature
space. Considering that positive samples for eyes are similar,
we can assume that the positive samples are normally distrib-
uted in the C-BDA feature space.

We first derive the posterior probability of Z(k) when I, =
1. In this case, the conditional probability p(Z(k)|cp) can be
obtained as

1
p (Z(k)|CP) _W
eap (—3 (200~ M) C3 (2(0)-M3) )

1 1
e (-3 @wp) oy

(2m)

where M}, is the mean of positive samples Z(k) and
dr(Z(k), M}p) is the Euclidean distance between Z(k) and
MP. In (11), we can see that p(Z(k)|cp) is inversely pro-
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portional to the Euclidean distance between Z(k) and M}.
Since p(cp|Z(k)) = p(cp)p(Z(k)lcp)/p(Z(K)) and p(cp)
and p(Z(k)) can be considered as constants for each sam-
ple Z(k), the posterior probability p(cp|Z(k)) can be repre-
sented as

p (cp|Z(k) ox exp (—éd% (Z(kLM}s)) TS

Now let us derive the posterior probability of Z (k) when
I, > 1. In this case, each composite feature z;(k) (i =
1,...,m) of Z(k) is l,-dimensional vector. Then, the Euclid-
ean distance between Z(j) and Z (k) can be defined as [9]

dp (Z(j), Z(k)) = {Z(”Zi(j) - Zi(k)|2)2} (13)

=1

where || - ||2 is the 2-norm. From this definition, the posterior
probability p(cp|Z(k)) can be computed in the C-BDA feature
space and is also inversely proportional to dg(Z(k), M}) as
in (12). Consequently, when T is a predefined threshold,
the given sample X (k) is classified as an eye if dg(Z(k),
M}é) <Ty.

III. EXPERIMENTAL RESULTS

This section describes our proposed detector using composite
features and experimental results for eye detection and face
recognition.

A. Training of the Hybrid Cascade Detector

For training the detector, 1800 images were collected from
the CMU PIE database [33], the BiolD database [36], and
our own collected database of face images, which includes
several kinds of variations such as pose, illumination, glasses,
partial occlusion, closed eyes, and low resolution. From these
images, we first located a face in an image by using a face
detector based on the MCT [37]. Since faces are generally
symmetric, only a right eye detector is trained as in [10] and
[17], and a left eye is found on a vertically inverted image by
using the right eye detector. The positive samples for training
are obtained from right eyes, and the negative samples are
randomly chosen from the other regions of face images. Some
positive and negative samples are shown in Fig. 3(a) and (b),
respectively. Each positive sample is cropped in proportion to
the interocular distance (distance between the two eyes), where
the eye coordinates are measured at the center of the iris. The
cropping window is a square whose side length is 0.76 times the
interocular distance and is rescaled to a size of 18 x 18 (pixels).

In [15], the proposed detector showed a 99.4% detection rate
for the 2120 images without glasses while it showed 93.5% for
the 1484 images with glasses. As pointed out in [15], incorrect
detections of eyes are mainly caused by glare on glasses. There-
fore, glare reduction is essential to robust eye detection. First,
we investigated pixel values with glare in face images. Fig. 4
shows two probability distributions, where one is obtained from
pixel values with glare and the other is from pixel values
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Fig. 3. Eye and noneye samples used for training. (a) Positive samples.
(b) Negative samples at the first stage. (c) Negative samples at the fifth stage.

Glare
No glare

Probability distribution

10 30 50 70 90 110 130 150 170 190 210 230 250
Gray value

Fig. 4. Two probability distributions of the pixel gray values with and without
glare.

without glare. In the figure, the horizontal axis denotes the pixel
gray values, and the vertical axis denotes the probability for
each gray value. As can be seen in the figure, pixels without
glare are widely distributed over the range between 0 and 255,
whereas pixels with glare are concentrated near the maximum
value of 255. In order to alleviate the influence of glare, we cap
the image pixel values at T, i.e., pixel values larger than T
are changed into 7¢. In the following experiments, 7 is set to
210 for glare reduction.

After applying the glare reduction technique, intensity nor-
malization is also applied to each detection window to minimize
the effect of different light conditions. For intensity normaliza-
tion, pixels in each detection window are normalized to have
zero mean and unit variance [22]. The mean and variance of
each detection window in an image can be easily computed
using two integral images obtained from the original image and
its squared image, as in [20].

When detecting the eye coordinates in a face image, a sliding
window detection approach is used on an image pyramid [18].
In the image pyramid, four levels of images, 80 x 49 (width
x height), 67 x 41, 56 x 34, and 47 x 28, are sequentially
obtained from the face image. A detection window of 18 x
18 (pixels) is then scanned across each image in the image
pyramid. A large number of detection windows are used for
detection, the vast majority of which do not contain eyes. In
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this case, a cascade detector is an efficient way to detect the eyes
[20], [22]. The structure of the cascade detector is a degenerate
decision tree [38]-[40]. Fig. 5 shows the schematic diagram of
the cascade detector. The classifier in each stage aims to reject
a certain fraction of false positives while correctly detecting
almost all true positives. In our case, each stage is trained to
reject more than 50% of the false positives while correctly
detecting more than 99% of the true positives. At the first stage,
a simple classifier with a small number of features is used
to reject the majority of detection windows. Those windows
which are not rejected by the first classifier are processed by
a sequence of classifiers. If any classifier rejects a detection
window, no further processing is performed for that window.
This is a very efficient way to remove false positives in terms
of speed.

When training a cascade detector, the boosting technique
is typically used [20], [22]. From the second stage of the
cascade detector, the negative samples are obtained from the
false positives of the previous stage. That means the classifier
of the current stage focuses more on the detection windows
that are misclassified at the previous stage. The set of positive
samples are also a little bit different from the set of positive
samples in the previous stage. As the positive and negative
samples vary with the stages, features obtained in each stage
also vary, and each stage has its own discriminative power. This
provides a very efficient way to remove false positives while
correctly detecting true positives, in terms of accuracy.

Haar-like features and composite features can be used for
classifiers to discriminate between eyes and noneyes. Haar-like
features are very efficient in computation [22], while composite
features carry powerful discriminative information. The advan-
tages of these two features can be combined by using a hybrid
cascade detector. At the earlier stages in the detector, Haar-like
features are used to remove a majority of the noneyes. At the
later stages, composite features obtained by C-BDA are used
to discriminate between eyes and noneyes in regions which are
difficult for Haar-like features to discriminate.

Fig. 6(a) shows the receiver operating characteristic (ROC)
curves on the validation set of the first stage. At the first stage
of the hybrid cascade detector, 1200 images randomly chosen
from the 1800 images are used for training, and the remaining
600 images are used for validation. In the training set, there
are 1200 positive samples obtained from right eyes and 2400
negative samples obtained from the other regions of images.
In the validation set, there are 600 positive and 6000 negative
samples; more negative samples are used to make the validation
phase similar to a real detection situation. In the figure, the false
positive rate on the horizontal axis corresponds to the number
of noneyes classified as eyes among 6000 noneye samples, and
the correct detection rate corresponds to the number of eyes
classified as eyes among 600 eye samples. In C-BDA, a sample
is classified as an eye if the distance from the mean of positive
samples is smaller than a predefined threshold. As the threshold
increases, the detection rate and false positive rate increase. In
this experiment, the results are obtained by using six features
of each method. As can be seen in Fig. 6(a), when the false
positive rate is 40%, the detection rates of Haar-like, BDA, and
C-BDA features are 99.3%, 99.3%, and 99.8%, respectively.
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Fig. 6. ROC curves comparing C-BDA features with Haar-like features at the
first and fifth stages of the cascade detector. (a) First stage. (b) Fifth stage.

Since Haar-like features require less computation than the other
features, it is efficient to use Haar-like features at the first
stage. In this way, the first four stages of the cascade detector
are constructed using 6, 20, 46, and 94 Haar-like features,
respectively, and the next four stages are constructed using
C-BDA features, as shown in Fig. 5.

Fig. 7 shows the detection results of the cascade detector on
a training image. The red and yellow points on each image are
the pixels classified as eyes at the current stage of the cascade

detector, where the red and yellow correspond to true positives
and false positives, respectively. Fig. 7(a) shows the candidate
positions for right and left eyes. These positions are obtained
by analyzing the face detection result for the training images.
Fig. 7(b)—(e) show the detection results from the first stage to
the fourth stage. For 1800 images in the training and validation
sets, 79.6% of detection windows are removed at the first stage
of the cascade detector. After the first stage, the number of
remaining windows on average is 384.1, where 131.4 and 252.7
windows contain eyes and noneyes, respectively.

Although the Haar-like features are easy to compute, they
have limited discriminative power [3], [7]. Particularly at the
later stages in the cascade detector, the Haar-like features can-
not remove false positives efficiently while correctly detecting
eyes. Some negative samples at the fifth stage are shown in
Fig. 3(c), where they were obtained from false positives of the
previous stage. As can be seen in the figure, most of negative
samples are obtained near the eye position of face images.
Fig. 6(b) shows the ROC curves on the validation set of the
fifth stage. In C-BDA, the 3 x 3 (h,, = 3, h. = 3) windows are
used for making the composite vectors in an 18 x 18 image,
and the downscaling factor r is set to 9 (3 x 3), i.e., nine
elements of each composite feature are represented by their
average value. When the false positive rate is 40%, the C-
BDA features provide a detection rate of 98.8%, which is 2.5%
and 6.3% higher than those of Haar-like and BDA features,
respectively. From this result, we can see that the C-BDA
features are more effective in later stages than the Haar-like and
BDA features. In this way, the later four stages of the cascade
detector are constructed using C-BDA features, as shown in
Fig. 5. Fig. 7(f)—(i) show the detection results from the fifth
stage to the eighth stage. At the eighth stage, the number of
remaining windows on average is 55.7, where 52.7 and 3.0
windows contain eyes and noneyes, respectively.

After the eighth stage of the cascade detector, multiple detec-
tions usually occur around each eye. In this case, overlapping
detection windows are combined into one [22]. If more than
one detection is made by this combining procedure, the most
probable one is selected as the final result in the right and the
left part of a face. Fig. 7(j) shows the final detection result of
the proposed cascade detector.
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Eye detection results of the cascade detector on a training image: Red and yellow points on each image correspond to true positives and false positives,

respectively. (a) Candidates for eyes. (b) Stage 1. (c) Stage 2. (d) Stage 3. (e) Stage 4. (f) Stage 5. (g) Stage 6. (h) Stage 7. (i) Stage 8. (j) Final result.

B. Test Results for the CMU PIE Database

The CMU PIE database [33] was used to evaluate the ro-
bustness of the proposed detector to glasses, pose, illumination,
and closed eyes. In this experiment, we tested 3604 face images
of 68 people, none of which were used for training. Among
68 people, 28 are wearing glasses, and 40 are not. There
are eight images per person with four different poses, named
“S(B)_05,” “S(B)_07,” “S(B)_09,” and “S(B)_29,” where eyes
are open and closed in the “S” and “B” images, respectively.
The images named “05” and “29” are right and left 3/4-profile
images, respectively, and there are up and down variations in the
images named “07” and “09”, respectively. There are two sets
of 24 images per person under different illumination conditions,
named from “27_00" to “27_23" and “05_00" to “05_23,”
where “27” and “05” mean a frontal and a 3/4-profile image,
respectively. Excluding three images of “27_02,” “27_08,” and
“27_16" used for training, there are 21 frontal and 24 3/4-profile
images of each person under different illumination conditions.

In order to differentiate between true and false detections,
we define the normalized error as follows. Let d;,. denote
the interocular distance in pixels. Let e; and e, denote the
Euclidean distances between manually and automatically lo-
cated coordinates of the left and the right eye, respectively.
Then, the normalized error e,, is computed as

o — max(ey, er)’ (14)
dlr

We consider a detection result as correct if e,, < k., where k.

is the threshold of the normalized error.

Table II shows the detection results with respect to several
variations, where k. is set to 0.125 as in [5]. At the first
column, the pose variation means an out-of-plane rotation such
as left, right, up, and down, and “open” and “closed” mean open
and closed eyes, respectively. As can be seen in the table, the
proposed detector gives robust performance to several kinds of
variations such as facial pose, illumination, and closed eyes. It
provides a 99.7% detection rate for the images without glasses.

TABLE 1I
EYE DETECTION RESULTS FOR THE CMU PIE DATABASE

| variation | w/o glasses | with glasses |

average
pose (open) 100% 98.2% 99.3%
pose (closed) 100% 89.3% 95.6%
illum. (frontal) 100% 96.8% 98.7%
illum. (3/4 profile) 99.4% 95.1% 97.6%
| total | 99.7% 95.6% 98.0%
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Fig. 8. Detection rates with respect to the threshold of the normalized error
for the CMU PIE database.

When k. is 0.125, 0.15, and 0.20, the total detection rates are
98.0%, 98.8%, and 99.4%, respectively.

Fig. 8 shows the eye detection results with respect to the
threshold of the normalized error for the CMU PIE database. As
shown in the figure, the proposed detector using both Haar-like
and C-BDA features gives better performance than the detector
using only Haar-like features. In particular, if the thresholds
are 0.05 and 0.1, the proposed detector gives detection rates
of 75.0% and 96.1%, which are 16.3% and 2.4% higher than
those of the detector using Haar-like features, respectively. This
means that C-BDA features enable more accurate eye detection.
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Fig. 9. Examples of the correct and incorrect detections. (a) Correct detec-
tions. (b) Correct detections with the normalized error larger than 0.1. (c)
Incorrect detections.

Moreover, the proposed detector with the glare reduction
technique gives better detection rate than the detector without
the glare reduction technique, where the detection rates for the
images with glasses are 95.6% and 93.5%, respectively.

Fig. 9(a) shows some examples of the correct detections. As
can be seen in the figure, the proposed detector gives robust
performance to several kinds of variations such as facial pose,
illumination, and closed eyes. Fig. 9(b) shows some examples
of the correct detections with the normalized error larger than
0.1. In this figure, the normalized error of each image from
left to right is 0.106, 0.108, and 0.122, respectively. Fig. 9(c)
shows some examples of the incorrect detections, where the
normalized error of each image from left to right is 0.130,
0.160, and 0.297, respectively. Even though the detection rate
for the images with glasses is more than 95% due to the glare
reduction technique, incorrect detections are mainly caused by
glare on glasses.

On average, the execution time of the proposed detector is
5.5 ms on an Intel i7 3.2-GHz CPU.

C. Test Results for the Real-World Data Set

In the previous section, we used the CMU PIE database to
evaluate the proposed detector under several kinds of variations
such as facial pose, illumination, glasses, and closed eyes. The
facial images in the CMU PIE database are obtained in well-
controlled environments, i.e., the CMU 3-D room [33]. In this
section, a real-world data set is used to test the proposed detec-
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Fig. 10. Examples of eye detection results for the real-world data set.
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Fig. 11. Detection rates with respect to the threshold of the normalized error

for the real-world data set.

tor. We obtained facial images from the web and personal digi-
tal cameras. The data set contains 2331 facial images obtained
from 281 subjects, in which there are various ethnicities such as
Caucasian, Black, East Asian, and Indian, both men and women
and both old and young. Those images have pose variations up
to 45° in all directions, including roll, yaw, and pitch, and have
large illumination variations. Fig. 10 shows some examples of
eye detection results for the data set, selecting only persons who
agreed to publish their face images. The proposed detector gives
good performance under conditions of pose and illumination
variations, glasses, and partial occlusion by hair.

We compared the performance of the proposed detector with
those of other detectors using MCT features [16] or Haar-
like features [22]. Fig. 11 shows the eye detection results with
respect to the threshold of the normalized error for the real-
world data set. As shown in Fig. 11, the proposed detector using
both Haar-like and C-BDA features gives better performance
than the detectors using MCT features or Haar-like features.
If the threshold is 0.1, the proposed detector gives a detection
rate of 92.6%, which is 5.0% and 10.8% higher than that of the
detectors using Haar-like features and MCT features, respec-
tively. This means that C-BDA features enable more accurate
eye detection than Haar-like features and MCT features for the
real-world images. The proposed detector gives detection rates
of 95.1%, 96.4%, and 98.1%, when k. is 0.125, 0.15, and 0.20,
respectively.
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Fig. 12. Face recognition results for the real-world data set: Ten subjects are randomly chosen, and a randomly chosen image of each subject is used for target
image of the gallery; the remaining images of each subject are used for query images of the probe. (a) PCA+LDA. (b) C-LDA.
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As mentioned in the introduction, the accuracy of the eye co-
ordinates greatly affects the performance of a face recognition
system. We investigated the face recognition performance using
the eye coordinates from the proposed detector and compared
its performance with those of other eye detectors. For the face
recognition experiments, 1280 images from the CMU PIE and
BiolID databases are used for training, and 651 images of 100
subjects in the real-world data set are used for testing.

After obtaining the eye coordinates from an eye detector,
the eyes are aligned horizontally by rotation. Each face is
cropped in proportion to the interocular distance and is rescaled
to a size of 100 x 120 (width x height) as in [9]. Then,
histogram equalization is applied to the rescaled image for
illumination normalization. The features for face recognition
are extracted from these 100 x 120 normalized face images by
using PCA+LDA [41], [42] or C-LDA [35].

The face recognition performance was evaluated by using the
cumulative match score [43]. For each round, ten subjects are
randomly chosen in the test set, and a randomly chosen image
of each subject is used for target image t;, (k =1,...,10) of
the gallery, while the remaining images of each subject are used

100

Cumulative recognition rate (%)

MCT
O Haar
== Haar + C-BDA

35 == Ground truth
1 2 3 4 5 6 7 8 9 10
Rank
(b)

Face recognition results for the real-world data set: Ten subjects are randomly chosen, and the leave-one-out method is used for test. (a) PCA+LDA.

for query images of the probe. For each query image ¢;, we
compute the similarity measure s;(k) for each image ¢, in the
gallery. For a given query image ¢;, the target images t’s are
sorted by the similarity scores s;(-). The Euclidean distance
was used to calculate the similarity scores. In order to ensure
the reliability of the results, we repeated the aforementioned
process 50 times and reported the average results. Fig. 12 shows
the experimental results, where the horizontal axis corresponds
to the rank £ and the vertical axis corresponds to the cumulative
recognition rate of the top k£ matches. In the figure, the ground
truth means that each face image is aligned using manually
located eye coordinates. As shown in the figure, the proposed C-
BDA detector shows similar performance to the ground truth. In
the case of PCA+LDA, the difference is 2.5%, 1.4%, and 0.4%,
when k is 1, 3, and 5, respectively. The proposed detector shows
better performance than the methods using Haar-like features
and MCT features. The tendency is similar in the case of C-
LDA. On the whole, C-LDA shows slightly better performance
than PCA-+LDA.

In the previous face recognition experiments, only a single
image for each subject is used for the gallery, and therefore,



KIM et al.: NEW BDA USING COMPOSITE VECTORS FOR EYE DETECTION

the recognition rates are not high. In the next experiments,
ten subjects are randomly chosen, and then, the leave-one-out
method is used for testing. In the leave-one-out method, only
a single image is used for a query image, and the remaining
images are used for the gallery. This is repeated such that each
image from ten subjects is used once as the query image. We
also repeated the aforementioned process 50 times, and in each
round, there are face images of randomly chosen ten subjects.
Fig. 13 shows the experimental results. On the whole, face
recognition rates in Fig. 13(a) and (b) are better than those in
Fig. 12(a) and (b). As in the experiments in Fig. 12, the pro-
posed detector shows similar performance to the ground truth.
In the case of C-LDA, the difference is 0.6%, 0.4%, and 0.0%,
when £ is 1, 2, and 3, respectively. The proposed detector shows
better performance than the methods using Haar-like features
and MCT features. From these face recognition experiments,
we can see that the accuracy of the proposed eye detector is
comparable with that of the ground-truth data in the context of
their intended application.

IV. CONCLUSION

In this paper, we proposed a new method called C-BDA for
eye detection, which is a critical first step in face verification
and recognition systems. The proposed C-BDA has several
advantages over BDA. First, C-BDA is a general method using
the covariance of composite vectors instead of the covariance of
pixels and can be considered as a generalization of BDA. Next,
considering the composite feature in C-BDA is obtained by a
linear combination of composite vectors, i.e., a linear combi-
nation of rectangular windows, it preserves locality better than
the primitive feature in BDA does. Third, C-BDA performed
better than BDA and other methods as described in Section III.
Particularly in the hybrid cascade detector constructed for eye
detection, the composite features removed false positives more
efficiently in the later stages. The experimental results for the
CMU PIE database and the real-world data set showed that
the proposed detector provides robust performance to several
kinds of variations and much more accurate detection than other
methods. Also, in the face recognition experiments, the accu-
racy of the proposed eye detector showed comparable perfor-
mance with that of the ground-truth data. These results indicate
that the covariance of composite vectors captures the discrimi-
native information better than the covariance of pixels does.

REFERENCES

[1] T. D’Orazio, M. Leo, G. Cicirelli, and A. Distante, “An algorithm for real
time eye detection in face images,” in Proc. Int. Conf. Pattern Recognit.,
2004, vol. 3, pp. 278-281.

[2] J. Huang and H. Wechsler, “Eye detection using optimal wavelet packets
and radial basis functions (RBFs),” Int. J. Pattern Recognit. Artif. Intell.,
vol. 13, no. 7, pp. 1009-1025, 1999.

[3] Y. Ma, X. Ding, Z. Wang, and N. Wang, “Robust precise eye location

under probabilistic framework,” in Proc. IEEE Int. Conf. Autom. Face

Gesture Recognit., 2004, pp. 339-344.

A. Pentland, B. Moghaddam, and T. Starner, “View-based and modular

eigenspaces for face recognition,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit., 1994, pp. 84-91.

J. Song, Z. Chi, and J. Liu, “A robust eye detection method using com-

bined binary edge and intensity information,” Pattern Recognit., vol. 39,

no. 6, pp. 1110-1125, Jun. 2006.

[4

=

[5

—

1105

[6] P. Wang and Q. Ji, “Learning discriminant features for multi-view face
and eye detection,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2005, vol. 1, pp. 373-379.

[7] P. Wang and Q. Ji, “Multi-view face and eye detection using discriminant
features,” Comput. Vis. Image Understanding, vol. 105, no. 2, pp. 99-111,
Feb. 2007.

[8] Z. Zhu and Q. Ji, “Robust real-time eye detection and tracking under
variable lighting conditions and various face orientations,” Comput. Vis.
Image Understanding, vol. 98, no. 1, pp. 124—154, Apr. 2005.

[9] C. Kim and C.-H. Choi, “Image covariance-based subspace method for
face recognition,” Pattern Recognit., vol. 40, no. 5, pp. 1592-1604,
May 2007.

[10] P. Wang, M. B. Green, Q. Ji, and J. Wayman, “Automatic eye detection
and its validation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2005, vol. 3, p. 164.

[11] D. W. Hansen and Q. Ji, “In the eye of the beholder: A survey of models
for eyes and gaze,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 3,
pp. 478-500, Mar. 2010.

[12] T. Kawaguchi and M. Rizon, “Iris detection using intensity and edge
information,” Pattern Recognit., vol. 36, no. 2, pp. 549-562, 2003.

[13] C. Liu and H. Wechsler, “Gabor feature based classification using the
enhanced Fisher linear discriminant model for face recognition,” IEEE
Trans. Image Process., vol. 11, no. 4, pp. 467-476, Apr. 2002.

[14] A. M. Martinez, “Recognizing imprecisely localized, partially occluded,
and expression variant faces from a single sample per class,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 24, no. 6, pp. 748-763, Jun. 2002.

[15] C. Kim, M. Turk, and C.-H. Choi, “Biased discriminant analysis using
composite vectors for eye detection,” in Proc. IEEE Int. Conf. Autom.
Face Gesture Recognit., 2008, pp. 1-6.

[16] 1. Choi and D. Kim, “Eye correction using correlation information,” in
Proc. Asian Conf. Comput. Vis., 2007, pp. 698-707.

[17] M. Song, D. Tao, Z. Sun, and X. Li, “Visual-context boosting for eye
detection,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 40, no. 6,
pp. 1460-1467, Dec. 2010.

[18] X. Wang, T. X. Han, and S. Yan, “An HOG-LBP human detector with
partial occlusion handling,” in Proc. IEEE Int. Conf. Comput. Vis., 2009,
pp. 32-39.

[19] X. Chen and A. L. Yuille, “Detecting and reading text in natural
scenes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2004, vol. 2,
pp. 366-373.

[20] R. Lienhart and J. Maydt, “An extended set of Haar-like features for
rapid object detection,” in Proc. Int. Conf. Image Process., 2002, vol. 1,
pp- 900-903.

[21] Y. F. Pan, X. Hou, and C. L. Liu, “A robust system to detect and localize
texts in natural scene images,” in Proc. IAPR Workshop Doc. Anal. Syst.,
2008, pp. 35-42.

[22] P. Violaand M. J. Jones, “Robust real-time face detection,” Int. J. Comput.
Vis., vol. 57, no. 2, pp. 137-154, May 2004.

[23] C. P. Papageorgiou, M. Oren, and T. Poggio, “A general framework
for object detection,” in Proc. IEEE Int. Conf. Comput. Vis., 1998,
pp. 555-562.

[24] C.Kim and C.-H. Choi, “A discriminant analysis using composite features
for classification problems,” Pattern Recognit., vol. 40, no. 11, pp. 2958—
2966, Nov. 2007.

[25] X. S. Zhou and T. S. Huang, “Small sample learning during multime-
dia retrieval using BiasMap,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2001, vol. 1, pp. 11-17.

[26] T.S. Huang, X. S. Zhou, M. Nakazato, Y. Wu, and I. Cohen, “Learning in
content-based image retrieval,” in Proc. Int. Conf. Develop. Learn., 2002,
pp. 155-162.

[27] M. Nakazato, C. Dagli, and T. S. Huang, “Evaluating group-based rel-
evance feedback for content-based image retrieval,” in Proc. Int. Conf.
Image Process., 2003, vol. 2, pp. 599-602.

[28] D. Tao, X. Tang, X. Li, and Y. Rui, “Direct kernel biased discriminant
analysis: A new content-based image retrieval relevance feedback algo-
rithm,” IEEE Trans. Multimedia, vol. 8, no. 4, pp. 716727, Aug. 2006.

[29] L. Wang, K. L. Chan, and P. Xue, “A criterion for optimizing kernel para-
meters in KBDA for image retrieval,” IEEE Trans. Syst., Man, Cybern. B,
vol. 35, no. 3, pp. 556-562, Jun. 2005.

[30] W. Bian and D. Tao, “Biased discriminant Euclidean embedding for
content-based image retrieval,” IEEE Trans. Image Process., vol. 19,
no. 2, pp. 545-554, Feb. 2010.

[31] X. Tian, D. Tao, X.-S. Hua, and X. Wu, “Active reranking for web im-
age search,” IEEE Trans. Image Process., vol. 19, no. 3, pp. 805-820,
Mar. 2010.

[32] D. Xu, S. Yan, D. Tao, S. Lin, and H.-J. Zhang, “Marginal Fisher analy-
sis and its variants for human gait recognition and content-based image



1106

retrieval,” IEEE Trans. Image Process., vol. 16, no. 11, pp. 2811-2821,
Nov. 2007.

[33] T. Sim, S. Baker, and M. Bsat, “The CMU pose, illumination, and expres-
sion database,” in Proc. IEEE Int. Conf. Autom. Face Gesture Recognit.,
2002, pp. 46-51.

[34] A. K. Jain, Fundamentals of Digital Image Processing. Englewood
Cliffs, NJ: Prentice-Hall, 1989.

[35] C. Kim, “Pattern recognition using composite features,” Ph.D. disserta-
tion, Seoul Nat. Univ., Seoul, Korea, 2007.

[36] O.Jesorsky, K. J. Kirchberg, and R. W. Frischholz, “Robust face detection
using the Hausdorftf distance,” in Proc. Int. Conf. Audio- Video-Based
Biometric Person Authentication, 2001, pp. 90-95.

[37] B. Froba and A. Ernst, “Face detection with the modified census trans-
form,” in Proc. IEEE Int. Conf. Autom. Face Gesture Recognit., 2004,
pp. 91-96.

[38] Y. Amit and D. Geman, “A computational model for visual selection,”
Neural Comput., vol. 11, pp. 1691-1715, 1999.

[39] F. Fleuret and D. Geman, “Coase-to-fine face detection,” Int’l Journal of
Computer Vision, vol. 41, pp. 85-107, 2001.

[40] J. Quinlan, “Introduction of decision trees,” Mach. Learn., vol. 1, pp. 81—
106, 1986.

[41] D. L. Swets and J. Weng, “Using discriminant eigenfeatures for image
retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 8, pp. 831—
836, Aug. 1996.

[42] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs.
Fisherfaces: Recognition using class specific linear projection,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711-720, Jul. 1997.

[43] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, “The FERET evalu-
ation methodology for face recognition algorithms,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 22, no. 10, pp. 1090-1104, Oct. 2000.

Chunghoon Kim (M’11) received the B.S. and
Ph.D. degrees in electrical engineering and com-
puter science from Seoul National University, Seoul,
Korea, in 1998 and 2007, respectively.

He is currently a Staff Engineer with the
Qualcomm Research, Seoul, Korea. Prior to joining
Qualcomm, he was a Senior Engineer with Samsung
Electronics from 2009 to 2010 and a Postdoctoral
Researcher with the University of California, Santa
Barbara, from 2007 to 2009. His research interests
include pattern recognition, machine learning, com-
puter vision, and their applications.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 4, AUGUST 2012

Sang-Il Choi (S’05-M’10) received the B.S. degree
in the division of electronic engineering from Sogang
University, Seoul, Korea, in 2005 and the Ph.D.
degree from the School of Electrical Engineering and
Computer Science, Seoul National University, Seoul,
in 2010.

He was a Postdoctoral Researcher in the BK21
Information Technology, Seoul National University,
in 2010 and in the Institute for Robotics and In-
telligent Systems of Computer Science Department,
University of Southern California, Los Angeles, until
August of 2011. He is currently an Assistant Professor with the Department of
Applied Computer Engineering, Dankook University, Gyeonggi-do, Korea. His
research interests include pattern recognition, feature extraction and selection,
machine learning, computer vision, and their applications.

Matthew Turk (S’87-M’91-SM’99) received the
Ph.D. degree from the Massachusetts Institute of
Technology, Cambridge, in 1991.

He is currently a Professor of Computer Science
and Media Arts and Technology with the University
of California, Santa Barbara, where he codirects the
UCSB Four Eyes Lab, with a research focus on the
“four I’s” of Imaging, Interaction, and Innovative
Interfaces. He has worked at Martin Marietta Denver
Aerospace, LIFIA/ENSIMAG (in Grenoble, France),
Teleos Research, and at Microsoft Research, where
he was a founding member of the Vision Technology Group. He is a founding
member and former Chair of the advisory board for the International Con-
ference on Multimodal Interfaces and on the editorial board of the Journal
of Image and Vision Computing and the ACM Transactions on Intelligent
Interactive Systems.

Dr. Turk was a General Chair of the recent 2011 IEEE Conference on
Automatic Face and Gesture Recognition and will be the General Chair of
the 2014 IEEE Conference on Computer Vision and Pattern Recognition. He
received the 2011-2012 Fulbright-Nokia Distinguished Chair in Information
and Communications Technologies.

Chong-Ho Choi (S’77-M’78) received the B.S. de-
gree from Seoul National University, Seoul, Korea,
in 1970 and the M.S. and Ph.D. degrees from the
University of Florida, Gainesville, in 1975 and 1978,
respectively.

He was a Senior Researcher with the Korea In-
stitute of Science and Technology from 1978 to
1980. He is currently a Professor with the School
of Electrical Engineering and Computer Science,
Seoul National University. He is also affiliated
with the Automation and Systems Research Insti-
tute, Seoul National University. His research interests include control the-
ory and network control, neural networks, system identification, and their
applications.



