HSM Practitioners Guide to Urban and Suburban Streets

Prediction of Crash Frequency for Suburban/Urban Streets

Learning Outcomes:

- Describe the models to Predict Crash Frequency for Multilane Suburban/Urban Streets
- ▶ Describe Crash Modification Factors for Multilane Suburban/Urban Streets
- ► Apply Crash Modification Factors (CMF's) to Predicted Crash Frequency for Multilane Suburban/Urban Streets

Defining Urban Multilane Highways

- HSM Methodology applies to arterial four-lane undivided and divided urban and suburban highways.
- Urban and Suburban areas are defined as areas within the urban and urbanized area boundaries established by FHWA. These include all areas with populations of 5,000 or more.
- Some areas beyond the FHWA boundaries may be treated as urban or suburban if the boundaries have not been adjusted to include recent development.
- ► The boundary dividing rural and urban areas can at times be difficult to determine, especially since most multilane rural highways are located on the outskirts of urban agglomerations.
- ► These procedures may be used for any multilane road in which the general design features and land use setting are urban or suburban in nature rather than rural.

Crash Frequency Prediction Models for Urban/Suburban Roadway Segments

Five Types of Roadway Segments:

- ► (2U) Two-lane undivided arterials
- ▶ (3T) Three-lane arterials including a center twoway Left Turn Lane
- ► (4U) Four-lane undivided arterials
- ► (4D) Four-lane divided arterials (including a raised or depressed median)
- (5T) Five-lane arterials including a center TWLTL

Limitations as to AADT for Urban/Suburban Roadway Models

- 2U: 0 to 32,600 vehicles per day
- 3T : 0 to 32,900 vehicles per day
- 4U: 0 to 40,100 vehicles per day
 - 4D: 0 to 66,000 vehicles per day
 - 5T: 0 to 53,800 vehicles per day

Separate Prediction Models for:

- ► Homogeneous highway segments
- Intersections
 - Sum of Individual Intersection Calculations

Subdividing Roadway Segments

- ▶ Before applying the safety prediction methodology to an existing or proposed rural segment facility, the roadway must be divided into analysis units consisting of <u>individual homogeneous roadway segments</u> and intersections.
- ► A <u>new</u> analysis <u>section begins</u> at each location where the value of one of the following variables changes (alternatively a section is defined as homogenous if none of these variables changes within the section):
 - Annual Average daily traffic (AADT) volume (veh/day)
 - Number of through lanes
 - Presence/Type of a median
 - Presence/Type of Parking
 - Roadside Fixed Object density
 - Presence of Lighting
 - Speed category

Subdividing Roadway Segments

<u>homogeneous roadway segments – Median Width:</u>

Measured Median Width	Rounded Median Width
1-ft to 14-ft	10-ft
15-ft to 24-ft	20-ft
25-ft to 34-ft	30-ft
35-ft to 44-ft	40-ft
45-ft to 54-ft	50-ft
55-ft to 64-ft	60-ft
65-ft to 74-ft	70-ft
75-ft to 84-ft	80-ft
85-ft to 94-ft	90-ft
95 or more	100-ft

Crash Frequency Prediction Models for Urban/Suburban Roadway Segments

Five types of Collisions are considered:

- 1) Multiple-vehicle nondriveway crashes
- 2) Single-vehicle crashes
- 3) Multiple-vehicle driveway related crashes
- 4) Vehicle-pedestrian crashes
- 5) Vehicle-bicycle collisions

Procedure for safety prediction for a roadway segment:

Combine base models, CMFs, and calibration factor

$$N_{spfrs} = N_{brmv} + N_{brsv} + N_{brdwy}$$

$$Arr N_{\text{predicted rs}} = (N_{\text{br}}) + N_{\text{pedr}} + N_{\text{biker}}) C_{\text{r}}$$

$$N_{spf rs} = N_{brmv} + N_{brsv} + N_{brdwy}$$

- N_{brmv} = Predicted number of multiple-vehicle nondriveway crashes per year for base conditions
- N_{brsv} = Predicted number of single-vehicle collision and non-collision crashes per year for base conditions
- N_{brdwy} = Predicted number of multiple-vehicle driveway related crashes per year

$$N_{br} = N_{spfrs} x (CMF_{1r} x CMF_{2r} x .. CMF_{nr})$$

- N_{br} = Predicted number of total roadway segment crashes per year with CMFs applied (excluding ped and bike collisions)
- N_{spf rs} = Predicted number of total roadway segment crashes per year for base conditions
 - CMF_{1r} CMF_{2r}, .. CMF_{nr} = Crash Modification Factors for roadway segments

$$N_{\text{predicted rs}} = (N_{\text{br}} + N_{\text{pedr}} + N_{\text{biker}}) C_{\text{r}}$$

- **N**_{predicted rs} = Predicted number of total roadway segment crashes per year
- N_{br} = Predicted number of total roadway segment crashes per year with CMFs applied
- **N**_{pedr} = Predicted number of vehicle-pedestrian collisions per year
- **N**_{biker} = Predicted number of vehicle-bicycle collisions per year
- C_r = calibration factor for a particular geographical area

Combining Safety Predictions for an <u>Entire</u> Series of Segments

$$N_{\text{total predicted}} = Sum N_{rs} + Sum N_{\text{int}}$$

- **N**_{total predicted} = Predicted crash frequency for the entire arterial street
- N_{rs} = Predicted number of total roadway segment crashes
- **N**_{int} = Predicted number of total intersectionrelated crashes

Crash Frequency Prediction Models for Urban/Suburban Roadway Segments

- ► No procedure has been developed for application to six-lane undivided (6U) nor for six-lane divided (6D) arterials.
- Until such procedures are developed:
- ► The procedures for 4U arterials may be applied to 6U arterials and for 4D arterials to 6D arterials.
- ► These procedures should be applied cautiously to 6U and 6D arterials because this application is not based on data for 6U and 6D arterials.

Crash Frequency Prediction Models for Urban/Suburban Roadway Segments

$$N_{spf rs} = N_{brmv} + N_{brsv} + N_{brdwy}$$

Multiple-Vehicle NonDriveway Crashes

$$N_{brmv} = exp(a + b ln(AADT) + ln(L))$$

Where:

AADT = Annual Average Daily Traffic (veh/day)

L = Length of roadway segment (mi)

a & b = regression coefficients (Table 12-3)

Multiple-Vehicle NonDriveway Crashes

$$N_{brmv} = exp(a + b ln(AADT) + ln(L))$$

Table 12-3. SPF Coefficients for Multiple-Vehicle Nondriveway Collisions on Roadway Segments

_	Coefficients Used in Equation 12-10		
Road Type	Intercept (a)	AADT (b)	
Total crashes			
2U	-15.22	1.68	
3T	-12.40	1.41	
4U	-11.63	1.33	
4D	-12.34	1.36	
5T	-9.70	1.17	

Table 12-3. SPF Coefficients for Multiple-Vehicle Nondriveway Collisions on Roadway Segments

	Coefficients Used in Equation 12-10		
Road Type	Intercept (a)	AADT (b)	Overdispersion Parameter (k)
Total crashes			
2U	-15.22	1.68	0.84
3T	-12.40	1.41	0.66
4U	-11.63	1.33	1.01
4D	-12.34	1.36	1.32
5T	-9.70	1.17	0.81
Fatal-and-injury	crashes		
2U	-16.22	1.66	0.65
3T	-16.45	1.69	0.59
4U	-12.08	1.25	0.99
4D	-12.76	1.28	1.31
5T	-10.47	1.12	0.62
Property-damage	e-only crashes		
2U	-15.62	1.69	0.87
3T	-11.95	1.33	0.59
4U	-12.53	1.38	1.08
4D	-12.81	1.38	1.34
5T	-9.97	1.17	0.88

Predicting Crash Frequency for a Suburban Street – Example:

- 4-lane Undivided commercial Suburban Street: \Box AADT = 24,000 \Box Length = 3.6 miles 1st, Calculate Predicted Crash Frequency for Multiple-Vehicle NonDriveway Crashes - use 4U coefficients from Table 12-3 $N_{brmy} = \exp(a + b \ln(AADT) + \ln(L))$ $= \exp(-11.63 + 1.33 \ln(24,000) + \ln(3.6))$
 - = **21.4** crashes/yr

 $= \exp(3.065)$

Safety Performance Function (SPF)

Figure 12-3. Graphical Form of the SPF for Multiple Vehicle Nondriveway collisions (from Equation 12-10 and Table 12-3)

"Is this a Higher Crash Frequency Site?"

Figure 12-3. Graphical Form of the SPF for Multiple Vehicle Nondriveway collisions (from Equation 12-10 and Table 12-3)

Crash Frequency Prediction Models for Urban/Suburban Roadway Segments

$$N_{spf rs} = N_{brmv} + (N_{brsv}) + N_{brdwy}$$

Single-Vehicle Crashes

$$N_{brsv} = exp(a + b ln(AADT) + ln(L))$$

Where:

AADT = Annual Average Daily Traffic (veh/day)

L = Length of roadway segment (mi)

a & b = regression coefficients (Table 12-5)

Single Vehicle NonDriveway Crashes

$$N_{brsv} = exp(a + b ln(AADT) + ln(L))$$

Table 12-5. SPF Coefficients for Single-Vehicle Crashes on Roadway Segments

	Coefficients Used in Equation 12-11		
Road Type	Intercept (a)	AADT (b)	
Total crashes			
2U	-5.47	0.56	
3T	-5.74	0.54	
4U	-7.99	0.81	
4D	-5.05	0.47	
5T	-4.82	0.54	

Table 12-5. SPF Coefficients for Single-Vehicle Crashes on Roadway Segments

_	Coefficients Used in Equation 12-11			
Dood Trees	Intercept	AADT	Overdispersion Parameter	
Road Type	(a)	(b)	(k)	
Total crashes				
2U	-5.47	0.56	0.81	
3T	-5.74	0.54	1.37	
4U	-7.99	0.81	0.91	
4D	-5.05	0.47	0.86	
5T	-4.82	0.54	0.52	
Fatal-and-injury crash	nes			
2U	-3.96	0.23	0.50	
3T	-6.37	0.47	1.06	
4U	-7.37	0.61	0.54	
4D	-8.71	0.66	0.28	
5T	-4.43	0.35	0.36	
Property-damage-only	crashes			
2U	-6.51	0.64	0.87	
3T	-6.29	0.56	1.93	
4U	-8.50	0.84	0.97	
4D	-5.04	0.45	1.06	
5T	-5.83	0.61	0.55	

Predicting Crash Frequency for a Suburban Street – Example:

- 4-lane Undivided commercial Suburban Street:
- \Box AADT = 24,000
- \Box Length = 3.6 miles
- Predicted Crash Frequency for Single-Vehicle NonDriveway Crashes - use 4U coefficients from Table 12-5

```
N_{brsv} = \exp(a + b \ln(AADT) + \ln(L))
= \exp(-7.99 + 0.81\ln(24,000) + \ln(3.6))
= \exp(1.46)
= 4.3 crashes/yr
```

$$N_{\text{spf rs}} = N_{\text{brmv}} + N_{\text{brsv}} + N_{\text{brdwy}}$$

Multiple-Vehicle Driveway Related Crashes

$$N_{\text{brdwy}} = \text{SUM} \left(n_j N_j \left(AADT/15,000 \right)^t \right)$$

- n_j = number of driveways within roadway segment of driveway type j
- $ightharpoonup N_j$ = Number of crashes per year for an individual driveway of driveway type j from Table 12-7
- ► t = coefficient for traffic volume adjustment
- ► AADT = Annual Average Daily Traffic (veh/day)

Driveway Related Crashes

► 72% of driveway related crashes involve a left turning vehicle – either into, or out of, the driveway

Figure 4: Crash Percentages for Turning Motorists to and from the Driveway

*FHWA-SA-10-002 Access Management in the Vicinity of Intersections

Multiple-Vehicle Driveway Related Crashes

- ► Major driveways are those that serve 50 or more parking spaces
- ► Minor driveways serve sites with less than 50 parking spaces
- ► Major residential driveways have AADT greater than 900 vpd
- ► Minor residential driveways have "AADT less than 900 vpd"

Multiple-Vehicle Driveway Crashes

 $N_{brdwy} = SUM (n_j N_j (AADT/15,000)^t$

Table 12-7. SPF Coefficients for Multiple-Vehicle Driveway Related Collisions

		Coefficients for Specific Roadway Types				
Driveway Type (j)		2 U	3T	4U	4D	5T
Number of Driveway-Related C	ollisions pe	r Driveway per Year (N _j)				
Major commercial		0.158	0.102	0.182	0.033	0.165
Minor commercial		0.050	0.032	0.058	0.011	0.053
Major industrial/institutional		0.172	0.110	0.198	0.036	0.181
Minor industrial/institutional	VI.	0.023	0.015	0.026	0.005	0.024
Major residential	Y j	0.083	0.053	0.096	0.018	0.087
Minor residential		0.016	0.010	0.018	0.003	0.016
Other		0.025	0.016	0.029	0.005	0.027
Regression Coefficient for AADT (t)						
All driveways	t	1.000	1.000	1.172	1.106	1.172

Major driveways are those that serve sites with 50 or more parking spaces. Minor driveways are those that serve sites with less than 50 parking spaces.

Predicting Crash Frequency for a Suburban Street – Example:

 $N_{\text{brdwy}} = \text{SUM} (n_j N_j (AADT/15,000)^t)$

4-lane Undivided commercial Suburban Street:

- AADT = 24,000
- Length = 3.6 miles
- 3 major commercial driveways
- 42 minor commercial driveways
- 2 major industrial/institutional driveways
- 5 major residential driveways
- 2 minor residential driveways
- 7 other
- ☐ 61 total driveways

Predicting Crash Frequency for a Suburban Street – Example:

4-lane Undivided commercial Suburban Street: (Using 4U coefficients from Table 12-7)

$$N_{brdwy} = SUM (n_j N_j (AADT/15,000)^t)$$

= 3 x 0.182 (24,000/15,000)^{1.172}
+ 42 x 0.058 (24,000/15,000)^{1.172}
+ 2 x 0.198 (24,000/15,000)^{1.172}
+ 0 x 0.026 (24,000/15,000)^{1.172}
+ 5 x 0.096 (24,000/15,000)^{1.172}
+ 2 x 0.018 (24,000/15,000)^{1.172}
+ 7 x 0.029 (24,000/15,000)^{1.172}
= 7.1 crashes/yr

$$N_{spf rs} = N_{brmv} + N_{brsv} + N_{brdwy}$$

Where:

N_{spf rs} = Predicted number of total roadway segment crashes per year for <u>base conditions</u> for suburban 4-Lane Undivided (4U) of 24,000 AADT for 3.6 miles

$$N_{brmv} = 21.4$$

 $N_{brsv} = 4.3$
 $N_{brdwy} = 7.1$

 $N_{spf rs} = 21.4 + 4.3 + 7.1 = 32.8$ crashes per year

Example: Suburban Four Lane Undivided Segment (4U) street of 24,000 AADT for 3.6 miles;

Fatal and Injury crashes are 15 of 40 total crashes

a. Compute the actual Severity Index (SI)

$$SI_{4sg} = \frac{Fatal + Injury Crashes}{Total Crashes} = 15/40 = 0.375$$

Table 12-3. SPF Coefficients for Multiple-Vehicle Nondriveway Collisions on Roadway Segments

	Coefficients	Used in Equation 12-10	
Road Type	Intercept (a)	AADT (b)	Overdispersion Parameter (k)
Fatal-and-inju	ry crashes		
2U	-16.22	1.66	0.65
3T	-16.45	1.69	0.59
4U	-12.08	1.25	0.99
4D	-12.76	1.28	1.31
5T	-10.47	1.12	0.62

b. Compute Predicted Fatal + Injury Crashes

$$N_{brmv} = exp(-12.08 + 1.25 ln(24,000) + ln(3.6))$$

= 6.1

Table 12-5. SPF Coefficients for Single-Vehicle Crashes on Roadway Segments

Coefficients Used in Equation 12-11					
Road Type	Intercept (a)	AADT (b)	Overdispersion Parameter (k)		
Fatal-and-injury crash		(8)	(12)		
2U	-3.96	0.23	0.50		
3T	-6.37	0.47	1.06		
4U	-7.37	0.61	0.54		
4D	-8.71	0.66	0.28		
5T	-4.43	0.35	0.36		
	\	1			

b. Compute Predicted Fatal + Injury Crashes

$$N_{brsv} = exp(-7.37 + 0.61 ln(24,000) + ln(3.6))$$

= 1.1

Table 12-7. SPF Coefficients for Multiple-Vehicle Driveway Related Collisions

	Coefficients for Specific Roadway Types				
Driveway Type (j)	2U	3T	4U	4D	5T
Proportion of Fatal-and-Injury Crashes (f dwy)					
All driveways	0.323	0.243	0.342	0.284	0.269

b. Compute Predicted Fatal + Injury Crashes

$$N_{brdwy} = N_{brdwy} \times Coefficient = 7.1 \times 0.342$$

= 2.4 crashes per year

Applying Severity Index to Urban Suburban Multilane Intersections

Example: Suburban Four Lane Undivided Segment (4U) street of 24,000 ADT for 3.6 miles; Fatal and Injury crashes are 15 of 40 total crashes

a. Compute the actual Severity Index (SI)

b. Compute the Predicted Severity Index (SI)

```
SI = <u>Fatal + Injury Crashes</u> = (6.1+1.1+2.4)/32.8
Total Crashes
```

Actual Severity is greater than Predicted Severity

Applying CMF's for Conditions other than "Base"

- Next Step is:

$$N_{br} = N_{spf rs}(CMF_{1r} \times CMF_{2r} \times ... CMF_{nr})$$

Where:

- N_{br} = Predicted number of total roadway segment crashes per year with CMFs applied
- N_{spf rs} = Predicted number of total roadway segment crashes per year for base conditions
- CMF_{1r} CMF_{2r}, .. CMF_{nr} = Crash modification factors for roadway segments

Chapter 12 Base Conditions for <u>Urban/Suburban Roadways</u>

Multiple Vehicle and Single Vehicle Crashes

<mark>Veh</mark>icle-Ped

Crashes at

۲ ts	Base Condition	Measurement	CMF
	On Street Parking	None	1.00
	Roadside Fixed Objects	None	1.00
Roadway Segments	Median Width	15 ft	1.00
Roa Seg	Lighting	None	1.00
	Automated Speed Enforcement	None	1.00
hes	Left Turn Lanes	None	1.00
Cras 1S	Left Turn Signal Phasing	Permissive	1.00
icle ctio	Right Turn Lanes	None	1.00
Veherse	Right Turn on Red	Permitted	1.00
d Single Vehicle Crashes ons at Intersections	Lighting	None	1.00
	Red Light Cameras	None	1.00
	Bus Stops	None	1.00
Signalized ntersectio	Schools	None	1.00
Signalized Intersections	Alcohol Sales Establishment	None	1.00

Applying CMF's for Conditions other than "Base"

Table 12-18. Summary of CMFs in Chapter 12 and the Corresponding SPFs

Applicable SPF	CMF	CMF Description
	CMF_{lr}	On-Street Parking
	CMF_{2r}	Roadside Fixed Objects
Roadway Segments	$\mathrm{CMF}_{_{3r}}$	Median Width
	CMF_{4r}	Lighting
	CMF _{5r}	Automated Speed Enforcement

CMF for Curb Parking on Urban Streets

$$CMF_{1r} = 1 + P_{pk}^* (f_{pk} - 1.0)$$

Table 12-19. Values of f_{pk} Used in Determining the Crash Modification Factor for On-Street Parking

_	Type of Parking and Land Use			
	Parallel Parking		Angle Parking	
Road Type	Residential/Other	Commercial or Industrial/Institutional	Residential/Other	Commercial or Industrial/Institutional
2U	1.465	2.074	3.428	4.853
3T	1.465	2.074	3.428	4.853
4U	1.100	1.709	2.574	3.999
4D	1.100	1.709	2.574	3.999
5T	1.100	1.709	2.574	3.999

Where:

 P_{pk} = Proportion of curb length with parking, = $(0.5L_{pk}/L)$

L_{pk} = curb length with on-street parking, both sides (mi) combined

 f_{pk} = factor from Table 12-19

CMF for Curb Parking on Urban Streets

Example: For 4-Ln Urban commercial street (4U), angle parking one side 3.12 miles of 3.6 mile length, commercial area:

$$CMF_{1r} = 1 + P_{pk} (f_{pk} - 1.0)$$

$$CMF_{1r} = 1 + (0.50 (L_{pk}/L)1) \times (f_{pk} - 1)$$

$$= 1 + (0.50 (3.12/3.6)1) \times (3.999 - 1)$$

$$= 1 + (0.50(0.867)) \times 2.999$$

$$= 1 + (0.43 \times 2.999)$$

$$= 2.30$$

CMF for Curb Parking Urban Streets: Example

For 4-Ln Urban commercial street (4U), parallel parking both sides 3.12 miles of 3.6 mile length, commercial area:

$$CMF_{1r} = 1 + P_{pk} (f_{pk} - 1.0)$$

$$CMF_{1r} = 1 + (0.50(3.12/3.6)2) \times (1.709) - 1))$$

$$= 1 + (0.5(0.867)2) \times 0.709$$

$$= 1 + (0.867 \times 0.709)$$

$$= 1.614$$

CMF for Roadside Fixed Objects

$$CMF_{2r} = f_{offset} * D_{fo} * p_{fo} + (1 - p_{fo})$$

Where:

f_{offset} = fixed object offset factor from Table 12-20

D_{fo} = fixed object density (fixed objects/mi)

- p_{fo} = fixed-object collisions as a proportion of total crashes, Table 12-21
- ► Only point objects that are 4inches or more in diameter and do not have a breakaway design are considered.
- ► Point objects that are within 70 feet of each other longitudinally are considered as a single object

CMF for Roadside Fixed Objects

Table 12-20. Fixed-Object Offset Factor		
Offset to Fixed Objects (O _{fb}) (ft)	Fixed-Object Offset Factor (f_{offset})	
2	0.232	
5	0.133	
10	0.087	
15	0.068	
20	0.057	
25	0.049	
30	0.044	

Example: For 4-Ln
Urban undivided street
(4U) with power poles
at 2 ft offset

$$f_{\text{offset}} = 0.232$$

$$p_{fo} = 0.037$$

Offset is measured from edge of travel way

Table 12-21. Proportion of Fixed-Object Collisions

Road Type	Proportion of Fixed-Object Collisions (P _{fo})
2U	0.059
3T	0.034
4U	0.037
4D	0.036
5T	0.016

CMF for Roadside Fixed Objects: Example

For one mile of 4-Ln Urban undivided commercial curbed street (4U) with power poles on one side on 150 foot spacing 2 feet from edge of travel way:

$$CMF_{2r} = f_{offset} \times D_{fo} \times p_{fo} + (1 - p_{fo})$$

$$= 0.232 \times 35.2 \times 0.037 + (0.963)$$

$$= 0.302 + 0.963$$

$$= 1.265$$

CMF for Roadside Fixed Objects: Example

For one mile of 4-Ln Urban undivided commercial curbed street (4U) with power poles on both sides on 150 foot spacing 2 feet from edge of travel way:

$$CMF_{2r} = f_{offset} \times D_{fo} \times p_{fo} + (1 - p_{fo})$$

$$= 0.232 \times 70.4 \times 0.037 + (0.963)$$

CMF_{3r} for Median Width – Urban/Suburban Multilane Streets

Table 12-22. CMFs for Median Widths on Divided Roadway Segments without a Median Barrier (CMF,)

Median Width (ft)	CMF
10	1.01
15	1.00
20	0.99
30	0.98
40	0.97
50	0.96
60	0.95
70	0.94
80	0.93
90	0.93
100	0.92

- ► This CMF applies only to divided roadway segments with traversable medians without barrier.
- The effect of traffic barriers on safety would be expected to be a function of barrier type and offset, rather than the median width; however, the effects of these factors on safety have not been quantified. Until better information is available, an CMF value of 1.00 is used for medians with traffic barriers.

CMF for Lighting

$$CMF_{4r} = 1 - (p_{nr} x (1.0 - 0.72 p_{inr} - 0.83 p_{pnr}))$$

Where:

p_{inr} = proportion of total nighttime crashes for unlighted roadway segments that involve a nonfatal injury

 \mathbf{p}_{pnr} = proportion of total nighttime crashes for unlighted roadway segments that involve PDO crashes only

 \mathbf{p}_{nr} = proportion of total crashes for unlighted roadway segments that occur at night

CMF for Lighting

$$CMF_{4r} = 1 - [p_{nr} x (1.0 - 0.72 p_{inr} - 0.83 p_{pnr})]$$

Table 12-23. Nighttime Crash Proportions for Unlighted Roadway Segments

	Proportion of Total Nighttime Crashes by Severity Level		Proportion of Crashes that Occur at Night
Roadway Segment Type	Fatal and Injury P _{inr}	PDO p _{pnr}	\mathbf{P}_{nr}
2U	0.424	0.576	0.316
3T	0.429	0.571	0.304
4U	0.517	0.483	0.365
4D	0.364	0.636	0.410
5T	0.432	0.568	0.274

- ► These are default values for nighttime crash proportions; replace with local information
- If light installation increases the density of roadside fixed objects, adjust CMF_{2r}

CMF for Lighting: Example

For 4-Ln Urban undivided commercial curbed street (4U) with power poles on 150 foot spacing 2 feet from edge of travel way on one-side— Add Lighting

$$CMF_{3r} = 1 - [p_{nr} \times (1.0 - 0.72 p_{inr} - 0.83 p_{pnr})]$$

$$= 1 - (0.365) \times (1.0 - 0.72(0.517) - 0.83 \times 0.483)$$

$$= 0.917$$

- Lighting adds light poles at 160 foot spacing on one side (the other side) set back 2 feet from back of curb
 - ▶ Recompute CMF_{2r}

CMF for Roadside Fixed Objects: Example

For one mile of 4-Ln Urban undivided commercial curbed street (4U) with power poles on one side on 150 foot spacing 2 feet from edge of travel way + street lighting on other side on 160 foot spacing 2 feet from edge of travel way:

$$\begin{array}{l}
\mathbf{CMF}_{2r} = \mathbf{f}_{offset} \times \mathbf{D}_{fo} \times \mathbf{p}_{fo} + (1 - \mathbf{p}_{fo}) \\
= 0.232((5280/150)(1) + (5280/160)(1))(0.037) + (1 - 0.037) \\
= 0.232 \times (35.2 + 33.0) \times 0.037 + (0.963) \\
= 0.232 \times 68.2 \times 0.037 + 0.963
\end{array}$$

= 0.585 + 0.963 = 1.548

CMF for Automated Speed Enforcement

CMF_{5r} is:

- 1.00 for no automated speed enforcement;
- 0.95 for automated speed enforcement

Applying Crash Modification Factors to Prediction of Crash Frequency for Urban/Suburban Roadway Segments

$$N_{br} = N_{spf rs} (CMF_{1r} \times CMF_{2r}.....CMF_{nr})$$

Where:

N_{br} = Predicted number of total roadway segment crashes per year with effects of conditions other than base conditions

Applying Crash Modification Factors to Prediction of Crash Frequency for Urban/Suburban Roadway Segments

Example:

- Commercial on-street parallel parking both sides
- ► Roadside Fixed Objects (power poles on 1 side 150 ft spacing + non-breakaway light poles@160' other side)
- ► Traversible 15 foot wide median Lighting
- Lighting ible 15 foot wide median
- ► No speed enforcement

 $CMF_{1r} = 1.613$

 $CMF_{2r} = 1.548$

 $CMF_{3r} = 1.00$ $CMF_{4r} = 0.917$ $CMF_{5r} = 1.00$

$$N_{br} = N_{spf rs} (CMF_{1r} \times CMF_{2r} \times CMF_{nr})$$

= 32.8 (1.613 x 1.548 x 1.00 x 0.917 x 1.00)
= 75.1 crashes per year

$$N_{\text{predicted rs}} = (N_{\text{br}} + N_{\text{pedr}} + N_{\text{biker}}) C_{\text{r}}$$

Where:

- N predicted rs = predicted average crash frequency of an
- individual roadway segment for the selected year
- N_{br} = predicted average crash frequency of an individual roadway segment excluding vehicle-pedestrian and vehicle-bicycle crashes
- ► N_{pedr} = predicted average crash frequency of vehiclepedestrian crashes for an individual roadway segment
- N_{biker} = predicted average crash frequency of vehiclebicycle crashes for an individual roadway segment
- C_r = calibration factor for roadway segments of a specific type developed for use for a particular geographical area

$$N_{pedr} = N_{br} \times f_{pedr}$$

Table 12-8. Pedestrian Crash Adjustment Factor for Roadway Segments

	Pedestrian Crash Adjustment Factor (fpedr)		
Road Type	Posted Speed 30 mph or Lower	Posted Speed Greater than 30 mph	
2U	0.036	0.005	
3T	0.041	0.013	
4U	0.022	0.009	
4D	0.067	0.019	
5T	0.030	0.023	

Note: These factors apply to the methodology for predicting total crashes (all severity levels combined). All pedestrian collisions resulting from this adjustment factor are treated as fatal-and-injury crashes and none as property-damage-only crashes.

Table 12-8.	Pedestrian	Crash Adjustme	nt Factor for R	oadway Segments
		3		, <u> </u>

From
continued
Example:

4-Ln Undivided

40 mph

	Pedestrian Crash Adjustment Factor (fpedr)		
Road Type	Posted Speed 30 mph or Lower	Posted Speed Greater than 30 mph	
2U	0.036	0.005	
3T	0.041	0.013	
4U	0.022	0.009	
4D	0.067	0.019	
5T	0.030	0.023	

Note: These factors apply to the methodology for predicting total crashes (all severity levels combined). All pedestrian collisions resulting from this adjustment factor are treated as fatal-and-injury crashes and

$$N_{pedr} = N_{br} \times f_{pedr}$$

- = 75.1 crashes per year $\times 0.009$
- = 0.68 crashes per year

$$N_{\text{biker}} = N_{\text{br}} \times f_{\text{biker}}$$

Table 12-9. Bicycle Crash Adjustment Factors for Roadway Segments

	Bicycle Crash Adjustment Factor (f _{biker})		
Road type	Posted Speed 30 mph or Lower	Posted Speed Greater than 30 mph	
2U	0.018	0.004	
3T	0.027	0.007	
4U	0.011	0.002	
4D	0.013	0.005	
5T	0.050	0.012	

Note: These factors apply to the methodology for predicting total crashes (all severity levels combined). All bicycle collisions resulting from this adjustment factor are treated as fatal-and-injury crashes and none as property-damage-only crashes.

Table 12-9. Bicycle Crash Adjustment Factors for Roadway Segments

	Bicycle Crash Adjustment Factor (f _{biker})	
Road type	Posted Speed 30 mph or Lower	Posted Speed Greater than 30 mph
2U	0.018	0.004
3T	0.027	0.007
4U	0.011	0.002
4D	0.013	0.005
5T	0.050	0.012

Note: These factors apply to the methodology for predicting total crashes (all severity levels combined). All bicycle collisions resulting from this adjustment factor are treated as fatal-and-injury crashes and none as property-damage-only crashes.

From continued Example:

$$N_{\text{biker}} = N_{\text{br}} \times f_{\text{biker}}$$

4-Ln Undivided

= **75.1** crashes per year **X 0.002**

40 mph = high speed

= 0.15 crashes per year

Combining Segment, Ped and Bike crashes:

$$N_{\text{predicted rs}} = (N_{\text{br}} + N_{\text{pedr}} + N_{\text{biker}}) C_{\text{r}}$$

$$N_{\text{predicted rs}} = (75.1 + 0.68 + 0.15) \times 1$$

= 75.9 crashes per year

Predicting Crash Frequency of Suburban/Urban Multilane Streets

Learning Outcomes:

- Described the models to Predict Crash Frequency for Multilane Suburban/Urban Streets
- ▶ Described Crash Modification Factors for Multilane Suburban/Urban Streets
- ► Applied Crash Modification Factors (CMF's) to Predicted Crash Frequency for Multilane Suburban/Urban Streets

Introduction and Background

Questions and Discussion:

