Chapter 12 Independent Demand Inventory Management Operations Management
- Slides: 51
Chapter 12 – Independent Demand Inventory Management Operations Management by R. Dan Reid & Nada R. Sanders 4 th Edition © Wiley 2010 1
Learning Objectives n n n Describe the different types and uses of inventory Describe the objectives of inventory management Calculate inventory performance measures Understand relevant costs associated with inventory Perform ABC inventory control & analysis Understand the role of cycle counting in inventory record accuracy © Wiley 2010 2
Learning Objectives – con’t n n n n Understand inventory’s role in service organizations Calculate order quantities Evaluate the total relevant costs of different inventory policies Understand why companies don’t always use the optimal order quantity Understand how to justify smaller order sizes Calculate appropriate safety stock inventory policies Calculate order quantities for single-period inventory © Wiley 2010 3
Types of Inventory comes in many shapes and sizes such as: n n n Raw materials – purchased items or extracted materials transformed into components or products Components – parts or subassemblies used in final product Work-in-process – items in process throughout the plant Finished goods – products sold to customers Distribution inventory – finished goods in the distribution system © Wiley 2010 4
Types of Inventory © Wiley 2010 5
How Companies Use Their Inventory 1. 2. 3. 4. 5. 6. Anticipation or seasonal inventory Fluctuation Inventory or Safety stock: buffer demand fluctuations Lot-size or cycle stock: take advantage of quantity discounts or purchasing efficiencies Transportation or Pipeline inventory Speculative or hedge inventory protects against some future event, e. g. labor strike Maintenance, repair, and operating (MRO) inventories © Wiley 2010 6
Objectives of Inventory Management Provide desired customer service level n Customer service is the ability to satisfy customer requirements n n Percentage of orders shipped on schedule Percentage of line items shipped on schedule Percentage of $ volume shipped on schedule Idle time due to material and component shortages © Wiley 2010 7
Inventory Objectives con’t Provide for cost-efficient operations: n n Buffer stock for smooth production flow Maintain a level work force Allowing longer production runs & quantity discounts Minimum inventory investments: n n Inventory turnover Weeks, days, or hours of supply © Wiley 2010 8
Customer Service Level Examples n Percentage of Orders Shipped on Schedule n n n Percentage of Line Items Shipped on Schedule n n n Good measure if orders have similar value. Does not capture value. If one company represents 50% of your business but only 5% of your orders, 95% on schedule could represent only 50% of value Recognizes that not all orders are equal, but does not capture $ value of orders. More expensive to measure. Ok for finished goods. A 90% service level might mean shipping 225 items out of the total 250 line items totaled from 20 orders scheduled Percentage Of Dollar Volume Shipped on Schedule n Recognizes the differences in orders in terms of both line items and $ value © Wiley 2010 9
Inventory Investment Measures Example: The Coach Motor Home Company has annual cost of goods sold of $10, 000. The average inventory value at any point in time is $384, 615. Calculate inventory turnover and weeks/days of supply. n Inventory Turnover: n Weeks/Days of Supply: © Wiley 2010 10
Relevant Inventory Costs Item Cost Includes price paid for the item plus other direct costs associated with the purchase Holding Costs Include the variable expenses incurred by the plant related to the volume of inventory held (15 -25%) Capital Costs The higher of the cost of capital or the opportunity cost for the company © Wiley 2010 11
Relevant Inventory Costs Ordering Cost Shortage Costs Fixed, constant dollar amount incurred for each order placed Loss of customer goodwill, back order handling, and lost sales Risk costs Obsolescence, damage, deterioration, theft, insurance and taxes Included the variable expenses for space, workers, and equipment related to the volume of inventory held Storage costs © Wiley 2010 12
Determining Order Quantities Lot-for-lot Order exactly what is needed Fixed-order Specifies the number of units to order quantity whenever an order is placed Min-max system Order n periods Places a replenishment order when the on-hand inventory falls below the predetermined minimum level. Order quantity is determined by total demand for the item for the next n periods © Wiley 2010 13
ABC Inventory Classification ABC classification is a method for determining level of control and frequency of review of inventory items n A Pareto analysis can be done to segment items into value categories depending on annual dollar volume n A Items – typically 20% of the items accounting for 80% of the inventory value-use Q system n B Items – typically an additional 30% of the items accounting for 15% of the inventory value-use Q or P n C Items – Typically the remaining 50% of the items accounting for only 5% of the inventory value-use P © Wiley 2010 14
The AAU Corp. is considering doing an ABC analysis on its entire inventory but has decided to test the technique on a small sample of 15 of its SKU’s. The annual usage and unit cost of each item is shown below © Wiley 2010 15
(A) First calculate the annual dollar volume for each item © Wiley 2010 16
B) List the items in descending order based on annual dollar volume. (C) Calculate the cumulative annual dollar volume as a percentage of total dollars. (D) Classify the items into groups © Wiley 2010 17
Graphical solution for AAU Corp showing the ABC classification of materials n n The A items (106 and 110) account for 60. 5% of the value and 13. 3% of the items The B items (115, 105, 111, and 104) account for 25% of the value and 26. 7% of the items The C items make up the last 14. 5% of the value and 60% of the items How might you control each item classification? Different ordering rules for each? © Wiley 2010 18
Inventory Record Accuracy n Inaccurate inventory records can cause: n n n Lost sales Disrupted operations Poor customer service Lower productivity Planning errors and expediting © Wiley 2010 19
Inventory Record Accuracy Two methods for checking record accuracy: n Periodic counting - physical inventory is taken periodically, usually annually n Cycle counting - daily counting of prespecified items provides the following advantages: n n n Timely detection and correction of inaccurate records Elimination of lost production time due to unexpected stock outs Structured approach using employees trained in cycle counting © Wiley 2010 20
Inventory in Service Organizations n Achieving good inventory control may require the following: n n n Select, train and discipline personnel Maintain tight control over incoming shipments Maintain tight control over outgoing shipments © Wiley 2010 21
Determining Order Quantities Inventory management and control are managed with SKU (stock control units) © Wiley 2010 22
Mathematical Models for Determining Order Quantity n Economic Order Quantity (EOQ) n n n Economic Production Quantity (EPQ) n n An optimizing method used for determining order quantity and reorder points Part of continuous review system which tracks onhand inventory each time a withdrawal is made A model that allows for incremental product delivery Quantity Discount Model n Modifies the EOQ process to consider cases where quantity discounts are available © Wiley 2010 23
EOQ Assumptions n Demand is known & constant - no n n n safety stock is required Lead time is known & constant No quantity discounts are available Ordering (or setup) costs are constant All demand is satisfied (no shortages) The order quantity arrives in a single shipment © Wiley 2010 24
Total Annual Inventory Cost with EOQ Model Total annual cost= annual ordering cost + annual holding costs © Wiley 2010 25
Continuous (Q) Review System Example: A computer company has annual demand of 10, 000. They want to determine EOQ for circuit boards which have an annual holding cost (H) of $6/unit, and an ordering cost (S) of $75. They want to calculate TC and the reorder point (R) if the purchasing lead time is 5 days. n EOQ (Q) n Reorder Point (R) n Total Inventory Cost (TC) © Wiley 2010 26
Economic Production Quantity (EPQ) Same assumptions as the EOQ except: inventory arrives in increments & draws down as it arrives © Wiley 2010 27
Calculating EPQ n Total cost: n Maximum inventory: n n n d=avg. daily demand rate p=daily production rate Calculating EPQ © Wiley 2010 28
EPQ Problem: HP Ltd. Produces premium plant food in 50# bags. Demand is 100, 000 lbs/week. They operate 50 wks/year; HP produces 250, 000 lbs/week. Setup cost is $200 and the annual holding cost rate is $. 55/bag. Calculate the EPQ. Determine the maximum inventory level. Calculate the total cost of using the EPQ policy. © Wiley 2010 29
EPQ Problem Solution © Wiley 2010 30
Quantity Discount Model n Same as the EOQ model, except: n n Unit price depends upon the quantity ordered The total cost equation becomes: © Wiley 2010 31
Quantity Discount Procedure n n Calculate the EOQ at the lowest price Determine whether the EOQ is feasible at that price n n n Will the vendor sell that quantity at that price? If yes, stop – if no, continue Check the feasibility of EOQ at the next higher price © Wiley 2010 32
QD Procedure con’t n n n Continue until you identify a feasible EOQ Calculate the total costs (including total item cost) for the feasible EOQ model Calculate the total costs of buying at the minimum quantity required for each of the cheaper unit prices Compare the total cost of each option & choose the lowest cost alternative Any other issues to consider? © Wiley 2010 33
Quantity Discount Example: Collin’s Sport store is considering going to a different hat supplier. The present supplier charges $10/hat and requires minimum quantities of 490 hats. The annual demand is 12, 000 hats, the ordering cost is $20, and the inventory carrying cost is 20% of the hat cost, a new supplier is offering hats at $9 in lots of 4000. Who should he buy from? n n n EOQ at lowest price $9. Is it feasible? Since the EOQ of 516 is not feasible, calculate the total cost (C) for each price to make the decision 4000 hats at $9 each saves $19, 320 annually. Space? © Wiley 2010 34
Why Companies Don’t Always Use Optimal Order Quantity It is not unusual for companies to order less or more than the EOQ for several reasons: n They may not have a known uniform demand; n Some suppliers have minimum order quantity that are beyond the demand. © Wiley 2010 35
Justifying Smaller Order Quantities JIT or “Lean Systems” would recommend reducing order quantities to the lowest practical levels n Benefits from reducing Q’s: n n n Improved customer responsiveness (inventory = Lead time) Reduced Cycle Inventory Reduced raw materials and purchased components Justifying smaller EOQ’s: Reduce Q’s by reducing setup time (S). “Setup reduction” is a well documented, structured approach to reducing S © Wiley 2010 36
Determining Safety Stock and Service Levels n If demand or lead time is uncertain, safety stock can be added to improve order-cycle service levels n n n R = d. L +SS Where SS =zσd. L, and Z is the number of standard deviations and σd. L is standard deviation of the demand during lead time Order-cycle service level n The probability that demand during lead time will not exceed on-hand inventory n A 95% service level (stockout risk of 5%) has a Z=1. 645 © Wiley 2010 37
Periodic Review Systems n n Orders are placed at specified, fixed-time intervals (e. g. every Friday), for a order size (Q) to bring on-hand inventory (OH) up to the target inventory (TI), similar to the min-max system. Advantages are: n n n No need for a system to continuously monitor item Items ordered from the same supplier can be reviewed on the same day saving purchase order costs Disadvantages: n n n Replenishment quantities (Q) vary Order quantities may not quality for quantity discounts On the average, inventory levels will be higher than Q Wiley 2010 needed 38 systems-more stockroom© space
Periodic Review Systems: Calculations for TI n n Targeted Inventory level: TI = d(RP + L) + SS d = average period demand RP = review period (days, wks) L = lead time (days, wks) SS = zσRP+L Replenishment Quantity (Q)=TI-OH © Wiley 2010 39
P System: an auto parts store calculated the EOQ for Drive Belts at 236 units and wants to compare the Total Inventory Costs for a Q vs. a P Review System. Annual demand (D) is 2704, avg. weekly demand is 52, weekly σ is 1. 77 belts, and lead time is 3 weeks. The annual TC for the Q system is $229; H=$97, S=$10. n Review Period n Target Inventory for 95% Service Level n Average On-Hand OHavg= TI-d. L=424 -(52 belts)(3 wks) = 268 belts n Annual Total Cost (P System) © Wiley 2010 40
Single Period Inventory Model The SPI model is designed for products that share the following characteristics: n n Sold at their regular price only during a single-time period Demand is highly variable but follows a known probability distribution Salvage value is less than its original cost so money is lost when these products are sold for their salvage value Objective is to balance the gross profit of the sale of a unit with the cost incurred when a unit is sold after its primary selling period © Wiley 2010 41
SPI Model Example: T-shirts are purchase in multiples of 10 for a charity event for $8 each. When sold during the event the selling price is $20. After the event their salvage value is just $2. From past events the organizers know the probability of selling different quantities of t-shirts within a range from 80 to 120 Payoff Prob. Of Occurrence Customer Demand # of Shirts Ordered 80 90 Buy 100 110 120 . 20 80 $960 $900 $840 $780 $720 Table . 25 90 . 30 100 . 15 110 . 10 120 $960 $1080 $1020 $ 960 $ 900 $960 $1080 $1200 $1140 $1080 $960 $1080 $1200 $1320 $1260 $960 $1080 $1200 $1320 $1440 Profit $960 $1040 $1083 $1068 $1026 Sample calculations: Payoff (Buy 110)= sell 100($20 -$8) –((110 -100) x ($8 -$2))= $1140 Expected Profit (Buy 100)= ($840 X. 20)+($1020 x. 25)+($1200 x. 30) + ($1200 x. 15)+($1200 x. 10) = $1083 © Wiley 2010 42
Inventory management within OM: How it all fits together n n Inventory management provides the materials and supplies needed to support actual manufacturing or service operations. Inventory replenishment policies guide the master production scheduler when determining which jobs and what quantity should be scheduled (Supplement D). Inventory management policies also affect the layout of the facility. A policy of small lot sizes and frequent shipments reduces the space needed to store materials (Ch 7). Longer throughput times reduce an organization’s ability to respond quickly to changing customer demands (Ch 4). Good inventory management assures continuous supply and minimizes inventory investment while achieving customer service objectives. © Wiley 2010 43
Inventory Management Across the Organization Inventory management policies affect functional areas throughout n n n Accounting is concerned of the cost implications of inventory Marketing is concerned as stocking decision affect the level of customer service Information Systems tracks and controls inventory records © Wiley 2010 44
Chapter 12 Highlights n n Raw materials, purchased components, work-in-process, finished goods, distribution inventory and maintenance, repair and operating supplies are all types of inventory. The objectives of inventory management are to provide the desired level of customer service, to allow costefficient operations, and to minimize inventory investment. © Wiley 2010 45
Chapter 12 Highlights con’t n n Inventory investment is measured in inventory turnover and/or level of supply. Inventory performance is calculated as inventory turnover or weeks, days, or hours of supply. Relevant inventory costs include item costs, holding costs, and shortage costs. © Wiley 2010 46
Chapter 12 Highlights con’t n n n Retailers, wholesalers, & food service organizations use tangible inventory even though they are service organizations. The ABC classification system allows a company to assign the appropriate level of control & frequency of review of an item based on its annual $ volume. Cycle counting is a method for maintaining accurate inventory records. Determining what and when to count are the major decisions. © Wiley 2010 47
Chapter 12 Highlights con’t n n Lot-for-lot, fixed-order quantity, min-max systems, order n periods, periodic review systems, EOQ models, quantity discount models, and single-period models can be used to determine order quantities. Ordering decisions can be improved by analyzing total costs of an inventory policy. Total costs include ordering cost, holding cost, and material cost. © Wiley 2010 48
Chapter 12 Highlights con’t n n Practical considerations can cause a company to not use the optimal order quantity, that is, minimum order requirements. Smaller lot sizes give a company flexibility and shorter response times. The key to reducing order quantities is to reduce ordering or setup costs. © Wiley 2010 49
Chapter 12 Highlights con’t n n Calculating the appropriate safety stock policy enables companies to satisfy their customer service objective at minimum costs. The desired customer service level determines the appropriate z value. Inventory decisions about perishable products can be made using the single-period inventory model. The expected payoff is calculated to assist the quantity decision. © Wiley 2010 50
Chapter 12 Homework Hints n n n Problem 12. 3: calculate inventory turnover, weekly, and daily supply Problem 12. 12: calculate EOQ. TC is based on ordering + holding costs. Calculate reorder point. Problem 12. 13: use data from problem 12. Quantity discount model. Use steps from slides or book. Choose best Q based on lowest TC. Problem 12. 14: use data from problem 12. 2. Determine Q based on period needs, then compare using TC for each option. Problem 12. 20: ordering and holding costs are not needed for this problem. Follow example 12. 15 (p. 449) which uses four steps to do an ABC analysis.
- Independent demand dan dependent demand
- Demand dependent inventory
- Independent demand inventory management
- Independent demand example
- Independent demand inventory
- Independent demand inventory management
- Total cost formula
- Operations management chapter 12 inventory management
- Inventory models for independent demand
- Independent demand inventory
- Independent demand inventory consists of
- Forecasting in operations management
- Tracking signal
- Independent clause fanboys independent clause
- Merchandising operation
- Contoh persediaan independen dan dependen
- What are the 4 types of inventory?
- Stochastic inventory model example
- Measures to correct excess and deficient demand
- Individual demand vs market demand
- Example ng demand function
- Module 5 supply and demand introduction and demand
- Demand estimation in managerial economics
- Distinguish between individual demand and market demand
- Sap sales and operation planning
- Chapter 13 inventory management problems and solutions
- Chapter 13 inventory management
- Chapter 13 inventory management
- Chapter 13 inventory management
- Chapter 13 inventory management
- Operations management chapter 3 ppt
- Operations management chapter 4 forecasting solutions
- Operations management chapter 2
- Chapter 1 introduction to operations management
- Operation management chapter 3
- Operations management chapter 10
- Operations management chapter 10 quality control solutions
- Chapter 8 operations management
- Forecasting in operations management
- Crossover charts
- Operation management chapter 4
- Chapter 11 operations management
- Job expansion in operations management
- 4 flows of supply chain
- Operations management chapter 2
- Demand management and capacity management
- Operations and quality management
- Operations management with total quality management book
- Chapter 9 inventory costing and capacity analysis
- Chapter 5 purchasing and inventory
- Chapter 9 inventory costing and capacity analysis
- Chapter 9 inventory costing and capacity analysis