
QD-Janus: A Sequential Implementation of Janus in Prolog �Saumya K. DebrayDepartment of Computer ScienceUniversity of ArizonaTucson, AZ 85721, USAAbstractJanus is a language designed for distributed constraint programming. This paper describes QD-Janus, a sequential implementation of Janus in Prolog. The compiler uses a number of novel analysesand optimizations to improve the performance of the system. The choice of Prolog as the target languagefor a compiler, while unusual, is motivated by the following: (i) the semantic gap between Janus andProlog is much smaller than that between Janus and, say, C or machine language|this simpli�es thecompilation process signi�cantly, and makes it possible to develop a system with reasonable performancefairly quickly; (ii) recent progress in Prolog implementation techniques, and the development of Prologsystems whose speeds are comparable to those of imperative languages, indicates that the translationto Prolog need not entail a signi�cant performance loss compared to native code compilers; and (iii)compilation to Prolog can bene�t immediately from a signi�cant body of work on, and implementationsof, parallel Prolog systems. Our experience indicates that translation of logic programming languages toProlog, accompanied by the development of good program analysis and optimization tools, is an e�ectiveway to quickly develop
exible and portable implementations with good performance and low cost.Keywords : logic programming, implementation, compilation, optimization�This work was supported in part by the National Science Foundation under grant number CCR-8901283.

INTRODUCTIONJanus1 is an instance of a concurrent constraint programming language.2 These languages are an elegantgeneralization of concurrent logic programming languages3 and constraint logic programming languages.4The computational paradigm is one where a set of concurrently executing agents interact with each other viaa shared store. Given an underlying constraint system C, such interactions proceed via two primitives: anagent can either ask whether a constraint C 2 C is entailed by (the current state of) the store; or an agent cantell a constraint C 2 C, i.e., add C to the store. A central idea is to maintain a close connection between thelogical and operational semantics of programs by using logical entailment for synchronization purposes. Thisis done via the blocking ask, which behaves as follows: given a store S, a blocking ask action ask(C) succeedsif S j= C; fails if S j= :C; and suspends if S 6j= C and S 6j= :C, i.e. if there is not enough information in thestore to determine whether C is true or not. Subsequently, when enough information has been added to thestore by the tell actions of other agents, this ask action is resumed and either succeeds or fails. Tell actionscan similarly be made to suspend until implicit ask actions associated with them are satis�ed. Becauselow-level operational aspects of concurrent execution, such as synchronization, are de�ned entirely in termsof high-level concepts such as logical entailment, concurrent constraint programming languages have the verydesirable property that the computational behavior of programs closely mirror their declarative semantics.This paper describes QD-Janus, a sequential implementation of Janus. QD-Janus relies on a translatorthat compiles Janus programs to Sicstus Prolog: the resulting Prolog code can be compiled to native codeusing Sicstus Prolog's compiler, and linked with the Janus run-time library, which is also written in Prolog.The choice of Prolog as the target language for a compiler is not entirely usual, though it has been used in thepast as a sequential implementation vehicle for concurrent logic programming languages.5;6;7 A signi�cantaspect of the QD-Janus implementation described here, compared to these earlier works, is the small overheadincurred by QD-Janus compared to the underlying Prolog system: this is due not to any special languagefeature of Janus, but because of a number of simple but e�ective compile-time analyses and optimizationscarried out by the QD-Janus compiler.The choice of Prolog as a target language is motivated by a number of reasons: (i) the semantic gapbetween Janus and Prolog is much smaller than that between Janus and, say, C or machine language|thissimpli�es the compilation process signi�cantly; (ii) recent progress in Prolog implementation techniques, andthe development of Prolog systems whose speeds are within a small constant factor of that of C programs,8;9indicates that the translation to Prolog need not entail a signi�cant performance loss compared to nativecode compilers; and (iii) compilation to Prolog can bene�t immediately from a signi�cant body of work on,and implementations of, parallel Prolog systems.10;11;12;13 The initial aim of this implementation was notnecessarily to attain high execution speed, but to quickly provide a simple and portable prototype that wouldserve as a \base implementation" used to check the correctness of other, more sophisticated implementations,and which could be easily modi�ed to test out ideas for program analyses and optimizations. The performanceof the system, nevertheless, is quite good: on the benchmarks tested, the speed of QD-Janus is, on theaverage, only about 20% slower than that of the underlying Sicstus Prolog system compiling to native code;it is over three times faster, and roughly two orders of magnitude more e�cient in heap usage, than animplementation of FCP(:)|a dialect of Flat Concurrent Prolog essentially equivalent to our version of Janusmodulo minor di�erences in the concrete syntax|that has an optimizing compiler and compiles down to a1

low-level instruction set.14An interesting lesson of this project was that fairly sophisticated language translators can be implementedin Prolog with surprising ease and e�ciency. For example, the entire implementation described here wascompleted by one person in approximately two months. Our experience with another sequential implemen-tation of Janus, this one written entirely in C,15 suggests that the project would have taken an order ofmagnitude more time had we relied on a lower level language such as C. This is not entirely surprising,since programming language translation consists largely of tree traversals and pattern matching, which areprecisely Prolog's forte. The performance of the system, compared to both the underlying Prolog system anda comparable low-level implementation of FCP(:), indicate that because of the speed with which a simpletranslator can be built to compile a logic programming language to Prolog, the implementor can spend mostof his time building e�ective program analysis and optimization tools, resulting in a low-cost system withgood overall performance.16 JANUS: AN OVERVIEWThe fundamental primitive operations of Janus are ask and tell actions. Intuitively, an ask action is eithera type test or an arithmetic test, while a tell action constructs a data structure or value. Both ask and tellactions suspend until their operands are \su�ciently instantiated". A Janus program is a set of guardedclauses de�ning its procedures, which, following logic programming terminology, are also called \predicates."A guarded clause for an n-argument procedure p is of the formp(t1; : : : ; tn) :� A1; : : : ; Ak j B1 : : :Bm:where the ti are terms, Ai are ask actions, and Bi are either tell actions or procedure calls. The `j' is thecommit operator. A procedure may be de�ned by more than one such clause. The ask actions A1; : : : ; Akconstitute the guard of the clause, while B1; : : : ; Bm constitute its body.Operationally, the execution of a procedure call p(u1; : : : ; un) proceeds as follows: the guards of each ofthe clauses for the procedure p are executed in parallel. This can have the following outcomes: (i) there is atleast one guard whose ask actions all succeed: in this case, one of the successful guards is nondeterministicallychosen to commit, and the remaining guards are killed; (ii) no guard succeeds in committing, but there isat least one guard for which some ask actions have suspended: in this case, the procedure suspends; and(iii) each guard fails: in this case, an error mesasge is given, and execution aborts. Note that since a guardcontains only ask actions, this phase of execution cannot change the value of any variable in the environment.If a clause commits, the tell actions and procedure calls in its body are executed in parallel. Procedure callsin the body are executed as described above. If the body is empty, the call returns.Janus is in many respects similar to Flat GHC17 and Strand.18 There are, however, a number of dif-ferences: the most important of these is the two-occurrence restriction of Janus. This restriction states,essentially, that in any clause, a variable whose value cannot be inferred to be a constant from the guardoperations is allowed to have at most two occurrences: one of these occurrences is annotated to be the\writable" occurrence, and the other is the readable occurrence. Only the writable occurrence of a variable2

may be assigned to. Thus, variables in e�ect serve as point-to-point communication channels; other languageconstructs allow many-to-one and one-to-many communication.The two-occurrence restriction is motivated strongly by a vision of distributed constraint programming. Afundamental concern is that syntactically correct programs should not cause the store to become inconsistentat runtime: this is enforced by the two-occurrence restriction, which|together with the fact that only oneof the occurrences can be annotated as \writable"|ensures that each variable has exactly one producer,thereby precluding any possibility of inconsistency. This has the desirable e�ect that programs become,at least in principle, e�ciently implementable. It has been observed that while programs typically do notgive rise to a great deal of aliasing, this information is not available to compilers, which have to resortto complicated and potentially expensive algorithms to recover it. The problem is addressed in Janus byspecifying the default to be that there is no aliasing, and requiring the programmer to explicitly invoke certainlanguage constructs when sharing between structures is necessary. Rules for syntactic well-formedness thenensure that the compile-time satisfaction of certain properties, local to a clause, regarding the number ofoccurrences of a variable imply the run-time satisfaction of certain global properties regarding lack of aliases.QD-Janus does not enforce the two-occurrence restriction at compile time. However, no aspect of the QD-Janus implementation depends on the two occurrence restriction, so that e�ectively, this simply means thatthe detection of certain errors is postponed to runtime instead of happening at compile time.Data objects in Janus consist of the following: askers, tellers, numbers (integers and
oats), constants,arrays, and bags. An asker for a variable X is the \readable" occurrence of X: if we think of a variable as apoint-to-point communication channel, it denotes read capability on the communication channel X. A tellerfor a variable X, written ^X, denotes the \writable" occurrence of X, i.e., write capability on the channelX. An array A of n objects a0; : : : ; an�1, written <a0; : : : ; an�1>, represents a sequence of values indexed byf0; : : : ; n�1g. Arrays can also be created via two primitives array/2 and array/3. Operations on an array Ainclude computing its size, denoted by card(A); taking the value at index i, denoted A.i; taking subsequencesbetween indices I and J, denoted by A[I..J]; updating the values of A.i1, : : :, A.ik to m1; : : : ;mk, denotedby A[i1->m1, : : :, ik->mk]; and concatenating two arrays A and B, denoted by A#B. A bag representsan unordered multiset of objects. In general, a bag expression is of the form fE1,...,Em|U1,...,Ung,and denotes a bag that contains the elements E1, : : :, Em, and where the remainder of the bag consists ofpartitions U1, : : :, Un. The intent is that bags serve as many-to-one communication channels: in this case,the intent is that there are n writers to the bag, who have access to U1, : : :, Un respectively. Ask constraintsin Janus consist of various type tests and relational tests on objects and their components. A tell constraintis restricted to be of the form X = E, where E can be any expression including arithmetic, array, and bagexpressions. SYSTEM ORGANIZATIONThe entire QD-Janus system is currently written in Prolog and implemented on top of Sicstus Pro-log v2.1.19 It consists of about 4500 lines of Prolog code, and is available by anonymous FTP fromcs.arizona.edu.Janus programs are read in using a version of the public domain Prolog tokenizer and parser by R. A.3

O'Keefe, modi�ed to handle lexical and syntactic features of Janus. The translation proceeds as follows:1. Each clause is transformed into an internal representation that allows various kinds of information tobe associated with each literal. This information is later used for various optimizing transformations.The clauses for each predicate are also collected together for ease of later processing.2. The program is analyzed to obtain information about the suspension behavior of predicates and aboutthe instantiation of their outputs.3. Each predicate is analyzed to determine whether it is recursive and whether there is any nontrivialcommon argument annotation, e.g., teller, between the head of every clause and every recursive bodyliteral: if there is, such annotations are factored out, and the clauses transformed, so that the annota-tions are tested once at the entry to the recursive predicate, but need not be either generated or testedon subsequent recursive calls. Such factoring can lead to signi�cant speed improvements.4. For each predicate, the head and guard of each of its clauses is analyzed to determine the \demand"generated by that clause, i.e., the extent to which its arguments must be instantiated to ensure thatexecution will not suspend in the guard.5. The program is analyzed to obtain \calling patterns" for predicates. This information is used toupdate the demand information computed, so that unnecessary suspension tests are not generatedwhere possible.6. The demand information is used to translate the clauses for the procedures. There are basicallytwo possibilities that can arise: a procedure is either unimodal, i.e., there is exactly one pattern ofinstantiations for the arguments for which its guards will not suspend; or it is multimodal, i.e., thereis more than one possible pattern of instantiations for its arguments for which the guards will notsuspend. The code generated for unimodal procedures tends to be signi�cantly simpler and moree�cient than the code for multimodal procedures.Even though the QD-Janus compiler is written entirely in Prolog and relies heavily on various analysesand optimizations to improve performance, compilation speed is quite fast, and is dominated by the I/Otime for reading in the Janus programs and writing out the translated Prolog code. This indicates that thesophistication of the analyses and optimizations could be improved considerably without noticeably a�ectingtranslation speed. DEMAND ANALYSISDemand analysis for a predicate involves traversing the head and guard of each of its clauses to determinethe extent to which its arguments have to be instantiated in order for the guard computation to not suspend.This is conceptually analogous to strictness analysis for lazy functional languages over non-
at domains.20;21However, there are a number of important di�erences between our notion of demand analysis and thatof strictness analysis, the most important of these being that (i) a function can have only one strictnesspattern, while a Janus procedure may have more than one pattern of demand; and (ii) strictness analysis4

typically relies on �xpoint computations over programs, whereas the demand analysis used in QD-Janushas the limited aim of detecting the degree of instantiation necessary to allow the guards of a procedure tocommit, i.e., it does not contend with possible suspension of body goals, and therefore does not require a�xpoint computation. The patterns of instantiation for which the guards of a procedure will not suspendare called its activation modes, or modes for short. Note that this usage of the term \mode" is very di�erentfrom the sense in which it is used for Prolog. It is critical to the remainder of the compilation process, sincethe classi�cation of predicates as unimodal or multimodal, and the subsequent generation of code, dependson information computed by demand analysis.The demand of an n-ary predicate p is represented by a pair hInst ;Arefsi, where Inst is a description ofhow di�erent arguments must be instantiated, and Arefs describes array references in the guards. Inst is aterm p(u1; : : : ; un), where each of the ui is a tree whose nodes are labelled d, or n, where `d' denotes one levelof demand, i.e., requiring evaluation of the top-level functor of the term at that position, and `n' denotes nodemand at all. It turns out that such trees are not always adequate for describing array references, e.g., for areference where the index is a variable or an expression. Array references are therefore described separately,using the second component Arefs, which is a list of terms aref(A; I) where A is the array being referred toand I is the index. Here, A and I are given in terms of paths down the tree representing the top-level goal.Such a path is expressed as a list of selectors, where a selector is either an array reference aref(� � �), or alist of integers, where an integer n denotes the nth argument of the subterm at that level.As an example, consider the following clause, where X.Y refers to the Yth element of an array X:p(A, I, B, J) :- (A.I).(B.J) > 0 | ...Since this requires that each of the variables A, I, B, and J be instantiated, the instantiation component ofthe demand is given byp(d, d, d, d).In addition, the array elements A.I, B.J, and (A.I).(B.J)must be instantiated. The demand correspondingto the array reference A.I is described by aref([1], [2]), where [1] refers to the �rst argument positionin the top-level goal, i.e., the variable A, and [2] refers to the second argument position, i.e., the variable I.Similarly, the demand for the array reference B.J is described by aref([3], [4]), and that for (A.I).(B.J)by aref(aref([1], [2]), aref([3], [4])). Now the last of these subsumes the �rst two demands, sinceany call that satis�es this will also satisfy the other two. Thus, it su�ces to specify the array referencedemandaref(aref([1], [2]), aref([3], [4])).In general, a clause may need the value of many di�erent arrays, so the array reference demands are speci�edas a list of such terms. Thus, the result of demand analysis for this clause is the pairh p(d, d, d, d), [aref(aref([1], [2]), aref([3], [4]))] i.5

Input : A set of Janus clauses Clauses.Output : A set of demands D for these clauses.Method : return D = [fclause demand (C) j C 2 Clausesg.function clause demand (C)beginpropagate equality tests `X = E' from the guard into the head where possible;let Head = head of C, Guard = guard of C, N = no. of arguments in Head;Inst = hdemand (Head [1]); : : : ; demand (Head [N])i, wheredemand (T) = if T is an atom or a bag then `d';else if T � f(T1; : : : ; Tn) then `d(D1; : : : ; Dn)'where Di = demand (Ti); 1 � i � n;else /* T is a variable */ a new variable;Arefs := ;;for each guard test G of Guard doif G is a test `E1 op E2' thennote demand (E1;Head ; Inst ;Arefs);note demand (E2;Head ; Inst ;Arefs);else if G is a type test � (E) thennote demand (E;Head ; Inst;Arefs);�od;Inst 0 := normalize(Inst);Arefs0 := rem redundancies(Arefs);return hInst 0;Arefs0i;end Figure 1: The Algorithm for Demand Analysis6

/* note demand (E;Head ; Inst;Arefs) takes an expression E and translates this into a demand onargument positions in the head Head and notes this demand in the appropriate position in themode description Inst, and any array reference demands in Arefs. */procedure note demand (E;Head ; Inst ;Arefs)beginif E is a variable thentraverse Head, Inst to �nd E; /* heads are linear by de�nition */set the corresponding position of Inst to `d';else if E � `card(A)' thennote demand (A;Head ; Inst;Arefs);else if E is an array reference A.I thennote demand (A;Head ; Inst;Arefs);note demand (I;Head ; Inst;Arefs);let Path1 = selector path(Head ; A), Path2 = selector path(Head ; I);Arefs := Arefs [faref(Path1;Path2)g;�end/* selector path(T;X) returns a path from the root of T to X. */function selector path(T;X)beginif X � T return `[]';else if X is a number return `num(T)';else if X is an array reference A.I then return `aref(Path1, Path2)',where Path1 = selector path(T;A), Path2 = selector path(T; I);else if T is a term `f(t1; : : : ; tn)' thenif X is a subterm of tk; 1 � k � n; then return `[k | U]'where U = selector path(tk; X);��end Figure 2: Auxiliary functions used in Demand Analysis7

Figure 1 gives the details of the algorithm, with auxiliary functions described in Figure 2. Here, the notationt[i] denotes the ith element of a term or tuple t. The function normalize(I) simpli�es demands in a way thatallows more of them to be identi�ed. For example, consider the programlength([], ^Len) :- Len = 0.length([_|L], ^Len) :- length(L, ^Len1), Len = Len1 + 1.Straightforward demand analysis infers the demand h length(d, d), [] i for the �rst clause; for the secondclause, the demand inferred is h length(d(n, n), d), [] i, since the �rst argument is required to be a termwith a binary constructor. If code were to be generated from this, the predicate length/2 would be treatedas a multimodal predicate. However, the second clause requires that its �rst argument be instantiated only atits top level, i.e., only its principal functor is required to be de�ned. The function normalize() recognizes thisand rewrites the demand for the second clause to h length(d, d), [] i. This is the same as the demandof the �rst clause. After normalization of demands, therefore, length/2 is implemented as a unimodalpredicate, which is considerably more e�cient than a multimodal implementation.THE STRUCTURE OF THE GENERATED CODEData RepresentationData representation in QD-Janus generally follows that of the underlying Prolog system. The followingtypes, which are found in Janus but not in Prolog, are represented specially: Askers are represented asProlog variables. Tellers are represented using the function symbol `^'/1: a teller for X is represented bya term ^X. An array of size n, n > 0, is represented by a term whose principal functor is `.'/n, while theempty array is represented by the constant `[]': this representation has the bene�t that the treatment oflists as arrays of length 2 falls out naturally, and does not have to be handled separately. The representationof bags is similar to that of Prolog lists, except that it is in terms of a constructor `:'/2 and a constant `fg'.`fg' represents the empty bag, while a non-empty bag containing the elements x1; : : : ; xn is represented asx1:x2: � � � :xn:fg.Unimodal ProceduresA procedure is said to be unimodal if there is exactly one \minimal" pattern of instantiations of itsarguments for which its guards can be executed without suspending. As an example, the procedurefact(0, ^F) :- F = 1.fact(N, ^F) :- N > 0 | fact(N-1, ^F1), F = N*F1.is unimodal, because each of its clauses requires that the �rst argument be instantiated and the secondargument be a teller.Consider a Janus predicate p/3, de�ned by the single clausep(X, Y, ^Z) :- X > 0, Y > 0 | Z = X + Y.8

In order to be able to execute the guard, the �rst two arguments of this predicate must be instantiated,and the third argument must be annotated as a teller. Thus, all three arguments have to be instantiatedto non-variable terms if this predicate is to execute without suspension. The Prolog code generated by theQD-Janus compiler checks this �rst (predicate names generated by QD-Janus have been greatly simpli�edin these examples to enhance readability: in practice, they are much more elaborate, in order to avoid namecon
icts):p(X, Y, Z) :-(nonvar(X), nonvar(Y), nonvar(Z)) ->p_worker(X, Y, Z) ;p_susp(X, Y, Z).The predicate p/3 in the Prolog code generated by the QD-Janus compiler is the sentinel predicate, whosetask is to determine whether all the necessary arguments are su�ciently instantiated. If they are, control istransferred to the worker predicate p worker/3, which does the actual computational work of the procedure.Otherwise, if one or more arguments are not su�ciently instantiated, control is transferred to the suspensionhandler p susp/3, whose job is to ensure that the original goal suspends waiting for the appropriate variableto become instantiated.The structure of the worker predicate p worker closely mirrors that of the original Janus predicate. Inthis case, for example, it would be:p_worker(X, Y, ^Z) :- X > 0, Y > 0, !, Z is X+Y.p_worker(X, Y, Z) :- no_guard_match_error(p(X,Y,Z)).The predicate no guard match error is called by default if all of the guards of a goal fail, and prints out anerror message. This default behavior can be changed by the user, by adding a clause whose guard consistsof the single atom else. A predicate can contain at most one clause with an else guard, and such a clausemust be the last of all the clauses de�ning that predicate. Declaratively, an else guard can be interpretedas syntactic sugar for the conjunction of the negations of the guards of the remaining clauses, none of whichhave an else guard. For example, consider the de�nitionfact(0, ^F) :- F = 1.fact(N, ^F) :- N > 0 | fact(N-1, ^F1), F = N*F1.fact(N, F) :- else | debug((fact(N,F)).Here, the else guard can be understood as shorthand for the ask constraint:(N = 0 ^ 9F1 : F = ^F1) ^ :(N > 0 ^ 9F1 : F = ^F1).The �rst conjunct says that of the variables N and F in the head of this clause, it is not the case that N is 0and F is a teller (for some variable F1), i.e., the guard of the �rst clause is not satis�ed; the second conjunct9

says that it is not the case that N is greater than 0 and F is a teller, i.e., the guard of the second clause isalso not satis�ed. In the original de�nition of Janus,1 there was no notion of failure: if all the guards fora call failed, the call simply \vanished silently." This was changed to the behavior described above for tworeasons: �rst, it is often the case that failure of all guards of a procedure indicates an abnormal situation,and the behavior described above makes it easier to detect and debug these; second, the approach adopted isstrictly more expressive, in the sense that the earlier default behavior of \silent vanishing" can be simulatedsimply by adding a clause of the formp(...) :- else | true.The suspension handler examines its arguments to determine how the suspension should be set up:p_susp(X, Y, Z) :- var(X), !, freeze(X, p(X, Y, Z)).p_susp(X, Y, Z) :- var(Y), !, freeze(Y, p(X, Y, Z)).p_susp(X, Y, Z) :- var(Z), !, freeze(Z, p(X, Y, Z)).Strictly speaking, the cut in the last clause is unnecessary, but at this point the compiler has not beenengineered to eliminate it.The reader may notice that this structure can cause a goal to suspend and resume a number of times,resulting in poor execution behavior in some cases. For example, consider a goal p(U, V, W) where allof the arguments are variables: this causes the goal to suspend, then U becomes instantiated causing thesuspended goal to be resumed and then to suspend again, then V gets a value causing the goal to resumeand then suspend again, and �nally W gets a value causing the goal to �nally resume and continue execution.Such suspension behavior, where a goal has to suspend until each element of a set of variables becomesinstantiated, is referred to as \conjunctive suspension." It is possible to handle this by setting up a seriesof nested freeze-goals. However, we chose deliberately to not implement conjunctive suspension in thismanner: this decision was due in part to keep the generated code simple, but mostly to mirror decisions inanother Janus implementation that is currently under way,15 where it was felt that conjunctive suspensionwould be too expensive to implement, and not common enough to justify.The compiler implements a number of optimizations to the basic translation scheme described above. Ifa predicate does not need any of its arguments to be instantiated, e.g. if there are no guard tests, then thesentinel and suspension handler are not generated. If a predicate requires only the \top-level" functor of asingle argument position to be instantiated, a freeze/2 goal is generated \in place" in the sentinel, and thesuspension handler is omitted. This avoids the cost of a jump to the suspension handler and also reducesthe size of the code generated. As an example, consider the de�nitionfact(N, F) :- integer(N), N >= 0 | fact(N, 1, F).In this case, the code actually generated for the sentinel isfact(N, F) :- nonvar(N) -> fact_worker(N, F) ; freeze(N, fact(N, F)).10

Because of other optimizations, such as the Invariant Tag Factoring optimization discussed later in thispaper, this turns out to be applicable quite often.Multimodal ProceduresA procedure is said to be multimodal if there is more than one pattern of instantiations of its argumentsfor which its guards can be executed without suspending. As an example, consider the procedurem(0, N, ^T) :- T = N+1.m(N, 0, ^T) :- T = N+1.This procedure can execute in two modes: either the �rst and third arguments can be instantiated, in whichcase the �rst clause may commit; or the second and third arguments can be instantiated, in which casethe second clause may commit. Because it can commit for either of two distinct modes, this procedure ismultimodal.Our experience has been that procedures such as m/3 above, which are truly nondeterministic in thesense that there are inputs for which more than one clause can be selected, are rare in practice. However, aprocedure may be multimodal even if it is deterministic. As an example, consider the following procedure:posintlist([]).posintlist([N|L]) :- N > 0 | posintlist(L).In order to avoid suspension, the �rst clause requires simply that its argument be instantiated, i.e., it hasthe demand h posintlist(d), [] i. By contrast, the second clause requires not only that the argumentbe instantiated, but also the the �rst sub-argument (corresponding to the variable N in the code above) ofthe argument be instantiated, i.e., has the demand h posintlist(d(d,n)), [] i. Because the two demandsare di�erent, this procedure is inferred by our implementation to be multimodal. Procedures of this kind,which traverse a list examining each element, are not uncommon, and as a result multimodal procedures areencountered more frequently than one might initially expect.The structure of the code generated for a multimodal procedure is more complex than that for a unimodalprocedure. In order to reduce the amount of testing repeated across code generated for the di�erent modesof a multimodal procedure, they are �rst examined to see if there is any common demand between them.In the example above, it can be seen that both modes of activation for m/3 require that the third argumentbe instantiated. This common demand is factored out to de�ne a sentinel predicate in the generated Prologcode: m(X, Y, Z) :- nonvar(Z) -> m_coord(X, Y, Z) ; freeze(Z, m(X, Y, Z)).The common demand that is tested by the sentinel predicate is \subtracted" from the di�erent modes forthe predicate, so that it is not again tested for later.The predicate m coord/3 is the coordinator: in an earlier version of QD-Janus, this predicate was respon-sible for trying the clauses for the predicate so as to determine whether a particular call to that predicate11

should commit, suspend, or fail. In the current implementation, the coordinator simply transfers control tothe �rst of a series of \handler predicates", each of which is responsible for the clauses of a particular mode.The compiler groups the clauses for a multimodal predicate by mode and orders them so that at runtime,modes corresponding to recursive clauses are processed before those that correspond to only non-recursiveclauses. This is consistent with the semantics of Janus, which does not give any special signi�cance to theorder of clauses in the source program, and is motivated by a desire to improve the e�ciency of recursiveprocedures.Each handler predicate|except the �rst one, as explained below|takes one additional argument, a\suspension mode list" argument SuspModes that is bound, at runtime, to a list of modes that may have tobe examined if an activation has to suspend. The general behavior of a handler for a modeM of a predicateis as follows: First, check the input arguments to determine whether they are su�ciently instantiated for themode M . If not, add M to the input mode list SuspModes and invoke the handler for the next mode withthis extended list of modes; otherwise, process each of the clauses associated with the modeM in turn. If anyof these clauses commits, discard the remaining alternatives and mode handlers; otherwise, if every clausefor the mode fails, invoke the handler for the next mode with input mode list SuspModes. The �rst modehandler does not require a mode list argument, since no other modes will have been processed before it hasexecuted. The last mode handler calls a procedure that determines whether the activation should suspend.If there is a non-empty list of modes available, this procedure calls a library predicate that takes a list ofmodes together with a term representing the procedure call being processed, and traverses the modes todetermine a set of variables|one for each mode in this list|on which it creates a \disjunctive suspension."This refers to a suspended activation that is resumed as soon as any one of the variables that it is suspendedon becomes bound. Otherwise, the mode list is empty at runtime, which means that every non-else-guardedclause for that predicate has failed: in this case, the else-guarded clause for that predicate is executed ifthere is one, otherwise a runtime error occurs and execution is aborted. The reason that a mode handlerinvokes the next handler with an augmented mode list if its inputs are insu�ciently instantiated is that adecision to suspend an activation cannot be made until it has been determined that no clause for any of themodes has committed.As an example, the coordinator and mode handlers for the multimodal predicate m/3 discussed above areas follows:m_coord(X, Y, Z) :- m_handler_1(X, Y, Z).m_handler_1(X, Y, Z) :- /* handler for mode m(d,n,n) */var(X), !, m_handler_2(X, Y, Z, [m(d,n,n)]). /* suspension case */m_handler_1(0, N, ^Z) :- !, plus_10(0, N, Z).m_handler_1(X, Y, Z) :- m_handler_2(X, Y, Z, []). /* failure case */m_handler_2(X, Y, Z, SuspModes) :- /* handler for mode m(n,d,n) */var(Y), !, m_susp_chk(X, Y, Z, [m(n,d,n) | SuspModes]). /* suspension case */m_handler_2(N, 0, ^Z, _) :- !, plus_10(0, N, Z).m_handler_2(X, Y, Z, SuspModes) :- m_susp_chk(X, Y, Z, SuspModes). /* failure case */12

Here, a call plus 10(X,Y,Z) suspends until its second argument Y is instantiated, after which Z is bound tothe sum of X and Y. Notice, however, that in the code above, a call to plus 01/3 occurs only after a modehandler has committed, and therefore the possible suspension of plus 01/3 does not a�ect the suspensionbehavior of the predicate m/3. An examination of the de�nition of m/3 indicates that this is the desiredoperational behavior for this predicate.PROGRAM ANALYSIS AND OPTIMIZATIONSuspension AnalysisOne source of overhead in the implementation described so far is that, because in general there is noinformation available about when variables can be guaranteed to be instantiated, it is necessary to generatea great many tests to determine whether a computation should suspend because of insu�ciently instantiatedinputs. With more information about the instantiation of variables at di�erent program points, many of thesetests can be eliminated. The QD-Janus compiler uses an inter-procedural data
ow analysis to determinethe instantiation of variables at various program points. This information is then used to e�ect variousoptimizations.While the analysis is similar in
avor to mode analysis for Prolog,22;23;24;25 the details are somewhatdi�erent. In particular, the analysis is complicated by the fact that procedure calls in a Janus program maysuspend. To see the problem, consider the following example:p(N, ^X) :- fact(N, ^F), X = F-1.fact(0, ^F) :- F = 1.fact(N, ^F) :- N > 0 | fact(N-1, ^F1), F = N*F1.An inspection of the clauses de�ning fact/2 indicates that each clause contains a tell action that assigns anumber to the teller variable in the second argument position. A simple-minded analysis might infer fromthis that a procedure call fact(N, ^F) always assigns a number to F, and based on this, omit suspensiontests from the tell action X = F-1 in the body of p/2. Now consider the execution of the query?- p(N, ^X), N = 5.If the call p(N, ^X) is executed �rst (as it would in QD-Janus), the resulting computation of fact(N, ^F)will suspend because N is uninstantiated. Because of this, the tell actions in the body of fact/2 will nothave executed, and the variable F will still be uninstantiated, when the tell action X = F-1 in the body ofp/2 is executed. If this tell action is \optimized" by omitting its suspension tests, this will, incorrectly, giverise to a runtime error.This problem is addressed by performing a simple suspension analysis together with a Prolog-like ground-ness analysis. The domain of the analysis is very similar to that used for Demand Analysis described earlier.The essential idea is to propagate a set of variables InstVars, denoting variables whose values are guaranteed13

to be known at any program point, across the body of each clause from left to right. Demand analysis isthen used to determine, for each procedure call G in the body, whether the guards of the clauses de�ning Gcan be guaranteed to not suspend. If this can be guaranteed, and every goal in the body of each clause for Gcan recursively be guaranteed to not suspend, then it can safely be assumed that all tell actions under G arecarried out, and use this information to update the set of variables InstVars appropriately. This resemblesan analysis algorithm for FCP programs proposed by Gallagher et al.,26 in that the goals in the body of aclause are analyzed from left to right: however, Gallagher et al. ignore the possibility of suspension, which isvital to our analysis; moreover, the ideas in Reference 26 do not appear to have actually been implemented.The analysis starts with the most general goals for each of the predicates that are declared to be user-callable via a directive export/1, e.g.::- export p/2, q/3, r/1.Note that users are not expected to specify \calling patterns" for the exported predicates: this simpli�esspeci�cations and reduces the possibility of bugs arising from inadvertant errors in such user-speci�ed callingpatterns. If a �le is compiled without an explicit export directive, it is assumed that all the proceduresde�ned in that �le are user-callable, and no data
ow analysis is carried out. The algorithm is sketched inFigure 3, with the procedure analyse described in Figure 4.Invariant Tag FactoringIt is often the case that certain arguments of a predicate are consistently used with a particular annotationor \tag", e.g. as a teller. For example, consider the predicateqs(A, ^B) :- card(A) =< 1 | B = A.qs(A, ^B) :- card(A) > 1 |split(A, ^K, ^E),qs(E[0 .. K-1], ^C), qs(E[K+1 .. card(E)-1], ^D),B = C # <E.K | D>.Notice that both clauses of qs/2 expect the second argument to be tagged as a teller; and each of therecursive literals for qs/2 has the second argument tagged as a teller. This means that once execution hasentered qs/2 after successfully verifying that the second argument is tagged as a teller, the recursive calls toqs/2 will always successfully verify the teller tag of the second argument. For the recursive calls in the bodyof the second clause of qs/2, therefore, it is not necessary to check that the second argument is a teller. This,in turn, implies that for these recursive calls, the construction of the second argument as a teller-tagged termis unnecessary. The generated code can therefore have the following structure:qs(A, ^B) :- qs_f(A, B).qs_f(A, B) :- card(A) =< 1 | B = A.qs_f(A, B) :- card(A) > 1 | 14

Input : A Janus program P , a list E of exported predicates, and for each predicate p 2 P a list of demandsDemands(p).Output : A pair hCall ;Reti, where Call is a set that describes, for each predicate p 2 P , which argumentsp are guaranteed to be instantiated just before a call to p, and Ret is a set that describes, for eachpredicate p 2 P , which arguments p are guaranteed to be instantiated when control returns from a callto p.Method :Call := ;; Ret := ;;for each p 2 P do analysing (p) := false;repeatchange := false;for each p 2 E doanalyse(p; C) where C is a most general calling pattern for p;oduntil :change ;return hCall ;Reti; Figure 3: The Algorithm for Suspension Analysis
15

procedure analyse(p; C)beginif :analysing(p) then /* loop check */analysing(p) := true;old callp := callp if there is an entry callp for p in Call; > otherwise;new callp := glb(C; old callp);if new callp 6= old callp thenupdate the entry for p in Call to new callp;change := true;�for each clause Ci � `Head i :� Guard i j Body i' of p doInstVars := the set of variables that must be instantiated for Guard i to commit;for each G � q(�t) in Body i doanalyse(q; C 0) where C 0 is the calling pattern for G given instantiated variables InstVars;if G with Demands(q) will not suspend given InstVars thenuse retq 2 Ret to update InstVars;�odcompute the output description reti for the head of Ci;old retp := retp if there is an entry retp for p in Ret; > otherwise;new retp := glb(reti; old retp);if new retp 6= old retp thenupdate the entry for p in Ret to new retp;change := true;�odanalysing(p) := false;�end Figure 4: The Procedure analyse used in Suspension Analysis16

split(A, ^K, ^E),qs_f(E[0 .. K-1], C), qs_f(E[K+1 .. card(E)-1], D),B = C # <E.K | D>.Note that in the resulting code, teller tags are neither generated nor checked in the procedure qs f/2.The transformation of a program to \factor out" such unnecessary tag operations is called Invariant TagFactoring. It is analogous to invariant code motion out of loops, though it is applicable to recursive calls ingeneral rather than just to iterative computations. The current implementation of tag factoring works onlyfor direct recursion. This is sound, but may be overly conservative in that it may miss some opportunities forfactoring. Also, at this time only unary functors are considered for factoring: this catches the annotationsfor tellers, and possibly other unary function symbols. The algorithm could be generalized to functors witharity greater than 1, but this would introduce additional complexity into the code transformation becauseof the need to expand arities, and it is not obvious that this situation is encountered often enough to justifythis additional complexity.The algorithm for tag factoring is described in Figure 5. Strictly speaking, it is not necessary to computemost speci�c generalizations for this optimization. Since we are interested only in obtaining, for eachargument position i, 1 � i � n, the longest sequence of unary functors, starting at the root, that is commonto the ith argument of each literal in Lp, this step of the computation can be simpli�ed.Reducing Suspension Tests in Clause GuardsAs mentioned earlier, suspension analysis produces a calling pattern for each predicate in a program.Since every call to that predicate can be guaranteed to have at least this degree of instantiatiation, thiscalling pattern can be used to eliminate certain suspension tests in the guard. This is done by subtractingthe calling pattern from each mode for that predicate, and generating code as described earlier from theresidual modes. Note that, as described earlier, if the calling pattern indicates that all calls are su�cientlyinstantiated, then there is no residual demand after subtracting out the calling pattern, and as a result noseparate sentinel and suspension handling code is generated.The improvements to the code generated due to this optimization are illustrated by the following program::- export fact/2.fact(N, F) :- integer(N) | fact(N, 1, F).fact(N, A, ^F) :- N = 0 | F = A.fact(N, A, ^F) :- N > 0 | fact(N-1, N*A, ^F).If calling patterns were not computed, fact/3 would have to test its �rst argument to determine that it wasinstantiated. However, this test is eliminated when calling patterns are propagated from fact/2.Reducing Suspension Tests in Clause BodiesIn general, tell actions in clause bodies may have associated suspension tests to determine whether they17

Input: A list L of Janus clauses for a procedure p=n.Output: A list of Janus clauses for p, and possibly a new procedure p0 resulting from factoring out invarianttags from the clauses for p.Method: 1. If p is not (direct) recursive, return L.2. Compute the set Lp of literals in L whose predicate symbol is p. This includes the head of eachclause for p, as well as recursive calls to p.3. Compute the most speci�c generalization G of the literals Lp. This gives a template of functorsthat can be factored.4. If every argument of G is a variable, then no interesting factoring is possible: return L.5. De�ne a new predicate p0=n, whose clauses are exactly the clauses for p=n, except that everyliteral of the form p(t1; : : : ; tn), including the heads of clauses, is replaced by a literal of theform p0(u1; : : : ; un). The terms u1; : : : ; un are derived from the terms t1; : : : ; tn and the templateG � p(w1; : : : ; wn), as follows:(a) If wi is a variable then ui is the same as ti;(b) otherwise, wi is a term of depth k, then ui is the depth-k subterm of the correspondingargument ti.6. Since only unary functors are being considered, each argument position of the template G willhave exactly one occurrence of a variable. Let the variable occurring at the ith argument positionof G be denoted by Ai.Replace the original de�nition of p by the clauseG :� p0(A1; : : : ; An).Figure 5: The Algorithm for Invariant Tag Factoring
18

should suspend because not all of their inputs are available. As an example, consider the clausefact(N, ^F) :- N > 0 | fact(N-1, ^F1), F = N*F1.Without any other information available, the default translation of this clause would have to take intoaccount the fact that the tell action `F = N * F1', as well as the subtraction to compute the value N-1,might have to suspend. The code generated might therefore have the formfact_1(N, ^F) :- N > 0, !, times(N, F1, F), minus(N, 1, N1), fact_1(N1, ^F1).where calls to the procedures times/3 and minus/3 suspend until the �rst and second arguments becomebound. However, arithmetic operations implemented in this way can be quite expensive, in part because ofthe additional testing necessary to determine whether a computation should suspend. Thus, there are twosources of ine�ciency in the code given above: �rst, the additional testing and state transitions involved inexecuting the times/3 and minus/3 goals; and second, the potential cost of suspension and resumption forthe goal times(N, F1, F) in the code above.As described earlier, during data
ow analysis each literal in a clause is associated with a set of variableswhose values can be assumed to be known when that literal is about to be executed. This information is usedto eliminate runtime tests for suspension in clause bodies wherever possible. The variables whose values areinferred to be known at various points in the clause for fact/2 above are as follows, indicated in comments:fact(N, ^F) :- N > 0 |/* known: {N} */ fact(N-1, ^F1),/* known: {N,F1} */ F = N*F1. /* known: {N,F1,F} */During code generation, this information is used to reduce the number of suspension tests necessary. In thisexample, suspension tests for the arithmetic computations in the body can be eliminated entirely, leading togenerated code of the formfact_1(N, ^F) :- N1 is N-1, fact_1(N1, ^F1), F is N * F1.Note that the code actually generated would be more e�cient, because invariant tag factoring would haveeliminated the teller annotation `^' in the second argument of fact 1/2.If an operation needs the values of some variables, but these variables cannot be inferred to be known atcompile time, code is generated to suspend until these variables become bound at runtime. In the clause forfact/2 above, for example, if we were unable to infer that this procedure would bind its second argumentto a ground term when invoked|and, therefore, that the value of the variable F1 would be available whencontrol returned from the recursive call|the code generated would be as follows:fact_1(N, ^F) :- N1 is N-1, fact_1(N1, ^F1), times_10(N1,F1,F).19

where times 10/3 is a library procedure de�ned as::- block times_10(?, -, ?).times_10(X,Y,Z) :- Z is X*Y.Here, the `block' declaration for times 10/3 speci�es that the execution of any call to this procedure shouldsuspend if the second argument is a variable. Note that suspension tests are not generated for variables thatcan be guaranteed, at compile time, to be bound.Optimization of ArithmeticThe QD-Janus compiler tries, as far as possible, to evaluate arithmetic expressions at compile time.This optimization was initially motivated by the fact that arrays in Janus are 0-based, while subterms ofcompound terms in Prolog are indexed from 1, so that naively generated code for a Janus array referencewith constant index, such as A.0, was of the form..., array(A), I is 0+1, arg(I, A, X), ...Obviously, there is no need to generate code to evaluate the expression `0+1' at runtime: it can be evaluatedat compile time instead. In order to avoid this kind of unnecessary runtime computation, the compilerimplements a general algorithm for reorganizing and optimizing arithmetic expressions. The idea is to useproperties such as associativity and commutativity of operators to rearrange expressions to bring constantsas \close together" as possible, after which constant subexpressions are evaluated at compile time. Thealgebraic properties that the system uses include the following: + and * are associative and commutative; 0 isan identity for +, 1 is an identity for *; 0 is a null element for *; E1-E2 = E1+(-E2); and E1/E2 = E1*(1/E2).The last two properties are used to transform expressions involving nonassociative operators into expressionswith associative operators, in the hope that this may allow expressions to be further restructured and partiallyevaluated at compile time. The assumption that addition and multiplication are associative and commutativecan sometimes lead to expression restructurings that change the results for
oating point computations.However, in this respect the QD-Janus compiler behaves no di�erently from languages such as C, which alsoconsider addition and multiplication to be associative and commutative. In situations where the order ofevaluation makes a di�erence, an order of evaluation can be enforced by using explicit temporary variables,as in the case of C. The arithmetic expression simpli�er does not know about the distributivity of * over +.This would be simple to add, but in our experience it is not clear that it would be very useful.Redundancy EliminationBecause Prolog code is generated via syntax directed translation, there is a lot of redundancy in the codeinitially generated. The redundant code consists almost entirely of Janus primitives for type tests, arrayelement extraction, etc. A simple scheme is used to eliminate redundant code. The idea is to maintain a setSeen of primitive operations that have already been encountered. Given an operation I � op(In; Out) in aclause, if there is an operation I 0 � op(In0; Out0) in Seen such that the inputs In and In0 are identical, thentheir results Out and Out0 must be equal: in this case, Out and Out0 are uni�ed, so that future references toOut now also reference Out0, and I is deleted; otherwise, I has not been encountered before, and is added to20

split(A, I, Big, ^K, ^Res) :- split(A, I, Big, ^K, ^Res) :-array(A), array(A),arg(1,A,X), arg(1,A,X),I1 is I+1, I1 is I+1,array(A),arg(I1,A,Y), arg(I1,A,Y),X =< Y, X =< Y,I = Big, I = Big,!, !,array(A),arg(1,A,Z),I2 is I+1,array(A),arg(I2,A,U),update array(A,[0->U, I->Z],V), update array(A,[0->Y, I->X],V),Res = V, Res = V,K = I. K = I.Before Optimization After OptimizationFigure 6: An example of the e�ects of Low-level Redundancy Elimination on generated codeSeen. A more detailed discussion can be found in Reference 27. The following clause illustrates the e�ectsof this optimization: the Janus source code considered is a clause from a predicate split/5 in a quicksortprogram:split(A,I,Big,^K,^Res) :- A.0 =< A.I, I = Big | Res = A[0->A.I,I->A.0], K = I.The Prolog code resulting from the translation of the guard and body of this clause, before and after commonsubexpression elimination, is shown in Figure 6.PERFORMANCEThis section compares the performance of QD-Janus with (i) the underlying Sicstus Prolog implementa-tion, and (ii) an implementation of FCP(:), a dialect of Flat Concurrent Prolog, that compiles to a low-levelabstract machine instruction set.14 The underlying hardware platform in each case is a Sparcstation-2. Thebenchmarks tested are the following:nrev(30) { Naive reverse of a list of length 30.21

hanoi(17) { The Towers of Hanoi program, translated from Reference 28.e { 10,000 iterations of a program to compute the value of the constant e = 2:71828 : : : to atolerance of 10�6 by summing the series Pn�1 1n! .qsort{ quicksort of a list of 50 integers.pi { a program to compute the value of � to a tolerance of 10�6 using the identity�4 = 1� 13 + 15 � 17 + 19 � � � �.dnf(50) { A program for the \Dutch national Flags" problem, by V. Saraswat.pascal(n) { A program to compute the nth row of Pascal's Triangle.29 The numbers given arefor n = 200.queen(n) { A program to �nd all solutions to the n-queens problem.29 The numbers given arefor n = 8.queen 1(n) { A program to �nd one solution to the n-queens problem, by S. Kliger.14 Thenumbers given are for n = 8.prime(n) { A program to compute the primes upto n using the Sieve of Eratosthenes.29 Thenumbers given are for n = 10; 000:tak { The Takeuchi benchmark. The numbers given are for tak(18,12,6,).combination { A combinations program by E. Tick.29 The numbers given are forcombo(6,[1,2,3,4,5,6],).deriv { A symbolic di�erentiation program by D. H. D. Warren.mastermind { A mastermind program using naive generate and test.29 The numbers given arefor go(3,3,).nand { A NAND-gate circuit designer using pipeline �lter.29The performance of QD-Janus compared to the underlying Sicstus Prolog v2.1 system compiling to nativecode is given in Table 1. This indicates the overheads introduced by the execution model of Janus, such aschecking whether a procedure should suspend if its inputs are inadequately instantiated, which cannot beremoved by the QD-Janus compiler. The �gures indicate that this overhead is not very large, averaging about20% and typically below 50%: indeed, on some programs where the cost of other computations dominates(e.g.,
oating-point computations for the benchmarks e and pi, and array management for the dnf(50)benchmark), the overheads incurred by QD-Janus are seen to be negligible. Even in a program such as nrev,which does very little \interesting" computation, it can be seen that QD-Janus is only 38% slower than theProlog program.Table 2 gives the speed of QD-Janus compared to the FCP(:) implementation of Kliger.14 It can be seenthat QD-Janus is more than three times as fast, on the average, as FCP(:), even though the FCP(:) systemcompiles down to a lower level and carries out various low-level optimizations, such as generating decisiontrees, that are not done by the QD-Janus system.Table 3 gives the relative heap utilization of QD-Janus compared to FCP(:). It can be seen that the heaprequirements of QD-Janus are typically two to three orders of magnitude better than those of the FCP(:)22

Program QD-Janus (QD) (ms) Sicstus Prolog (S) (ms) QD/Snrev(30) 1.16 0.84 1.38hanoi(17) 2913.2 2642.0 1.10e 688.0 680.0 1.01qsort(50) 18.0 13.5 1.33pi 345.6 345.5 1.00dnf(50) 126.5 123.7 1.02pascal(200) 872.0 730.5 1.19queen(8) 7350.0 4860.0 1.51prime(10000) 14659.3 10612.0 1.38Geometric Mean of QD/S : 1.20Table 1: Relative E�ciency of QD-Janus and Sicstus Prolog
Program QD-Janus (QD) (ms) FCP (ms) FCP/QDnrev(30) 1.16 4.5 3.89pascal(200) 872.0 4490 5.14queen 1(8) 49.8 110 2.21prime(10000) 14659.3 16560 1.13tak 367.2 1720 4.68combination 257.4 1892 7.35deriv 144.2 690 4.78mastermind 24866.3 30200 1.21nand 1197.2 4480 3.74Geometric Mean of FCP/QD : 3.22Table 2: Relative Speeds of QD-Janus and FCP23

Program QD-Janus (QD) (Kbytes) FCP (Kbytes) FCP/QDnrev(30) 0.42 516 1228.6pascal(200) 664.0 1792 2.7queen 1(8) 0.08 20 250.0prime(10000) 9.8 9468 966.1combination 821.0 2136 2.6deriv 0.57 768 1347.4mastermind 29.1 8676 298.1Geometric Mean of FCP/QD : 135.4Table 3: Heap Usage of QD-Janus and FCPimplementation, with an average heap consumption that is more than 130 times lower. We conjecture thatFCP(:) has such relatively high heap requirements because it allocates activation frames on the heap; bycontrast, QD-Janus uses a stack-oriented scheme that requires less space, is easier to reclaim, and can beexpected to be more e�cient. DISCUSSIONThe choice of Prolog as a target language was motivated by the fact that its \semantic distance" fromJanus is considerably less than that of lower level languages such as C. Because of this, and because theQD-Janus compiler was written in Prolog, the implementation was completed in a fairly short period oftime, taking one person approximately two months to complete. This certainly highlights the suitability ofProlog as a language for building language translators. As a concrete example, it took two days to implementsuspension analysis, and another day or two to implement the various optimizations that depend on it.However, ease of development is not the only reason that makes Prolog attractive in this context. As theperformance numbers indicate, much of the overhead associated with the management of various executionoverheads can be eliminated via reasonably simple compile-time analyses and optimizations. Given thegrowing number of high-performance8;9 and parallel10;11;12;13 implementations of Prolog, this suggests thatcompilation to Prolog may be a reasonably quick and cheap way to obtain both sequential and parallelimplementations of very high level programming languages with relatively little e�ort.CONCLUSIONSThis paper describes a sequential implementation of Janus, a concurrent constraint language, whose tar-get language is Prolog. The compiler uses a number of novel analyses and optimizations to improve theperformance of the system. These analyses and optimizations are typically concerned with reducing theamount of suspension testing in the generated code. The resulting system is quite e�cient: its performance24

is signi�cantly better than a comparable low-level implementation of FCP(:), and its overhead compared tothe underlying Prolog system is relatively modest. Our experience indicates that translation of logic pro-gramming languages to Prolog, accompanied by the development of good program analysis and optimizationtools, is an e�ective way to quickly develop
exible and portable implementations with good performanceand low cost. The system is available by anonymous FTP from cs.arizona.edu.Acknowledgements: Discussions with Ken Kahn, Jacob Levy, and Vijay Saraswat were invaluable inimproving the author's understanding of Janus. Clement Pellerin and Mats Carlsson made many helpfulsuggestions regarding details of the implementation. Thanks are due to Evan Tick for his help with thebenchmarking.References[1] V. Saraswat, K. Kahn, and J. Levy, \Janus: A step towards distributed constraint programming", inProc. 1990 North American Conference on Logic Programming, Austin, TX, Oct. 1990, pp. 431-446.MIT Press.[2] V. A. Saraswat, Concurrent Constraint Programming Languages, PhD thesis, Dept. of Computer Sci-ence, Carnegie-Mellon University, 1989. ACM Doctoral Dissertation Award series, MIT Press.[3] E. Shapiro, \The Family of Concurrent Logic Programming Languages", Computing Surveys, vol. 21no. 3, Sept. 1989, pp. 412-510.[4] J. Ja�ar and J.-L. Lassez, \Constraint Logic Programming", Proc. Fourteenth ACM Symposium onPrinciples of Programming Languages, Jan. 1987, pp. 111-119.[5] V. A. Saraswat, \Compiling CP(#; j;&) on top of Prolog", Technical Report CMU-CS-87-174, ComputerScience Department, Carnegie-Mellon University, Pittsburgh, Oct. 1987.[6] J. Tanaka and M. Kishishita, \Compiling Extended Concurrent Prolog { Single Queue Compilation",Proc. European Symposium on Programming, Saarbr�ucken, March 1986, pp. 301{314. Springer VerlagLNCS vol. 213.[7] K. Ueda and T. Chikayama, \A Compiler for Concurrent Prolog", Proc. Second International Sympo-sium on Logic Programming, Boston, July 1985, pp. 119{126. IEEE Press.[8] A. Taylor, \LIPS on a MIPS: Results from a Prolog Compiler for a RISC", Proc. Seventh InternationalConference on Logic Programming, Jerusalem, June 1990, pp. 174{185. MIT Press.[9] P. Van Roy and A. M. Despain, \The Bene�ts of Global Data
ow Analysis for an Optimizing PrologCompiler", Proc. 1990 North American Conference on Logic Programming, Austin, TX, Oct. 1990, pp.501-515. MIT Press.[10] K. A. M. Ali and R. Karlsson, \The Muse Or-Parallel Prolog Model and its Performance", Proc. 1990North American Conference on Logic Programming, Austin, TX, Oc. 1990, pp. 757{776. MIT Press.25

[11] M. V. Hermenegildo and K. J. Greene, \&-Prolog and its Performance: Exploiting Independent And-Parallelism", Proc. Seventh International Conference on Logic Programming, Jerusalem, June 1990, pp.253{268. MIT Press.[12] B. Ramkumar and L. V. Kal�e, \Compiled Execution of the Reduce-OR Process Model on Multiproces-sors", Proc. 1989 North American Conference on Logic Programming, Cleveland, Oct. 1989.[13] V. Santos Costa, D. H. D. Warren, and R. Yang, \The Andorra-I Engine: A Parallel Implementation ofthe Basic Andorra Model", Proc. Eighth International Conference on Logic Programming, Paris, June1991, pp. 825{839. MIT Press.[14] S. Kliger, Compiling Concurrent Logic Programming Languages, Ph.D. Thesis, The Weizmann Instituteof Science, Rehovot, Israel, Oct. 1992.[15] D. Gudeman, K. De Bosschere, and S.K. Debray, \jc: An E�cient and Portable Sequential Imple-mentation of Janus", Proc. Joint International Conference and Symposium on Logic Programming,Washington DC, Nov. 1992, pp. 399{413. MIT Press.[16] S. K. Debray, \Implementing Logic Programming Languages: The Quiche-Eating Approach", Proc.ICLP-93 Workshop on Practical Implementations and Systems Experience, Budapest, Hungary, June1993.[17] K. Ueda, \Guarded Horn Clauses", in Concurrent Prolog: Collected Papers, vol. 1, ed. E. Shapiro, pp.140-156, 1987. MIT Press.[18] I. Foster and S. Taylor, \Strand: A Practical Parallel Programming Tool", Proc. 1989 North AmericanConference on Logic Programming, Cleveland, Ohio, Oct. 1989, pp. 497-512. MIT Press.[19] M. Carlsson and J. Widen, SICStus Prolog User's Manual, Swedish Institute of Computer Science, Oct.1988.[20] J. Hughes, \Strictness Detection in Non-Flat Domains", in Programs as Data Objects, ed. H. Ganzingerand N. D. Jones, Springer-Verlag Lecture Notes in Computer Science vol. 217, Oct. 1985.[21] G. Lindstrom, \Static Evaluation of Functional Programs", Proc. ACM SIGPLAN '86 Symp. on Com-piler Construction, July 1986, pp. 196{206.[22] S. K. Debray, \Static Inference of Modes and Data Dependencies in Logic Programs",ACM Transactionson Programming Languages and Systems vol. 11, no. 3, June 1989, pp. 419-450.[23] G. Janssens and M. Bruynooghe, \An Instance of Abstract Interpretation Integrating Type and ModeInferencing", Proc. Fifth International Conference on Logic Programming, Seattle, Aug. 1988, pp. 669-683. MIT Press.[24] K. Marriott, H. S�ndergaard and N. D. Jones, \Denotational Abstract Interpretation of Logic Pro-grams", ACM Transactions on Programming Languages and Systems (to appear).[25] C. S. Mellish, \The Automatic Generation of Mode Declarations for Prolog Programs", DAI ResearchPaper 163, Dept. of Arti�cial Intelligence, University of Edinburgh, Aug. 1981.26

[26] J. Gallagher, M. Codish, and E. Shapiro, \Specialisation of Prolog and FCP Programs Using AbstractInterpretation", New Generation Computing vol. 6, pp. 159{186, 1988.[27] S. K. Debray, \Compiler Optimizations for Low-Level Redundancy Elimination: An Application ofMeta-level Prolog Primitives", Proc. Third Workshop on Metaprogramming in Logic (META-92), Upp-sala, June 1992.[28] A. Houri and E. Shapiro, \A Sequential Abstract Machine for Flat Concurrent Prolog", in ConcurrentProlog: Collected Papers, vol. 2, ed. E. Shapiro, pp. 513-574. MIT Press, 1987.[29] E. Tick, Parallel Logic Programming, MIT Press, Cambridge, 1992.

27

