QD-Janus: A Sequential Implementation of Janus in Prolog *

Saumya K. Debray
Department of Computer Science

University of Arizona

Tucson, AZ 85721, USA

Abstract

Janus is a language designed for distributed constraint programming. This paper describes QD-
Janus, a sequential implementation of Janus in Prolog. The compiler uses a number of novel analyses
and optimizations to improve the performance of the system. The choice of Prolog as the target language
for a compiler, while unusual, is motivated by the following: (i) the semantic gap between Janus and
Prolog 1s much smaller than that between Janus and, say, C or machine language—this simplifies the
compilation process significantly, and makes it possible to develop a system with reasonable performance
fairly quickly; (7) recent progress in Prolog implementation techniques, and the development of Prolog
systems whose speeds are comparable to those of imperative languages, indicates that the translation
to Prolog need not entail a significant performance loss compared to native code compilers; and (4i1)
compilation to Prolog can benefit immediately from a significant body of work on, and implementations
of, parallel Prolog systems. Our experience indicates that translation of logic programming languages to
Prolog, accompanied by the development of good program analysis and optimization tools, is an effective

way to quickly develop flexible and portable implementations with good performance and low cost.

Keywords : logic programming, implementation, compilation, optimization

This work was supported in part by the National Science Foundation under grant number CCR-8901283.

INTRODUCTION

! is an instance of a concurrent constraint programming language.? These languages are an elegant

Janus
generalization of concurrent logic programming languages® and constraint logic programming languages.*
The computational paradigm is one where a set of concurrently executing agents interact with each other via
a shared store. Given an underlying constraint system C, such interactions proceed via two primitives: an
agent can either ask whether a constraint C' € C is entailed by (the current state of) the store; or an agent can
tell a constraint C' € C, i.e., add C to the store. A central idea is to maintain a close connection between the
logical and operational semantics of programs by using logical entailment for synchronization purposes. This
is done via the blocking ask, which behaves as follows: given a store S, a blocking ask action ask(C') succeeds
if S = () fails if S = —C'; and suspends if S = C and S [£ =C', i.e. if there is not enough information in the
store to determine whether C'is true or not. Subsequently, when enough information has been added to the
store by the tell actions of other agents, this ask action is resumed and either succeeds or fails. Tell actions
can similarly be made to suspend until implicit ask actions associated with them are satisfied. Because
low-level operational aspects of concurrent execution, such as synchronization, are defined entirely in terms
of high-level concepts such as logical entailment, concurrent constraint programming languages have the very

desirable property that the computational behavior of programs closely mirror their declarative semantics.

This paper describes QD-Janus, a sequential implementation of Janus. QD-Janus relies on a translator
that compiles Janus programs to Sicstus Prolog: the resulting Prolog code can be compiled to native code
using Sicstus Prolog’s compiler, and linked with the Janus run-time library, which is also written in Prolog.
The choice of Prolog as the target language for a compiler is not entirely usual, though it has been used in the
past as a sequential implementation vehicle for concurrent logic programming languages.>%7 A significant
aspect of the QD-Janus implementation described here, compared to these earlier works, is the small overhead
incurred by QD-Janus compared to the underlying Prolog system: this is due not to any special language
feature of Janus, but because of a number of simple but effective compile-time analyses and optimizations

carried out by the QD-Janus compiler.

The choice of Prolog as a target language is motivated by a number of reasons: (i) the semantic gap
between Janus and Prolog is much smaller than that between Janus and, say, C or machine language—this
simplifies the compilation process significantly; (i7) recent progress in Prolog implementation techniques, and
the development of Prolog systems whose speeds are within a small constant factor of that of C programs,®°
indicates that the translation to Prolog need not entail a significant performance loss compared to native
code compilers; and (i4é) compilation to Prolog can benefit immediately from a significant body of work on,
and implementations of, parallel Prolog systems.!%'112.13 The initial aim of this implementation was not
necessarily to attain high execution speed, but to quickly provide a simple and portable prototype that would
serve as a “base implementation” used to check the correctness of other, more sophisticated implementations,
and which could be easily modified to test out ideas for program analyses and optimizations. The performance
of the system, nevertheless, is quite good: on the benchmarks tested, the speed of QD-Janus is, on the
average, only about 20% slower than that of the underlying Sicstus Prolog system compiling to native code;
it 1s over three times faster, and roughly two orders of magnitude more efficient in heap usage, than an
implementation of FCP(:)—a dialect of Flat Concurrent Prolog essentially equivalent to our version of Janus

modulo minor differences in the concrete syntax—that has an optimizing compiler and compiles down to a

low-level instruction set.'#

An interesting lesson of this project was that fairly sophisticated language translators can be implemented
in Prolog with surprising ease and efficiency. For example, the entire implementation described here was
completed by one person in approximately two months. Our experience with another sequential implemen-
tation of Janus, this one written entirely in C,'® suggests that the project would have taken an order of
magnitude more time had we relied on a lower level language such as C. This is not entirely surprising,
since programming language translation consists largely of tree traversals and pattern matching, which are
precisely Prolog’s forte. The performance of the system, compared to both the underlying Prolog system and
a comparable low-level implementation of FCP(:), indicate that because of the speed with which a simple
translator can be built to compile a logic programming language to Prolog, the implementor can spend most
of his time building effective program analysis and optimization tools, resulting in a low-cost system with

good overall performance.'®

JANUS: AN OVERVIEW

The fundamental primitive operations of Janus are ask and tell actions. Intuitively, an ask action is either
a type test or an arithmetic test, while a tell action constructs a data structure or value. Both ask and tell
actions suspend until their operands are “sufficiently instantiated”. A Janus program is a set of guarded
clauses defining its procedures, which, following logic programming terminology, are also called “predicates.”

A guarded clause for an n-argument procedure p is of the form
p(tl,...,tn) L Al,...,Ak | Bl Bm

where the ¢; are terms, A; are ask actions, and B; are either tell actions or procedure calls. The ‘| is the
commit operator. A procedure may be defined by more than one such clause. The ask actions Ay, ..., A

constitute the guard of the clause, while By, ..., B,, constitute its body.

Operationally, the execution of a procedure call p(uy, ..., u,) proceeds as follows: the guards of each of
the clauses for the procedure p are executed in parallel. This can have the following outcomes: (7) there is at
least one guard whose ask actions all succeed: in this case, one of the successful guards is nondeterministically
chosen to commit, and the remaining guards are killed; (#¢) no guard succeeds in committing, but there is
at least one guard for which some ask actions have suspended: in this case, the procedure suspends; and
(#4i) each guard fails: in this case, an error mesasge is given, and execution aborts. Note that since a guard
contains only ask actions, this phase of execution cannot change the value of any variable in the environment.
If a clause commits, the tell actions and procedure calls in its body are executed in parallel. Procedure calls

in the body are executed as described above. If the body i1s empty, the call returns.

Janus is in many respects similar to Flat GHC'? and Strand.'® There are, however, a number of dif-
ferences: the most important of these is the two-occurrence restriction of Janus. This restriction states,
essentially, that in any clause, a variable whose value cannot be inferred to be a constant from the guard
operations is allowed to have at most two occurrences: one of these occurrences is annotated to be the

“writable” occurrence, and the other is the readable occurrence. Only the writable occurrence of a variable

may be assigned to. Thus, variables in effect serve as point-to-point communication channels; other language

constructs allow many-to-one and one-to-many communication.

The two-occurrence restriction is motivated strongly by a vision of distributed constraint programming. A
fundamental concern is that syntactically correct programs should not cause the store to become inconsistent
at runtime: this is enforced by the two-occurrence restriction, which—together with the fact that only one
of the occurrences can be annotated as “writable”—ensures that each variable has exactly one producer,
thereby precluding any possibility of inconsistency. This has the desirable effect that programs become,
at least in principle, efficiently implementable. It has been observed that while programs typically do not
give rise to a great deal of aliasing, this information is not available to compilers, which have to resort
to complicated and potentially expensive algorithms to recover it. The problem is addressed in Janus by
specifying the default to be that there is no aliasing, and requiring the programmer to explicitly invoke certain
language constructs when sharing between structures is necessary. Rules for syntactic well-formedness then
ensure that the compile-time satisfaction of certain properties, local to a clause, regarding the number of
occurrences of a variable imply the run-time satisfaction of certain global properties regarding lack of aliases.
QD-Janus does not enforce the two-occurrence restriction at compile time. However, no aspect of the QD-
Janus implementation depends on the two occurrence restriction, so that effectively, this simply means that

the detection of certain errors is postponed to runtime instead of happening at compile time.

Data objects in Janus consist of the following: askers, tellers, numbers (integers and floats), constants,
arrays, and bags. An asker for a variable X is the “readable” occurrence of X: if we think of a variable as a
point-to-point communication channel, it denotes read capability on the communication channel X. A teller
for a variable X, written ~X, denotes the “writable” occurrence of X, i.e., write capability on the channel
X. An array A of n objects ag, ..., a,_1, written <aq, ..., a,_1>, represents a sequence of values indexed by
{0,...,n—1}. Arrays can also be created via two primitives array/2 and array/3. Operations on an array A
include computing its size, denoted by card(4); taking the value at index ¢, denoted A.<¢; taking subsequences
between indices I and J, denoted by A[I..J]; updating the values of A.¢1, ..., A.4g to mq, ..., myg, denoted
by Ali;->my, ..., ix—>mg]; and concatenating two arrays A and B, denoted by A#B. A bag represents
an unordered multiset of objects. In general, a bag expression is of the form {E1,...,Em|Ul,...,Un},
and denotes a bag that contains the elements E1, ... Em, and where the remainder of the bag consists of
partitions U1, ..., Un. The intent is that bags serve as many-to-one communication channels: in this case,
the intent is that there are n writers to the bag, who have access to U1, ... Un respectively. Ask constraints
in Janus consist of various type tests and relational tests on objects and their components. A tell constraint
is restricted to be of the form X = E, where E can be any expression including arithmetic, array, and bag

expressions.

SYSTEM ORGANIZATION

The entire QD-Janus system is currently written in Prolog and implemented on top of Sicstus Pro-
log v2.1.'° Tt consists of about 4500 lines of Prolog code, and is available by anonymous FTP from

cs.arizona.edu.

Janus programs are read in using a version of the public domain Prolog tokenizer and parser by R. A.

O’Keefe, modified to handle lexical and syntactic features of Janus. The translation proceeds as follows:

1. Each clause 1s transformed into an internal representation that allows various kinds of information to
be associated with each literal. This information is later used for various optimizing transformations.

The clauses for each predicate are also collected together for ease of later processing.

2. The program is analyzed to obtain information about the suspension behavior of predicates and about

the instantiation of their outputs.

3. Each predicate is analyzed to determine whether it is recursive and whether there is any nontrivial
common argument annotation, e.g., teller, between the head of every clause and every recursive body
literal: if there is, such annotations are factored out, and the clauses transformed, so that the annota-
tions are tested once at the entry to the recursive predicate, but need not be either generated or tested

on subsequent recursive calls. Such factoring can lead to significant speed improvements.

4. For each predicate, the head and guard of each of its clauses i1s analyzed to determine the “demand”
generated by that clause, i.e., the extent to which its arguments must be instantiated to ensure that

execution will not suspend in the guard.

5. The program is analyzed to obtain “calling patterns” for predicates. This information is used to
update the demand information computed, so that unnecessary suspension tests are not generated

where possible.

6. The demand information is used to translate the clauses for the procedures. There are basically
two possibilities that can arise: a procedure is either unimodal, i.e., there i1s exactly one pattern of
instantiations for the arguments for which its guards will not suspend; or it is multimodal, i.e.; there
is more than one possible pattern of instantiations for its arguments for which the guards will not
suspend. The code generated for unimodal procedures tends to be significantly simpler and more

efficient than the code for multimodal procedures.

Even though the QD-Janus compiler is written entirely in Prolog and relies heavily on various analyses
and optimizations to improve performance, compilation speed is quite fast, and is dominated by the 1/0O
time for reading in the Janus programs and writing out the translated Prolog code. This indicates that the
sophistication of the analyses and optimizations could be improved considerably without noticeably affecting

translation speed.

DEMAND ANALYSIS

Demand analysis for a predicate involves traversing the head and guard of each of its clauses to determine
the extent to which its arguments have to be instantiated in order for the guard computation to not suspend.
This is conceptually analogous to strictness analysis for lazy functional languages over non-flat domains.?%?!
However, there are a number of important differences between our notion of demand analysis and that
of strictness analysis, the most important of these being that (i) a function can have only one strictness

pattern, while a Janus procedure may have more than one pattern of demand; and (i) strictness analysis

typically relies on fixpoint computations over programs, whereas the demand analysis used in QD-Janus
has the limited aim of detecting the degree of instantiation necessary to allow the guards of a procedure to
commit, i.e., it does not contend with possible suspension of body goals, and therefore does not require a
fixpoint computation. The patterns of instantiation for which the guards of a procedure will not suspend
are called its activation modes, or modes for short. Note that this usage of the term “mode” is very different
from the sense in which it is used for Prolog. It is critical to the remainder of the compilation process, since
the classification of predicates as unimodal or multimodal, and the subsequent generation of code, depends

on information computed by demand analysis.

The demand of an n-ary predicate p is represented by a pair (Inst, Arefs), where Inst is a description of
how different arguments must be instantiated, and Arefs describes array references in the guards. Inst is a
term p(uy, ..., up), where each of the u; is a tree whose nodes are labelled d, or n, where ‘d’ denotes one level
of demand, i.e., requiring evaluation of the top-level functor of the term at that position, and ‘n’ denotes no
demand at all. It turns out that such trees are not always adequate for describing array references, e.g., for a
reference where the index is a variable or an expression. Array references are therefore described separately,
using the second component Arefs, which is a list of terms aref (A, I) where A is the array being referred to
and [is the index. Here, A and I are given in terms of paths down the tree representing the top-level goal.
Such a path is expressed as a list of selectors, where a selector is either an array reference aref(---), or a

list of integers, where an integer n denotes the n'* argument of the subterm at that level.

As an example, consider the following clause, where X.Y refers to the Y* element of an array X:
p(A, I, B, J) :- (A.I).(B.J) > 0 |

Since this requires that each of the variables A, I, B, and J be instantiated, the instantiation component of

the demand is given by
p(d, d, d, d).

In addition, the array elements A.I, B.J and (A.I).(B.J) must be instantiated. The demand corresponding
to the array reference A.T1 is described by aref([1], [2]), where [1] refers to the first argument position
in the top-level goal, i.e., the variable A, and [2] refers to the second argument position, i.e., the variable I.
Similarly, the demand for the array reference B. J 1s described by aref ([3], [4]), and that for (A.I).(B.J)
by aref(aref([1], [2]), aref([3], [4])). Now the last of these subsumes the first two demands, since
any call that satisfies this will also satisfy the other two. Thus, it suffices to specify the array reference

demand
aref(aref([1], [2]), aref([3]1, [4])).

In general, a clause may need the value of many different arrays, so the array reference demands are specified

as a list of such terms. Thus, the result of demand analysis for this clause is the pair

(p(d, d, d, d), [aref(aref([1], [2]), aref([3], [41))]).

Input : A set of Janus clauses Clauses.
Output : A set of demands D for these clauses.

Method : return D = U{clause_demand(C) | C' € Clauses}.

function clause_demand (C')
begin
propagate equality tests ‘X = E’ from the guard into the head where possible;
let Head = head of C', Guard = guard of C';, N = no. of arguments in Head;
Inst = (demand(Head[1]), ..., demand(Head[N])), where
demand(T) = if Tis an atom or a bag then ‘d’;
else if T = f(T1,...,T,) then ‘d(Dy,...,Dy,)’
where D; = demand (T;),1 < i < n;
else /* T is a variable */ a new variable;
Arefs == {;
for each guard test G of Guard do
if G is a test ‘E; op F-’ then
note_demand (FEy, Head, Inst, Arefs);
note_demand (Eq, Head, Inst, Arefs);
else if GG is a type test 7(F) then
note_demand (E, Head, Inst, Arefs);
fi
od;
Inst’ := normalize(Inst);
Arefs' := rem _redundancies(Arefs);
return (Inst’, Arefs');

end

Figure 1. The Algorithm for Demand Analysis

/* note_demand (FE, Head, Inst, Arefs) takes an expression E and translates this into a demand on
argument positions in the head Head and notes this demand in the appropriate position in the
mode description Inst, and any array reference demands in Arefs. */

procedure note_demand(E, Head, Inst, Arefs)

begin

if £ is a variable then
traverse Head, Inst to find E; /* heads are linear by definition */
set the corresponding position of Inst to ‘d’;
else if £ = ‘card(4)’ then
note_demand (4, Head, Inst, Arefs);
else if F is an array reference A.I then
note_demand (4, Head, Inst, Arefs);
note_demand (I, Head, Inst, Arefs);
let Pathy = selector_path(Head, A), Paths = selector path(Head, I);
Arefs := Arefs U {aref(Pathy, Paths)};
fi

end

/* selector_path(T, X) returns a path from the root of 7" to X. */
function selector_path(T, X)
begin
if X =T return ‘[17;
else if X is a number return ‘num(7)’;
else if X is an array reference A.I then return ‘aref (Pathy, Paths)’,
where Pathy = selector_path(T, A), Pathy = selector_path(T, I);
else if T is a term ‘£({y,...,1,) then
if X is a subterm of #x,1 < k < n, then return ‘[k | U]’
where U = selector _path(ty, X);
fi
fi

end

Figure 2: Auxiliary functions used in Demand Analysis

Figure 1 gives the details of the algorithm, with auxiliary functions described in Figure 2. Here, the notation
t[i] denotes the i*" element of a term or tuple t. The function normalize(I) simplifies demands in a way that

allows more of them to be identified. For example, consider the program

length([], "Len) :- Len = O.
length([_IL], “Len) :- length(L, “Lenl), Len = Lenl + 1.

Straightforward demand analysis infers the demand { length(d, d), [1) for the first clause; for the second
clause, the demand inferred is (length(d(n, n), d), [1), since the first argument is required to be a term
with a binary constructor. If code were to be generated from this, the predicate length/2 would be treated
as a multimodal predicate. However, the second clause requires that its first argument be instantiated only at
its top level, i.e., only its principal functor is required to be defined. The function normalize() recognizes this
and rewrites the demand for the second clause to (length(d, d), [1). This is the same as the demand
of the first clause. After normalization of demands, therefore, length/2 is implemented as a unimodal

predicate, which is considerably more efficient than a multimodal implementation.
THE STRUCTURE OF THE GENERATED CODE

Data Representation

Data representation in QD-Janus generally follows that of the underlying Prolog system. The following
types, which are found in Janus but not in Prolog, are represented specially: Askers are represented as
Prolog variables. Tellers are represented using the function symbol ¢~’/1: a teller for X is represented by
a term “X. An array of size n, n > 0, is represented by a term whose principal functor is .’ /n, while the
empty array is represented by the constant ‘[]’: this representation has the benefit that the treatment of
lists as arrays of length 2 falls out naturally, and does not have to be handled separately. The representation
of bags is similar to that of Prolog lists, except that it is in terms of a constructor ‘:’/2 and a constant ‘{}’.

“{} represents the empty bag, while a non-empty bag containing the elements 1, ..., 2, is represented as

Y T E Ry R
Unimodal Procedures

A procedure is said to be unimodal if there is exactly one “minimal” pattern of instantiations of its

arguments for which its guards can be executed without suspending. As an example, the procedure

fact(0, "F) :- F = 1.
fact(N, "F) :- N > 0 | fact(N-1, “F1), F = N«F1i.

is unimodal, because each of its clauses requires that the first argument be instantiated and the second

argument be a teller.

Consider a Janus predicate p/3, defined by the single clause

p(X, Y, "Z) :-X>0,Y>0 1| Z=X+ Y.

In order to be able to execute the guard, the first two arguments of this predicate must be instantiated,
and the third argument must be annotated as a teller. Thus, all three arguments have to be instantiated
to non-variable terms if this predicate is to execute without suspension. The Prolog code generated by the
QD-Janus compiler checks this first (predicate names generated by QD-Janus have been greatly simplified
in these examples to enhance readability: in practice, they are much more elaborate, in order to avoid name

conflicts):

p(X, Y, Z) :-
(nonvar(X), nonvar(Y), nonvar(Z)) —>
p_worker(X, Y, Z) ;
p_susp(X, Y, Z).

The predicate p/3 in the Prolog code generated by the QD-Janus compiler is the sentinel predicate, whose
task is to determine whether all the necessary arguments are sufficiently instantiated. If they are, control is
transferred to the worker predicate p_worker/3, which does the actual computational work of the procedure.
Otherwise, if one or more arguments are not sufficiently instantiated, control is transferred to the suspension
handler p_susp/3, whose job is to ensure that the original goal suspends waiting for the appropriate variable

to become 1nstantiated.

The structure of the worker predicate p_worker closely mirrors that of the original Janus predicate. In

this case, for example, it would be:

p_worker(X, Y, "Z) :- X >0, Y >0, !, Z is X+Y.
p_worker(X, Y, Z) :- no_guard_match_error(p(X,Y,Z)).

The predicate no_guard match_error is called by default if all of the guards of a goal fail, and prints out an
error message. This default behavior can be changed by the user, by adding a clause whose guard consists
of the single atom else. A predicate can contain at most one clause with an else guard, and such a clause
must be the last of all the clauses defining that predicate. Declaratively, an else guard can be interpreted
as syntactic sugar for the conjunction of the negations of the guards of the remaining clauses, none of which

have an else guard. For example, consider the definition
fact(0, "F) :- F = 1.
fact(N, "F) :- N > 0 | fact(N-1, “F1), F = N«F1i.
fact(N, F) :- else | debug((fact(N,F)).
Here, the else guard can be understood as shorthand for the ask constraint

|(NIO A E'FliFIhFl)/'(N>O A E'FliFIhFl).

The first conjunct says that of the variables N and F in the head of this clause, it 1s not the case that N is 0

and F is a teller (for some variable F), i.e., the guard of the first clause is not satisfied; the second conjunct

says that it is not the case that N is greater than 0 and F is a teller, i.e., the guard of the second clause is
also not satisfied. In the original definition of Janus,® there was no notion of failure: if all the guards for
a call failed, the call simply “vanished silently.” This was changed to the behavior described above for two
reasons: first, it is often the case that failure of all guards of a procedure indicates an abnormal situation,
and the behavior described above makes it easier to detect and debug these; second, the approach adopted is
strictly more expressive, in the sense that the earlier default behavior of “silent vanishing” can be simulated

simply by adding a clause of the form
pC ...) :- else | true.
The suspension handler examines its arguments to determine how the suspension should be set up:
p_susp(X, Y, Z) :- var(X), !, freeze(X, p(X, Y, Z)).

var(Y), !, freeze(Y, p(X, Y, Z)).
var(Z), !, freeze(Z, p(X, Y, Z)).

p_susp(X, Y, Z)

p_susp(X, Y, Z)

Strictly speaking, the cut in the last clause is unnecessary, but at this point the compiler has not been

engineered to eliminate it.

The reader may notice that this structure can cause a goal to suspend and resume a number of times,
resulting in poor execution behavior in some cases. For example, consider a goal p(U, V, W) where all
of the arguments are variables: this causes the goal to suspend, then U becomes instantiated causing the
suspended goal to be resumed and then to suspend again, then V gets a value causing the goal to resume
and then suspend again, and finally W gets a value causing the goal to finally resume and continue execution.
Such suspension behavior, where a goal has to suspend until each element of a set of variables becomes
instantiated, is referred to as “conjunctive suspension.” It is possible to handle this by setting up a series
of nested freeze-goals. However, we chose deliberately to not implement conjunctive suspension in this
manner: this decision was due in part to keep the generated code simple, but mostly to mirror decisions in
another Janus implementation that is currently under way,'® where it was felt that conjunctive suspension

would be too expensive to implement, and not common enough to justify.

The compiler implements a number of optimizations to the basic translation scheme described above. If
a predicate does not need any of its arguments to be instantiated, e.g. if there are no guard tests, then the
sentinel and suspension handler are not generated. If a predicate requires only the “top-level” functor of a
single argument position to be instantiated, a freeze/2 goal is generated “in place” in the sentinel, and the
suspension handler is omitted. This avoids the cost of a jump to the suspension handler and also reduces

the size of the code generated. As an example, consider the definition
fact(N, F) :- integer(N), N >= 0 | fact(N, 1, F).
In this case, the code actually generated for the sentinel is
fact(N, F) :- nonvar(N) -> fact_worker(N, F) ; freeze(N, fact(N, F)).

10

Because of other optimizations, such as the Invariant Tag Factoring optimization discussed later in this

paper, this turns out to be applicable quite often.
Multimodal Procedures

A procedure is said to be multimodal if there is more than one pattern of instantiations of its arguments

for which its guards can be executed without suspending. As an example, consider the procedure

m(0, N, “T) :- T = N+1.
m(N, 0, “T) :- T = N+1.

This procedure can execute in two modes: either the first and third arguments can be instantiated, in which
case the first clause may commit; or the second and third arguments can be instantiated, in which case
the second clause may commit. Because it can commit for either of two distinct modes, this procedure is

multimodal.

Our experience has been that procedures such as m/3 above, which are truly nondeterministic in the
sense that there are inputs for which more than one clause can be selected, are rare in practice. However, a

procedure may be multimodal even if it is deterministic. As an example, consider the following procedure:

posintlist([]).
posintlist([N|L]) :- N > 0 | posintlist(L).

In order to avoid suspension, the first clause requires simply that its argument be instantiated, i.e., it has
the demand (posintlist(d), []). By contrast, the second clause requires not only that the argument
be instantiated, but also the the first sub-argument (corresponding to the variable N in the code above) of
the argument be instantiated, i.e., has the demand { posintlist(d(d,n)), [1). Because the two demands
are different, this procedure is inferred by our implementation to be multimodal. Procedures of this kind,
which traverse a list examining each element, are not uncommon, and as a result multimodal procedures are

encountered more frequently than one might initially expect.

The structure of the code generated for a multimodal procedure is more complex than that for a unimodal
procedure. In order to reduce the amount of testing repeated across code generated for the different modes
of a multimodal procedure, they are first examined to see if there is any common demand between them.
In the example above, it can be seen that both modes of activation for m/3 require that the third argument
be instantiated. This common demand is factored out to define a sentinel predicate in the generated Prolog

code:
m(X, Y, Z) :- nonvar(Z) -> m_coord(X, Y, Z) ; freeze(Z, m(X, Y, Z)).

The common demand that is tested by the sentinel predicate is “subtracted” from the different modes for

the predicate, so that it is not again tested for later.

The predicate m_coord/3 is the coordinator: in an earlier version of QD-Janus, this predicate was respon-

sible for trying the clauses for the predicate so as to determine whether a particular call to that predicate

11

should commit, suspend, or fail. In the current implementation, the coordinator simply transfers control to
the first of a series of “handler predicates”, each of which is responsible for the clauses of a particular mode.
The compiler groups the clauses for a multimodal predicate by mode and orders them so that at runtime,
modes corresponding to recursive clauses are processed before those that correspond to only non-recursive
clauses. This is consistent with the semantics of Janus, which does not give any special significance to the
order of clauses in the source program, and is motivated by a desire to improve the efficiency of recursive

procedures.

Each handler predicate—except the first one, as explained below—takes one additional argument, a
“suspension mode list” argument SuspModes that is bound, at runtime, to a list of modes that may have to
be examined if an activation has to suspend. The general behavior of a handler for a mode M of a predicate
is as follows: First, check the input arguments to determine whether they are sufficiently instantiated for the
mode M. If not, add M to the input mode list SuspModes and invoke the handler for the next mode with
this extended list of modes; otherwise, process each of the clauses associated with the mode M in turn. If any
of these clauses commits, discard the remaining alternatives and mode handlers; otherwise, if every clause
for the mode fails, invoke the handler for the next mode with input mode list SuspModes. The first mode
handler does not require a mode list argument, since no other modes will have been processed before it has
executed. The last mode handler calls a procedure that determines whether the activation should suspend.
If there 1s a non-empty list of modes available, this procedure calls a library predicate that takes a list of
modes together with a term representing the procedure call being processed, and traverses the modes to
determine a set of variables—one for each mode in this list—on which it creates a “disjunctive suspension.”
This refers to a suspended activation that is resumed as soon as any one of the variables that it 1s suspended
on becomes bound. Otherwise, the mode list 1s empty at runtime, which means that every non-else-guarded
clause for that predicate has failed: in this case, the else-guarded clause for that predicate i1s executed if
there is one, otherwise a runtime error occurs and execution i1s aborted. The reason that a mode handler
invokes the next handler with an augmented mode list if its inputs are insufficiently instantiated is that a
decision to suspend an activation cannot be made until 1t has been determined that no clause for any of the

modes has committed.

As an example, the coordinator and mode handlers for the multimodal predicate m/3 discussed above are

as follows:

m_coord(X, Y, Z) :- m_handler_1(X, Y, Z).

m_handler_1(X, Y, Z) :- /* handler for mode m(d,n,n) */

var(X), !, m_handler_2(X, Y, Z, [m(d,n,n)]). /* suspension case */
m_handler_1(0, N, ~Z) :- !, plus_10(0, N, Z).
m_handler_1(X, Y, Z) :- m_handler_2(X, Y, Z, [1). /* failure case */
m_handler_2(X, Y, Z, SuspModes) :- /* handler for mode m(n,d,n) */

var(Y), !, m_susp_chk(X, Y, Z, [m(n,d,n) | SuspModes]). /#* suspension case */
m_handler_2(N, 0, “Z, _) :- !, plus_10(0, N, Z).

m_handler_2(X, Y, Z, SuspModes) :- m_susp_chk(X, Y, Z, SuspModes). /* failure case */

12

Here, a call plus_10(X,Y,Z) suspends until its second argument Y is instantiated, after which Z is bound to
the sum of X and Y. Notice, however, that in the code above, a call to plus-01/3 occurs only after a mode
handler has committed, and therefore the possible suspension of plus_01/3 does not affect the suspension
behavior of the predicate m/3. An examination of the definition of m/3 indicates that this is the desired

operational behavior for this predicate.
PROGRAM ANALYSIS AND OPTIMIZATION

Suspension Analysis

One source of overhead in the implementation described so far is that, because in general there is no
information available about when variables can be guaranteed to be instantiated, it is necessary to generate
a great many tests to determine whether a computation should suspend because of insufficiently instantiated
inputs. With more information about the instantiation of variables at different program points, many of these
tests can be eliminated. The QD-Janus compiler uses an inter-procedural dataflow analysis to determine
the instantiation of variables at various program points. This information is then used to effect various

optimizations.

While the analysis is similar in flavor to mode analysis for Prolog,???32%25 the details are somewhat
different. In particular, the analysis is complicated by the fact that procedure calls in a Janus program may

suspend. To see the problem, consider the following example:
p(N, “X) :- fact(N, "F), X = F-1.

fact(0, "F) :- F = 1.
fact(N, "F) :- N > 0 | fact(N-1, “F1), F = N«F1i.

An inspection of the clauses defining fact/2 indicates that each clause contains a tell action that assigns a
number to the teller variable in the second argument position. A simple-minded analysis might infer from
this that a procedure call fact(N, “F) always assigns a number to F, and based on this, omit suspension

tests from the tell action X = F-1 in the body of p/2. Now consider the execution of the query
7- p(N, “X), N = 5.

If the call p(N, ~X) is executed first (as it would in QD-Janus), the resulting computation of fact(N, °F)
will suspend because N is uninstantiated. Because of this, the tell actions in the body of fact/2 will not
have executed, and the variable F will still be uninstantiated, when the tell action X = F-1 in the body of
p/2 is executed. If this tell action is “optimized” by omitting its suspension tests, this will, incorrectly, give

rise to a runtime error.

This problem is addressed by performing a simple suspension analysis together with a Prolog-like ground-
ness analysis. The domain of the analysis is very similar to that used for Demand Analysis described earlier.

The essential idea is to propagate a set of variables Inst Vars, denoting variables whose values are guaranteed

13

to be known at any program point, across the body of each clause from left to right. Demand analysis is
then used to determine, for each procedure call G in the body, whether the guards of the clauses defining G
can be guaranteed to not suspend. If this can be guaranteed, and every goal in the body of each clause for G
can recursively be guaranteed to not suspend, then i1t can safely be assumed that all tell actions under G are
carried out, and use this information to update the set of variables InstVars appropriately. This resembles
an analysis algorithm for FCP programs proposed by Gallagher et al.,2® in that the goals in the body of a
clause are analyzed from left to right: however, Gallagher et al. ignore the possibility of suspension, which is

vital to our analysis; moreover, the ideas in Reference 26 do not appear to have actually been implemented.

The analysis starts with the most general goals for each of the predicates that are declared to be user-

callable via a directive export/1, e.g.:
:- export p/2, q/3, r/1.

Note that users are not expected to specify “calling patterns” for the exported predicates: this simplifies
specifications and reduces the possibility of bugs arising from inadvertant errors in such user-specified calling
patterns. If a file is compiled without an explicit export directive, it is assumed that all the procedures
defined in that file are user-callable, and no dataflow analysis is carried out. The algorithm is sketched in

Figure 3, with the procedure analyse described in Figure 4.
Invariant Tag Factoring

It is often the case that certain arguments of a predicate are consistently used with a particular annotation
or “tag”, e.g. as a teller. For example, consider the predicate
qs(A, °"B) :- card(4) =< B = A.
qs(A, "B) :- card(4) >
split(A, "K, "E),
gs(E[0 .. K-11, ~C), qs(E[K+1 .. card(E)-1], "D),
B=C#<E.K | D>.

1]
1]

Notice that both clauses of qs/2 expect the second argument to be tagged as a teller; and each of the
recursive literals for qs/2 has the second argument tagged as a teller. This means that once execution has
entered qs/2 after successfully verifying that the second argument is tagged as a teller, the recursive calls to
qs/2 will always successfully verify the teller tag of the second argument. For the recursive calls in the body
of the second clause of qs/2, therefore, it is not necessary to check that the second argument is a teller. This,
in turn, implies that for these recursive calls, the construction of the second argument as a teller-tagged term

is unnecessary. The generated code can therefore have the following structure:
qs(A, "B) :- gqs_f(A, B).

qs_f(A, B) :- card(A) =<
qs_f(A, B) :- card(a) >

1] B=A.
1]

14

Input : A Janus program P, a list £ of exported predicates, and for each predicate p € P a list of demands
Demands(p).

Output : A pair (Call, Ret), where Callis a set that describes, for each predicate p € P, which arguments
p are guaranteed to be instantiated just before a call to p, and Ret is a set that describes,; for each
predicate p € P, which arguments p are guaranteed to be instantiated when control returns from a call

to p.

Method :

Call := 0; Ret :=
for each p € P do analysing(p) := false;
repeat
change = false;
for each p € £/ do
analyse(p, C') where C is a most general calling pattern for p;
od
until —change;
return (Call, Ret);

Figure 3: The Algorithm for Suspension Analysis

15

procedure analyse(p, C')
begin
if —analysing(p) then /* loop check */
analysing(p) := true;
old_call, := call, if there is an entry call, for p in Call; T otherwise;
new_call, = glb(C, old_call,);
if new_call, # old_call, then
update the entry for p in Call to new_call,;
change := true,;
fi
for each clause C; = ‘Head; :— Guard; | Body,” of p do
InstVars := the set of variables that must be instantiated for Guard; to commit;
for each G = ¢(¢) in Body; do
analyse(q, C") where C” is the calling pattern for GG given instantiated variables InstVars;
if G with Demands(g) will not suspend given InstVars then
use rety € Ret to update InstVars;
fi
od
compute the output description ret; for the head of Cj;
old_ret, := ret, if there is an entry ret, for p in Ret; T otherwise;
new_ret, := glb(ret;, old_ret,);
if new_ret, # old_ret, then
update the entry for p in Ret to new_rety;
change := true;
fi
od
analysing(p) := false;
fi

end

Figure 4: The Procedure analyse used in Suspension Analysis

16

split(A, “K, "E),
qs_f(E[0 .. K-1], C), qs_f(E[K+1 .. card(E)-1], D),
B=C#<E.K | D>.

Note that in the resulting code, teller tags are neither generated nor checked in the procedure qs_£/2.

The transformation of a program to “factor out” such unnecessary tag operations is called Invariant Tag
Factoring. It is analogous to invariant code motion out of loops, though it is applicable to recursive calls in
general rather than just to iterative computations. The current implementation of tag factoring works only
for direct recursion. This is sound, but may be overly conservative in that it may miss some opportunities for
factoring. Also, at this time only unary functors are considered for factoring: this catches the annotations
for tellers, and possibly other unary function symbols. The algorithm could be generalized to functors with
arity greater than 1, but this would introduce additional complexity into the code transformation because
of the need to expand arities, and it is not obvious that this situation i1s encountered often enough to justify

this additional complexity.

The algorithm for tag factoring is described in Figure 5. Strictly speaking, it is not necessary to compute
most specific generalizations for this optimization. Since we are interested only in obtaining, for each
argument position i, 1 < i < n, the longest sequence of unary functors, starting at the root, that is common

to the ' argument of each literal in Ly, this step of the computation can be simplified.
Reducing Suspension Tests in Clause Guards

As mentioned earlier, suspension analysis produces a calling pattern for each predicate in a program.
Since every call to that predicate can be guaranteed to have at least this degree of instantiatiation, this
calling pattern can be used to eliminate certain suspension tests in the guard. This is done by subtracting
the calling pattern from each mode for that predicate, and generating code as described earlier from the
residual modes. Note that, as described earlier; if the calling pattern indicates that all calls are sufficiently
instantiated, then there is no residual demand after subtracting out the calling pattern, and as a result no

separate sentinel and suspension handling code is generated.
The improvements to the code generated due to this optimization are illustrated by the following program:

:— export fact/2.
fact(N, F) :- integer(N) | fact(N, 1, F).

fact(N, A, "F) ;- N=0 | F = A.
fact(N, A, “F) :- N > 0 | fact(N-1, N*A, “F).

If calling patterns were not computed, fact/3 would have to test its first argument to determine that it was
instantiated. However, this test is eliminated when calling patterns are propagated from fact/2.

Reducing Suspension Tests in Clause Bodies

In general, tell actions in clause bodies may have associated suspension tests to determine whether they

17

Input: A list L of Janus clauses for a procedure p/n.

Output: A list of Janus clauses for p, and possibly a new procedure p’ resulting from factoring out invariant

tags from the clauses for p.

Method:
2.

1. If p is not (direct) recursive, return L.

Compute the set L, of literals in L whose predicate symbol is p. This includes the head of each

clause for p, as well as recursive calls to p.

. Compute the most specific generalization G of the literals L,. This gives a template of functors

that can be factored.

. If every argument of GG is a variable, then no interesting factoring is possible: return L.

. Define a new predicate p’/n, whose clauses are exactly the clauses for p/n, except that every

literal of the form p(ty,...,t,), including the heads of clauses, is replaced by a literal of the
form p/(u1, ..., up). The terms uy, ..., u, are derived from the terms ¢1,...,¢, and the template

G = p(wy, ..., wy), as follows:

(a) If w; is a variable then w; is the same as ¢;;

(b) otherwise, w; is a term of depth k, then wu; is the depth-k subterm of the corresponding

argument ¢;.

. Since only unary functors are being considered, each argument position of the template G will

have exactly one occurrence of a variable. Let the variable occurring at the i*” argument position

of (G be denoted by A;.
Replace the original definition of p by the clause

G — p'(A1,..., An).

Figure 5: The Algorithm for Invariant Tag Factoring

18

should suspend because not all of their inputs are available. As an example, consider the clause

fact(N, “F) :- N > 0 | fact(N-1, “F1), F = N#F1.

Without any other information available, the default translation of this clause would have to take into
account the fact that the tell action ‘F = N * F1’, as well as the subtraction to compute the value N-1,

might have to suspend. The code generated might therefore have the form

fact_1(N, "F) :- N >0, !, times(N, F1, F), minus(N, 1, N1), fact_1(N1, "F1).

where calls to the procedures times/3 and minus/3 suspend until the first and second arguments become
bound. However, arithmetic operations implemented in this way can be quite expensive, in part because of
the additional testing necessary to determine whether a computation should suspend. Thus, there are two
sources of inefficiency in the code given above: first, the additional testing and state transitions involved in
executing the times/3 and minus/3 goals; and second, the potential cost of suspension and resumption for
the goal times(N, F1, F) in the code above.

As described earlier, during dataflow analysis each literal in a clause is associated with a set of variables
whose values can be assumed to be known when that literal 1s about to be executed. This information is used
to eliminate runtime tests for suspension in clause bodies wherever possible. The variables whose values are

inferred to be known at various points in the clause for fact/2 above are as follows, indicated in comments:

fact(N, "F) :- N> 0 |
/* known: {N} */ fact(N-1, "F1),
/* known: {N,F1} */ F = N*F1. /* known: {N,F1,F} */

During code generation, this information is used to reduce the number of suspension tests necessary. In this
example, suspension tests for the arithmetic computations in the body can be eliminated entirely, leading to

generated code of the form

fact_1(N, “F) :- N1 is N-1, fact_1(N1, “F1), F is N * Fi.

Note that the code actually generated would be more efficient, because invariant tag factoring would have

(a0

eliminated the teller annotation **” in the second argument of fact_1/2.

If an operation needs the values of some variables, but these variables cannot be inferred to be known at
compile time, code 1s generated to suspend until these variables become bound at runtime. In the clause for
fact/2 above, for example, if we were unable to infer that this procedure would bind its second argument
to a ground term when invoked—and, therefore, that the value of the variable F1 would be available when

control returned from the recursive call—the code generated would be as follows:

fact_1(N, “F) :- N1 is N-1, fact_1(N1, “F1), times_10(N1,Fi,F).

19

where times_10/3 is a library procedure defined as:

:— block times_10(7, -, 7).
times_10(X,Y,Z) :— Z is Xx*Y.

Here, the ‘block’ declaration for times_10/3 specifies that the execution of any call to this procedure should
suspend if the second argument is a variable. Note that suspension tests are not generated for variables that

can be guaranteed, at compile time, to be bound.
Optimization of Arithmetic

The QD-Janus compiler tries, as far as possible, to evaluate arithmetic expressions at compile time.
This optimization was initially motivated by the fact that arrays in Janus are 0-based, while subterms of
compound terms in Prolog are indexed from 1, so that naively generated code for a Janus array reference

with constant index, such as A.0, was of the form
., array(4), I is O0+1, arg(I, A, X),

Obviously, there is no need to generate code to evaluate the expression ‘0+1” at runtime: it can be evaluated
at compile time instead. In order to avoid this kind of unnecessary runtime computation, the compiler
implements a general algorithm for reorganizing and optimizing arithmetic expressions. The idea is to use
properties such as associativity and commutativity of operators to rearrange expressions to bring constants
as “close together” as possible, after which constant subexpressions are evaluated at compile time. The
algebraic properties that the system uses include the following: + and * are associative and commutative; 0 is
an identity for +, 1 is an identity for *; 0 is a null element for *; E1-Es = E1+(-F2); and Ey/E2 = E1*(1/ E2).
The last two properties are used to transform expressions involving nonassociative operators into expressions
with associative operators, in the hope that this may allow expressions to be further restructured and partially
evaluated at compile time. The assumption that addition and multiplication are associative and commutative
can sometimes lead to expression restructurings that change the results for floating point computations.
However, in this respect the QD-Janus compiler behaves no differently from languages such as C, which also
consider addition and multiplication to be associative and commutative. In situations where the order of
evaluation makes a difference, an order of evaluation can be enforced by using explicit temporary variables,
as in the case of C. The arithmetic expression simplifier does not know about the distributivity of * over +.

This would be simple to add, but in our experience it is not clear that it would be very useful.
Redundancy Elimination

Because Prolog code is generated via syntax directed translation, there is a lot of redundancy in the code
initially generated. The redundant code consists almost entirely of Janus primitives for type tests, array
element extraction, etc. A simple scheme is used to eliminate redundant code. The idea is to maintain a set
Seen of primitive operations that have already been encountered. Given an operation I = op(In,0Out) in a
clause, if there is an operation I’ = op(In’, Out’) in Seen such that the inputs In and In’ are identical, then
their results Out and Out’ must be equal: in this case, Out and Out’ are unified, so that future references to

Out now also reference Out’, and I is deleted; otherwise, I has not been encountered before, and is added to

20

split(A, I, Big, "K, "Res) :- split(A, I, Big, "K, "Res) :-

array(4), array(4),

arg(1,4,X), arg(1,4,X),

I1 is I+1, I1 is I+1,

array(4),

arg(I1,A,Y), arg(I1,A,Y),

X =< Y, X =< Y,

I = Big, I = Big,

' '

array(4),

arg(1,4,2Z),

12 is I+1,

array(4),

arg(I2,A,U0),

update_array(A, [0->U, I->Z],V), update_array(A, [0->Y, I->X],V),

Res =V, Res =V,

K =1. K = 1.
Before Optimization After Optimization

Figure 6: An example of the effects of Low-level Redundancy Elimination on generated code

Seen. A more detailed discussion can be found in Reference 27. The following clause illustrates the effects
of this optimization: the Janus source code considered is a clause from a predicate split/5 in a quicksort

program:
split(A,I,Big, K, "Res) :- A.0 =< A.I, I = Big | Res = A[0->A.I,I->A.0], K = I.

The Prolog code resulting from the translation of the guard and body of this clause, before and after common

subexpression elimination, is shown in Figure 6.
PERFORMANCE

This section compares the performance of QD-Janus with (¢) the underlying Sicstus Prolog implementa-
tion, and (i7) an implementation of FCP(:), a dialect of Flat Concurrent Prolog, that compiles to a low-level
abstract machine instruction set.'* The underlying hardware platform in each case is a Sparcstation-2. The

benchmarks tested are the following:
nrev(30) — Naive reverse of a list of length 30.

21

hanoi(17) — The Towers of Hanoi program, translated from Reference 28.

e — 10,000 iterations of a program to compute the value of the constant e = 2.71828... to a

1

tolerance of 10~¢ by summing the series En>1 o7

gsort— quicksort of a list of 50 integers.

pi — a program to compute the value of 7 to a tolerance of 107° using the identity
_ 1,1 _ 1,1
T=l-g+tg—gtg—
dnf (50) — A program for the “Dutch national Flags” problem, by V. Saraswat.

pascal(n) — A program to compute the n!? row of Pascal’s Triangle.?® The numbers given are

for n = 200.

queen(n) — A program to find all solutions to the n-queens problem.?® The numbers given are

for n = 8.

queen_1(n) — A program to find one solution to the n-queens problem, by S. Kliger.!* The

numbers given are for n = 8.

prime(n) — A program to compute the primes upto n using the Sieve of Eratosthenes.?’ The

numbers given are for n = 10,000.
tak — The Takeuchi benchmark. The numbers given are for tak(18,12,6,.).

combination — A combinations program by E. Tick.2? The numbers given are for
combo(6,[1,2,3,4,5,6],.).

deriv — A symbolic differentiation program by D. H. D. Warren.

mastermind — A mastermind program using naive generate and test.?’ The numbers given are
for go(3,3,.).

nand — A NAND-gate circuit designer using pipeline filter.??

The performance of QD-Janus compared to the underlying Sicstus Prolog v2.1 system compiling to native
code is given in Table 1. This indicates the overheads introduced by the execution model of Janus, such as
checking whether a procedure should suspend if its inputs are inadequately instantiated, which cannot be
removed by the QD-Janus compiler. The figures indicate that this overhead is not very large, averaging about
20% and typically below 50%: indeed, on some programs where the cost of other computations dominates
(e.g., floating-point computations for the benchmarks e and pi, and array management for the dnf(50)
benchmark), the overheads incurred by QD-Janus are seen to be negligible. Even in a program such as nrev,
which does very little “interesting” computation, it can be seen that QD-Janus is only 38% slower than the

Prolog program.

Table 2 gives the speed of QD-Janus compared to the FCP(:) implementation of Kliger.** It can be seen
that QD-Janus is more than three times as fast, on the average, as FCP(:), even though the FCP(:) system
compiles down to a lower level and carries out various low-level optimizations, such as generating decision

trees, that are not done by the QD-Janus system.

Table 3 gives the relative heap utilization of QD-Janus compared to FCP(:). It can be seen that the heap
requirements of QD-Janus are typically two to three orders of magnitude better than those of the FCP(:)

22

‘ Program ‘ QD-Janus (QD) (ms) ‘ Sicstus Prolog (S) (ms) ‘ QD/S H
nrev(30) 1.16 0.84 1.38
hanoi(17) 2913.2 2642.0 1.10
e 688.0 680.0 1.01
gsort(50) 18.0 13.5 1.33
pi 345.6 345.5 1.00
dnf(50) 126.5 123.7 1.02
pascal(200) 872.0 730.5 1.19
queen(8) 7350.0 4860.0 1.51
prime (10000) 14659.3 10612.0 1.38

Geometric Mean of QD/S : 1.20
Table 1: Relative Efficiency of QD-Janus and Sicstus Prolog
H Program QD-Janus (QD) (ms) ‘ FCP (ms) ‘ FCP/QD H

nrev(30) 1.16 4.5 3.89
pascal(200) 872.0 4490 5.14
queen_1(8) 49.8 110 2.21
prime(10000) 14659.3 16560 1.13
tak 367.2 1720 4.68
combination 257.4 1892 7.35
deriv 144.2 690 4.78
mastermind 24866.3 30200 1.21
nand 1197.2 4480 3.74

Geometric Mean of FCP/QD : 3.22

Table 2: Relative Speeds of QD-Janus and FCP

23

Program ‘ QD-Janus (QD) (Kbytes) ‘ FCP (Kbytes) ‘ FCP/QD H

nrev(30) 0.42 516 1228.6
pascal(200) 664.0 1792 2.7
queen_1(8) 0.08 20 250.0
prime(10000) 9.8 9468 966.1
combination 821.0 2136 2.6
deriv 0.57 768 1347.4
mastermind 29.1 8676 298.1

Geometric Mean of FCP/QD : 135.4

Table 3: Heap Usage of QD-Janus and FCP

implementation, with an average heap consumption that is more than 130 times lower. We conjecture that
FCP(:) has such relatively high heap requirements because it allocates activation frames on the heap; by
contrast, QD-Janus uses a stack-oriented scheme that requires less space, is easier to reclaim, and can be

expected to be more efficient.

DISCUSSION

The choice of Prolog as a target language was motivated by the fact that its “semantic distance” from
Janus is considerably less than that of lower level languages such as C. Because of this, and because the
QD-Janus compiler was written in Prolog, the implementation was completed in a fairly short period of
time, taking one person approximately two months to complete. This certainly highlights the suitability of
Prolog as a language for building language translators. As a concrete example, 1t took two days to implement

suspension analysis, and another day or two to implement the various optimizations that depend on it.

However, ease of development is not the only reason that makes Prolog attractive in this context. As the
performance numbers indicate, much of the overhead associated with the management of various execution
overheads can be eliminated via reasonably simple compile-time analyses and optimizations. Given the

growing number of high-performance®® and parallel'®11:12:13 implementations of Prolog, this suggests that
compilation to Prolog may be a reasonably quick and cheap way to obtain both sequential and parallel

implementations of very high level programming languages with relatively little effort.

CONCLUSIONS

This paper describes a sequential implementation of Janus, a concurrent constraint language, whose tar-
get language is Prolog. The compiler uses a number of novel analyses and optimizations to improve the
performance of the system. These analyses and optimizations are typically concerned with reducing the

amount of suspension testing in the generated code. The resulting system 1s quite efficient: its performance

24

is significantly better than a comparable low-level implementation of FCP(:), and its overhead compared to
the underlying Prolog system is relatively modest. Our experience indicates that translation of logic pro-
gramming languages to Prolog, accompanied by the development of good program analysis and optimization
tools, is an effective way to quickly develop flexible and portable implementations with good performance

and low cost. The system is available by anonymous FTP from c¢s.arizona.edu.

Acknowledgements: Discussions with Ken Kahn, Jacob Levy, and Vijay Saraswat were invaluable in
improving the author’s understanding of Janus. Clement Pellerin and Mats Carlsson made many helpful
suggestions regarding details of the implementation. Thanks are due to Evan Tick for his help with the

benchmarking.

References

[1] V. Saraswat, K. Kahn, and J. Levy, “Janus: A step towards distributed constraint programming”, in
Proc. 1990 North American Conference on Logic Programming, Austin, TX, Oct. 1990, pp. 431-446.
MIT Press.

[2] V. A. Saraswat, Concurrent Constraint Programming Languages, PhD thesis, Dept. of Computer Sci-
ence, Carnegie-Mellon University, 1989. ACM Doctoral Dissertation Award series, MIT Press.

[3] E. Shapiro, “The Family of Concurrent Logic Programming Languages”, Compuling Surveys, vol. 21
no. 3, Sept. 1989, pp. 412-510.

[4] J. Jaffar and J.-L. Lassez, “Constraint Logic Programming”, Proc. Fourteenth ACM Symposium on
Principles of Programming Languages, Jan. 1987 pp. 111-119.

[5] V. A. Saraswat, “Compiling CP({, |, &) on top of Prolog”, Technical Report CMU-CS-87-174, Computer
Science Department, Carnegie-Mellon University, Pittsburgh, Oct. 1987.

[6] J. Tanaka and M. Kishishita, “Compiling Extended Concurrent Prolog — Single Queue Compilation”,
Proc. European Symposium on Programming, Saarbrucken, March 1986, pp. 301-314. Springer Verlag
LNCS vol. 213.

[7] K. Ueda and T. Chikayama, “A Compiler for Concurrent Prolog”, Proc. Second International Sympo-
stum on Logic Programming, Boston, July 1985, pp. 119-126. IEEE Press.

[8] A. Taylor, “LIPS on a MIPS: Results from a Prolog Compiler for a RISC” | Proc. Seventh International
Conference on Logic Programming, Jerusalem, June 1990, pp. 174-185. MIT Press.

[9] P. Van Roy and A. M. Despain, “The Benefits of Global Dataflow Analysis for an Optimizing Prolog
Compiler”, Proc. 1990 North American Conference on Logic Programmaing, Austin, TX, Oct. 1990, pp.
501-515. MIT Press.

[10] K. A. M. Ali and R. Karlsson, “The Muse Or-Parallel Prolog Model and its Performance”, Proc. 1990
North American Conference on Logic Programming, Austin, TX, Oc. 1990, pp. 757-776. MIT Press.

25

[11]

[16]

[18]

[19]

[20]

[24]

[25]

M. V. Hermenegildo and K. J. Greene, “&-Prolog and its Performance: Exploiting Independent And-
Parallelism”, Proc. Seventh International Conference on Logic Programming, Jerusalem, June 1990, pp.

253-268. MIT Press.

B. Ramkumar and L. V. Kalé, “Compiled Execution of the Reduce-OR Process Model on Multiproces-
sors” | Proc. 1989 North American Conference on Logic Programming, Cleveland, Oct. 1989.

V. Santos Costa, D. H. D. Warren, and R. Yang, “The Andorra-1 Engine: A Parallel Implementation of
the Basic Andorra Model” | Proc. Eighth International Conference on Logic Programming, Paris, June

1991, pp. 825-839. MIT Press.

S. Kliger, Compiling Concurrent Logic Programmaing Languages, Ph.D. Thesis, The Weizmann Institute
of Science, Rehovot, Israel, Oct. 1992.

D. Gudeman, K. De Bosschere, and S.K. Debray, “jc: An Efficient and Portable Sequential Imple-
mentation of Janus”, Proc. Joint International Conference and Symposium on Logic Programming,

Washington DC, Nov. 1992, pp. 399-413. MIT Press.

S. K. Debray, “Implementing Logic Programming Languages: The Quiche-Eating Approach”, Proc.
ICLP-93 Workshop on Practical Implementations and Systems Ezperience, Budapest, Hungary, June
1993.

K. Ueda, “Guarded Horn Clauses”, in Concurrent Prolog: Collected Papers, vol. 1, ed. E. Shapiro, pp.
140-156, 1987. MIT Press.

I. Foster and S. Taylor, “Strand: A Practical Parallel Programming Tool”, Proc. 1989 North American
Conference on Logic Programming, Cleveland, Ohio, Oct. 1989, pp. 497-512. MIT Press.

M. Carlsson and J. Widen, SICStus Prolog User’s Manual, Swedish Institute of Computer Science, Oct.
1988.

J. Hughes, “Strictness Detection in Non-Flat Domains” | in Programs as Data Objects, ed. H. Ganzinger

and N. D. Jones, Springer-Verlag Lecture Notes in Computer Science vol. 217, Oct. 1985.

G. Lindstrom, “Static Evaluation of Functional Programs”, Proc. ACM SIGPLAN ’86 Symp. on Com-
piler Construction, July 1986, pp. 196-206.

S. K. Debray, “Static Inference of Modes and Data Dependencies in Logic Programs”, ACM Transactions
on Programming Languages and Systems vol. 11, no. 3, June 1989, pp. 419-450.

G. Janssens and M. Bruynooghe, “An Instance of Abstract Interpretation Integrating Type and Mode
Inferencing”, Proc. Fifth International Conference on Logic Programming, Seattle, Aug. 1988, pp. 669-
683. MIT Press.

K. Marriott, H. Sgndergaard and N. D. Jones, “Denotational Abstract Interpretation of Logic Pro-

grams”, ACM Transactions on Programming Languages and Systems (to appear).

C. S. Mellish, “The Automatic Generation of Mode Declarations for Prolog Programs”, DAI Research
Paper 163, Dept. of Artificial Intelligence, University of Edinburgh, Aug. 1981.

26

[26] J. Gallagher, M. Codish, and E. Shapiro, “Specialisation of Prolog and FCP Programs Using Abstract
Interpretation”, New Generation Computing vol. 6, pp. 159-186, 1988.

[27] S. K. Debray, “Compiler Optimizations for Low-Level Redundancy Elimination: An Application of

Meta-level Prolog Primitives”, Proc. Third Workshop on Metaprogramming in Logic (META-92), Upp-
sala, June 1992.

[28] A. Houri and E. Shapiro, “A Sequential Abstract Machine for Flat Concurrent Prolog”, in Concurrent
Prolog: Collected Papers, vol. 2, ed. E. Shapiro, pp. 513-574. MIT Press, 1987.

[29] E. Tick, Parallel Logic Programming, MIT Press, Cambridge, 1992.

27

