<> hex rays

IDA PRO - the state-of-the-art binary code analysis tool

IDA Pro is the flagship product of Hex-Rays, the software provider in reverse engineering. Being an inter-
active and programmable disassembler and debugger, IDA Pro provides excellent quality performance on
different platforms and is compatible with many processors. IDA Pro has become the de-facto standard for
the analysis of hostile code, vulnerability research and commercial off-the-shelf validation.

IDA Pro comes with different types of licenses: Named, Computer, Floating and Educational license to meet
different business’ scales and demands of usage.

i= =

Adisassembler A debugger interactive Programmable

Key features

Multi-processor Disassembler

 Disassembler modules for a large number of processors. The free SDK even allows you to run your custom
disassembler;

Full and extensible interactivity;

» Programmabile: IDA can be extended in line with user’s own requirement with IDC or IDAPython;

Open plugin architecture: external plugins enable extension of IDA's capability;

FLIRT technology (Fast library identification and recognition technology);
» Code graphing;
« Lumina server holds metadata with a large number of well-known functions;
Multi-target Debugger
« The debugger adds the dynamic analysis of the information collected statically by the disassembler;

« Offers all the features expected from a debugger and more: “remote” function and tracking. Remote debug-
ger: for Windows, Linux, Mac OS X, and other machines in any combination;

More features and upgrades are introduced along with new IDA version releases!

1/7

{P state-of-the-art binary code analysis tool

Q>hex—ruys
IDA 8.0 Highlights

As usual, IDA has improved on many fronts, but the most important feature this time around - and the one that
justifies the major version bump - is the introduction of the brand-new IDA Teams.

IDA Teams is out!

We’ve been hard at work putting the finishing touches to our new product: an integrated set of tools to bring
seamless collaboration among teams of [reverse-]engineers.

Inspired by the best revision control tools out there, IDA Teams brings their key concepts to IDA databases &
workflows:

* revision control,
» changes attribution,

« diffing & merging

We’re very proud - and excited! - by what IDA Teams can accomplish, and hope you will appreciate its
potential. But we won'’t stop there: we already have great ideas for the next versions!

iI0OS 16 dyld shared cache support

Once again, Apple has modified the internal format of the system files on their mobile operating systems to
improve performance and memory usage, so we have updated IDA to support the new tweaks.

hexrays

Narne Date modified Type Size

._I dyld_shared_cache_arm#fd % Fosda:new Tite X%
| dyld_shared_cache_arm4.01

|_] dyld_shared_cache_armb4.02 Load file D:\Work)201529%n__ AppleTV5,3\dyld_shared_cache_armé4 as

J dyld_shared_cache_armfd.03 Apple DYLD cache for armB4 (single module) [machobd.dll]

Apple DYLD cache for armB4 (complete image) [machofd.dil]
Apple DYLD cache for arm64 (single module plus dependencies) [machofd.dll]
Binary file

[dyld_shared_cache_arm64.04

_‘| dyld_shared_cache_arm64.05.dylddata

[] dyld_shared_cache_arm64.06.dyldlinkedit
[] dyld_shared_cache_arm6d4.idD

Processor type {double-dick to set)

2] I ARM Big-endian ARM A

"._:l dyld_shared_cache_arm6d.id1 ARM Little-endian ARM

__J dyld_shared_cache_armBd.nam o Mivha spriss v

| | dyld_shared_cache_armbd.symbols < *
¥ Choose a module to load O X
File name Address L
R LR LTS e L VR Ralir o) sV W
fusr/lib/libmobileassetd.dylib Ox186DECO00
Jusr/lib/libpartition2_dynamic.dylib 0x186EE4000
fusrjlib/libperfcheck.dylib Ox186EFCO00
Jusrflib/libpmsample.dylib 0x186FOC0O00
fusr/lib/libsecureconfig.dylib 0x186F10000
Jusrflib/libsysmon.dylib 0x186F14000
Jusrflib/libxpc_datastores.dylib 0x186F18000
fusr/lib/logyliblog_SystemConfiguration.dylib Ox186F1C000
Jusrflib/logyliblog_mdns.dylib Ox186F20000
Jusrflib/log/liblog_mdnsresponder.dylib 0x186F2C000
Jusrflib/swift/libswiftApplearchive. dylib 0x186F34000
fusr/lib/swift/libswiftCompression.dylib 0x186F54000
Susrflib/swift/libswift Distributed.dylib 0x186FSCO00
fusrlib/swift/libswiftNetwork.dylib 0x186F6C0O00

Outlined functions

Another new trick used by Apple on recent iOS versions is outlined functions. This is a code size optimization
where the compiler extracts common instruction sequences used in several functions into a new pseudo-func-
tion which is then “called” from multiple places.

This behavior tends to make decompiled pseudocode ugly, especially when the outlined functions use arbitrary
registers or stack variables from the parent function. Now you can mark such functions with a special attribute
and the decompiled code will look much nicer.

For example, here’s a fragment of a file which has been compiled with such optimization:

8C _freeP4Mem ; CODE X~ 1 [void freePaMem()
8C >l
8C var_18= -8x1e 3 inte4 ve; /4 x19
5L var.se: 9 4| _inted vi; // x@
HE 5 intea v2; // x1
v 8C @@0 STP X20, X19, [SP,#-0x10+var_10]! . 3% I fi
90 ©20 STP | x29, X390, [SP,#@x1@+var s0] R e
94 @20 ADD X29, SP, #B8x10 - !
98 @20 BL _OUTLINED_FUNCTION_19 o| ‘ourLINED: FuNCTION, 15();
9C @20 LDR w8, [X1,#0x20] 10| if (*(_DWORD *)(v2 + 32))
N8890. ChHe W8, loc_23CAC 11 OUTLINED_FUNCTION_47(v1, *(QUWORD **)(ve + 24));
Al 1020 LDR; X1, [X13,#0x18] 12| vz = (_OWORD *)OUTLIMED FUNCTION 14();
i? 920 BL _OUTLINED_FUNCTION_ 47 13| OUTLINED. FUNCTION 488(v3, v2);
AC loc_23CAC : CODE X 4B
AC 820 BL _OUTLINED_FUNCTION_ 14
BO 020 LDP X29, X308, [SP,#0x10+var s0]
B4 020 B _OUTLINED_FUNCTION_ 488
B4 ; End of function _freeP4Mem

In initial pseudocode, we can see explicit calls to the compiler-generated _ OUTLINED_FUNCTION_NN

<, >hexrays
fragments, and some variables marked in orange because the decompiler considers them to be spoiled by the

calls (which is the case with calls to regular functions).

After marking those pseudo-functions with ‘outline’ attribute and refreshing the pseudocode, the decompiler
inlines everything and there are no more orange variables:

6DCES8 : @ 1 |void _ fastcall freeP4Mem(_ QWORD *al, _ int64 a2)
6DCES s
6DCES ; void _ fastcall OUTLINED FUNCTION_488(_QWORI 2| iF (*(DworD *)(a2 + 32))
6DCES _OUTLINED_FUNCTION 488 s CoDt sqliteaDbErec(al, *(OWORD **)(a2 + 24));
6DCEB ; _fre g anes i
6DCES . = Wb P e
ik SiElo= B 7} sqlite3DbFreehN(al, (_QWORD *)a2);
6DCE8
v6DCES 080 LDP X209, X19, [SP+arg 0],#08x20
6DCEC -20 B _sglite3DbFreshN
D Edit function X

Mame of function OUTLINED FUNCTION 433] Sie

Start address ¥t:000000000006DCES

End address £:000000000005DCFD

= X - [] Does not return
Color DEFALLT | [e Rincion

[Library func
Enter size of (in bytes) [static func
Local variables area 0x0 w~ [] BP based frame
Saved registers 0x0 w [BP equals to SP
Purged bytes 0x0 ~ L] Fuzzy s

] Outlined cod
Frame pointer delta 0x0 ~

Golang 1.18

The new version of the language introduced changes to the layout of the metadata. New IDA version can parse
it and nicely recover function names.

For example, here’s a stripped golang 1.18 binary in IDA 7.7:

‘¥ 1DA - golang_118.x86_stripped.bin b4
file Edit Jump Search View Debugger Lumina Options Windows Help
EHE e W S 3 A DO s X P @0 O [N dbhuoger ~| % &
NIl 10010 T I 5
Library function Ml Regular function [l instruction | Data |1 Unexplored | External symbol Ml Lumina function
[F] 121 Functions m e x [2] IDA View-A 8 @ [3] Hex View-1] A [4] Structures] # 5] Erums 5] [5] Imports # 7] Exports
Function name ieh
[7 sub_401000

7] unknown_libname_1

[sub_401120

[7] sub_401620

[7] internal_cpu_cpuid

[7] internal_cpu xgetby

(7] sub_401A60

[7] sub_dotae0

[7] sub_d018a0

[sub_401880

[7] runtime_internal_atomic Loads

(7] sub_4018D0 MZE

% sub_401C10 |- text:e0a59c10

7] sub_a01c20 . text:00459C10

% unknown libname_2 .text:8@459C18 ; Attributes: noreturn thunk
7] sub_401C50 .text:00459C10

(] j_unknown_libname_2 _text:00459C18 public start
(7] j_unknown_libname 2.0 .text:00459C10 start proc near
[7] sub_401cs0 .text:e@459C10 jmp start_@
[7] sub_401co0 .text:00459C10 start endp

[7] sub_s01ca0 .text:00459C10

7] sub_401CB0
(] sub_d01cco
[7] j_runtime_internal_atomic_xadd
[7] sub_401ce0

I'#l enh anicen ®
< >
Line 1 of 1381

Hm Graph overvien o & x

100.00% (-525,-238) (265,388) 00053010 00455CL0: svart (Synchzomized with Hex View-1)

[E o1 0utput oo x

Python 3.9.0 (tags/v3.9.0:9cf6752, Oct 5 2020, 15:34:40) [MSC v.1927 64 bit (AMDE4)] o
IDAPython v7.4.0 final (serial 0) (c) The IDABython Team <idapython@googlegroups.coms

Using FLIRT signature: go 1.10 to 1.16 std libraries
Propagating type information...

Function argument information has been propagated
The initial autoanalysis has been finished.

Python

aU: idle Down Disk: 63GB

> hex—mys

And the same binary in IDA 8.0:

‘D DA - golang_112_x86._stripped.bin
Fie Edit Jump Search View Debugger Lumina

Options Windows Help

HH e GEHN S) A DO gt @ m X > @ O|vodebugee

Nl

Library function [l Regular function [l Instruction | Data

Unexplored External symbol [l Lumina function

[7] Functions o

x DA View-A B @

o @ @

Hex View-1

[Structures 1 B Enums g B Tmports g &

Function name
[#] runtime_panicslice3alenU
[runtime_panicSlice3C

[7] runtime_panicExtendindexu
[runtime_duffzero

[7] runtime_duffcopy

[7] runtime_memcirNoHeapPointers
(] runtime_memmove

[7] runtime_asyncPreempt

[F] _rto_386_windows

[F] sigtramp

(7] tstart

[7] runtime_asmstdcall

[7] runtime_badsignalz

[7] runtime_getlasterror

[7] runtime_exceptiontramp
[7] runtime lastcontinuetramp
[7] runtime_callbackasm1

[runtime_tstart_stdcall

[7] runtime_setleit

[7] runtime_usleep2

[7] runtime_usleep2HighRes
[7] runtime_switchtothread

[F runtime_nanotime1

[7] time_no

[7] runtime_muls4by32

i(f runtime _dividhv3?

A

Line 1086 of 1435

1.% Graph overview o

Y

FEE]

.text:00459C10

.text:00459C10

. text:00459C10 ; _rt®_386_windows
-text:00459C10 ; Attrib n
-text:00459C10
.text:00459C18 public _rt@ _386_windows
.text:00459C18 _rt@_386_windows proc near
.text:00459C18 jmp ¥ 86
.text:8e459C18 _rt@_386_uw:
.text:00459C10

100.00% (-538,-228) (23, 64€) 00053010 00455C10: _rt0_386_windows (Synchronized with Hex View-1)

Cutput

a8 x

Propagating type information...

The initial autoanalysis has been fini

Function argument information has been pr

opagated
d

sync_Pool.local failed to add member, offset=0 size=1 flags=25500400 erzcode -2: already has member at this offsct
Using FLIRT signature: go standard library (ABIO)

Using FLIRT signature: go standard library (ABIInternal)
Using FLIRT signatuzre: go standard librazy (ABIInteznal)

Python |||

aU: idle Down Disk: 71GB

ARC decompiler

ARC processors are used in many embedded devices such as SSD drives or Wi-Fi chipsets. It was also the
core used in the infamous Intel ME until several years ago. The new decompiler supports all ARC instruction
set variants currently supported by IDA: classic 32-bit ISA, 32/16-bit ARCompact and the new ARCv2. Delay
slots, conditional instructions and zero-overhead loops are supported out of the box.

‘ IDA View-A

O & x | Pseudocode-A

.text:9081125A bl

.text:090811264 1d

.text:08011274 bl
.text:0001127A
.text:0001127A
.text:08011280 bl
.text:0001128A bl

.text:0081128E bl

.text:08011298 #
.text:00011298

.text:0001129E bl

.text:008112B2 bl

.text:808112B8 bl

.text:00011254 mov_s

.text:00@1125E tst s
.text:00011260 bne

.text:0001127A mov_s

.text:00011284 mov_s

.text:00011292 b.d
.text:00011296 mov_s re, @

.text:000112A2 brlt
.text:088112A6 mov_s
.text:000112AC mov_s

r@, player_para
start_controler
ré, ré

loc_1133C

r2, [dword_13CEC]

.text:0001126C brne_s r2, @, loc_ 11298
.text:00881126E mov_s
.d signal
.text:00011278 mov_s re, 2

rl, signal handler

.text:0801127A loc_1127A:

r@, player_para
controler_run

r@, player_para
release_extern_lib
player_progress_exit
loc_11398

.text:08011298 loc_11298:
.text:00811298 mov_s

r8, aTmpAmplayer2lo
log open

re, @, loc_11358
rl, aStartlogS

r2, aTmpAmplayer‘Z[Lo
o log_lprint

.text:000112B6 mov_s re, @

getppid

.text:088112BC breqg r@, 1, loc 1127A

CODE XREF: main-
main+12413j

d 4

CODE XREF: main-

start log

[/amplayer2

int vIly ff Pl
int v12; // r@
int vi3; /f rl

v5 = memset(player_para, @, 112);
basic_controlers_init(v5)
if (parser_option(argc

argv, player_para) < ©)

print_usage(¥argv);
return @;

28| player_init();
2 if (start_controler(player_para))

return -1;
¥
if (!dword 13CEC)

signal(2, signal handler);
LABEL_5:
controler_run(player_para);
/6 = release extern_lib(player para);
player_progress_exit(ve);
return 0;

®

mplayer2

[ITSTRVYRY
K=

}
if { log_open("/tmp/amplayer2.log") < @)

38

return -1;

log_lprint(@, "\n¥*¥*&kxx¥pmplayer version: Ed¥¥exsxscinex\n\n", @);

log_lprint(@, "Can't get any controlers ,exit now\n");

37 log lprint(@, "open log file failed %s\n", "/tmp/amplayer2.log");

hexrays

No more Python 2

It's been over two years since Python 2.7 support has ended, and it’s time to let go. IDA 8.0 will support only
Py- thon 3.x, including the latest 3.10 (Windows installer includes Python 3.10.5).

Better firmware analysis thanks to the function finder plugin (patfind)

Firmware binaries usually do not have any symbols or other metadata which would help IDA to find code in the
unmarked loaded data, so users had to do it manually. In the new release, we’ve added a plugin which makes
use of the pattern format used in Ghidra (with minor extensions). This plugin is enabled by default for binary
and binary-like formats and helps IDA discover more code automatically. It can also be invoked manually for
normal structured files to find otherwise unreferenced code.

| =] output

Patfind: Possible function found at 00007EZE8, pattern £f001bS10.
Patfind: Possible function found at 00007E3C, pattern £f001bS10.
Patfind: Possible function found at 00007ES0, pattern b5l021%5e.
Patfind: Possible function found at 00007ES0, pattern fc3bSfO.
Patfind: Possible function found at 00008528, pattern 2800b570.
Patfind: Possible function found at 00008Be&0, pattern bOBThSE0.
Patfind: Possible function found at 00009068, pattern 30chbSfl.
Patfind: Possible function found at 0000S0D8, pattern 31fbSf0.
Patfind: Possible function found at 0000818C, pattern bO0BThSf0.
Patfind: Possible function found at 00005250, pattern bO0SbbSf0.
Patfind: Possible function found at 00005CS4, pattern b5304bl3.
Patfind: Possible function found at 0000SCFC, pattern 2800bSfE.
Patfind: Possible function found at 0000SF38, pattern £f000bLS10.
Patfind: Possible function found at 0000SF4C, pattern £f000bLS10.
Patfind: Possible function found at 0000SF&0, pattern £f000bLS10.
Patfind: Possible function found at 0000SF74, pattern £f000bLS10.
Patfind: Possible function found at 0000SFC4, pattern 243b570.
Patfind: Possible function found at 0000A138, pattern 4e6cebSfl.
Patfind: Possible function found at 0000A13C, pattern 2a0fbsS00.
Patfind: Found &3 functions, in 0.006884 seconds

Python

All: idle Down Disk: &8GB

Comparison of the number of functions discovered after initial autoanalysis with default settings:

File type IDA 7.7 IDA 8.0
Cortex MO firmware (8KB) 0 59
ARMO firmware (23KB) 0 97
ARM11 firmware (300KB) 84 1697
PowerPC firmware (2MB) 0 2223

FLAIR pattern generator (makepat)

The FLAIR toolkit, available to all IDA Pro customers, allows creating FLIRT signatures from static libraries.
How- ever, such libraries are not always available - sometimes all you have is just the final linked binary. The

< hexrays

makepat plugin supports creating .pat files for functions in an arbitrary IDA database. It uses the functionality
added for Lumina to mark variable bytes in the patterns. The .pat can then be compiled to a signature file
using sigmake and applied to other files

;Edit Jump Search View Debugger Options Windows Help

[Copy Ctrl+C Al A @ & of o &F F~ :#'lrjn)(

Select all ction Data Unexplored External symbol [Lun'r

Select identifier Shift+Enter

O &

Undo Ctri+Z

Redo Ctrl+Y Segment Stani
i _ ROM 001;,
i' Export data Shift+E ROM 001,
'@k Code C ROM 001,
:I EI.'TEI. Data D ROM DDL:
'@ struct Alt+Q ROM 001
. o o .
[Structyar ROM 001;
sF Strings g ROM 001:
i f Array... Mumpad+* =Tel ¥ o01;
i XK Undefine u ROM 001
i' G4 Rename M ROM 001..
fl ROM 001
{ Operand type k RO oo
! Comments k RO o014
.h Eegmentg k RO 'D'DL:
.1 Structs b ROM 001,
'l Eunctions * ROM 00
| , ROM 001.
] Patch program ROM 001,
| Other - ROIMA oy
I Plugins r Ef-' Quick run plugins Ctrl+3

SVD file management Ctrl+Shift+F11
Sample plugin !

Jump to next ficup |
Create PAT from the databacze i
Load DWARF file '

D:YBin File.pat: created 371 patterns out of EPE functions

Python

iJ: idle Down Disk: &8GB

Full changelist: hitps://www.hex-rays.com/products/ida/news/& 0/

hexrays

IDA Version 7.7 — Service Pack 1 - Release date: 18th January 2022

Highlights: The Service Pack 1 of IDA 7.7 is primarily a bug fixes release that provides fixes for a few errors
that might affect many users.

Full changelist:

IDA Version 7.7 — Release date: 24th December 2020

Highlights: IDA 7.7 introduced DA Teams, iOS 16 dyld shared cache support, Outlined functions Golang 1.18,
New decompiler: ARC, Better firmware analysis thanks to the function finder plugin (patfind), FLAIR pattern
generator (makepat) And much more!

Full changelist:

IDA Version 7.6SP1 - Release date: 28th April 2021

Highlights: The Service Pack 1 of IDA 7.6 is primarily a bug fixes release that provides fixes for a few errors
that might affect many users.

Full changelist:

IDA Version 7.6 - Release date: 22nd March 2021

Highlights: IDA 7.6 introduced Apple Silicon’s full support, Golang analysis, thorough improvements for Hex-
Rays Decompiler, two new processor: RISC-V and RL78, further supports for compressed macOS and iOS
ker- nelcache and for Python 3.9

Full changelist:

IDA Version 7.5 - Release date: May 2020

Highlights: IDA 7.5 introduced the tree-like folder view that helped with information organization and hence in-
credibly increase efficiency when it comes to large binaries analysis. MIPS decompiler was added to the
lineup, with Lumina now available for both MIPS and PPC binaries. IDA 7.5 comprised many iOS/macOS
improvements such as the just-added type libraries with the most major APIs and additional frameworks from
macOS and iP- hone SDKs.

Full changelist:

IDA Version 7.5 — Service Pack 1 - Release date: 19th June 2020

Highlights: This Service Pack was released to improve user experience especially for newly released features
such as the tree-like folder view function and the MIPS Decompiler.

< hexrays

Full changelist: hitps://www.hex-rays.com/products/ida/news/7 5spt/

