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Abstract—In this paper, first a new Laplacian kernel is devel-
oped to integrate into it the anisotropic behavior to control the
process of forward diffusion in horizontal and vertical directions.
It is shown that even though the new kernel reduces the process of
edge distortion, it nonetheless produces artifacts in the processed
image. After examining the source of this problem, an analytical
scheme is devised to obtain a spatially-varying kernel that adapt
itself to the diffusivity function. The proposed spatially-varying

Laplacian kernel is then used in various nonlinear diffusion
filters starting from the classical Perona and Malik filter to
the more recent ones. The effectiveness of the new kernel in
terms of quantitative and qualitative measures is demonstrated
by applying it to noisy images.

Index Terms—Image denoising, nonlinear diffusion, edge
preservation, edge adaptive Laplacian kernel.

I. INTRODUCTION

NONLINEAR diffusion denoising is a powerful denoising

technique because of its superior edge preservation capa-

bility. This technique has been widely used in medical image

denoising [1]–[7], where it is of paramount of importance that

the denoising process preserves the information contained in

high-spatial-frequency components of the images. The non-

linear diffusion filtering introduced by Perona and Malik [8]

is a time evolutionary process, in which the denoised image

is a solution of a diffusion equation with a spatially varying

diffusion coefficient. The diffusion coefficient is a function of

the modulus of the gradient of the evolving denoised image.

For a region of the image with a low-modulus of the gradient,

(i.e. the regions affected by noise), the diffusivity function

returns a high diffusion coefficient that results in a forward

diffusion and thus in the smoothness of the region. On the

other hand, for a region with a high-modulus of the gradient

(i.e. the regions with an edge), the diffusivity function returns

a small value, which results in a lower forward diffusion

of that region or even a backward diffusion leading to edge

enhancement.

Since the introduction of the nonlinear diffusion filter by

Perona and Malik in 1990, the behavior of the filter in both

the continuous and discrete domains and its relation to the

functional minimization problem for image restoration [9]
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have been extensively studied in the literature [10]–[15]. While

the forward-backward diffusion results in smoothing the noise

and enhancing the edges, it is known that the backward

diffusion is an ill-posed process in the sense that it is very

sensitive to perturbations in the initial noisy data [11]. A

practical solution to this problem is given by Catte et al. [16] in

which the diffusion coefficient is calculated using the modulus

of the gradient of the image smoothened by a Gaussian filter.

The edge preservation capability of the nonlinear diffusion

filter depends largely on the extent by which the diffusivity

function can successfully detect the edges and also control the

diffusion process. From the standpoint of improving the edge

preservation and denoising performance of nonlinear diffusion

filters, most of the studies have focused on introducing new

diffusivity functions such as those in [13], [15], [17]–[19]

or optimizing the choice of the parameter in the diffusivity

function [12], [20]. The basic idea behind all these techniques

is to significantly reduce the value of the diffusion coefficient

whenever an edge is detected in order to reduce the diffusion

rate for the edge. However, as it is reported in [15] and [17],

this approach for increasing the edge preservation capability

of a filter leads to the formation of pin-hole artifacts in the

denoised image, especially when the noise level is high or

moderately high. In fact, this drawback of the approach is due

to a significant reduction of the diffusion not only for the edges

but for high level noise, a process that leaves both the edges

and high-level noise almost intact from the diffusion process.

In view of the limitation of the above methods in its

capability of removing high-level noise while attempting to

aggressively reduce the diffusion process for edges, in this

paper, a new kernel based on the anisotropic behavior of the

Rosenfeld and Kak Laplacian operator [21] is developed for

an efficient preservation of the edges in nonlinear diffusion

processes. A study is undertaken first to investigate the impact

of the anisotropic behavior of the Laplacian operator on the

capability of nonlinear diffusion filters in preserving the edges

in different orientations and then, to explore the possibility

of designing a new Laplacian operator that is best suited to

preserve the edges in certain orientations without affecting the

quality of the edges in other directions.

The paper is organized as follows, In Section II, the effect of

the anisotropic behavior of the Laplacian kernel of Rosenfeld

and Kak on the edge preservation capability of the nonlinear

diffusion filter is analyzed. In Section III, a detailed analysis

leading to an edge adapting Laplacian kernel is presented. Sim-

ulation results demonstrating the effectiveness of the proposed

kernel in terms of its edge preservation and noise removal
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capabilities, when it is employed in the different nonlinear

diffusion filters are presented in Section IV. Finally, Section

V concludes the paper by highlighting the significant features

of the proposed scheme.

II. IMPACT OF THE ANISOTROPIC BEHAVIOR OF THE

LAPLACIAN OPERATOR ON THE DIFFUSION RATE OF

EDGES

The basic nonlinear diffusion filter is characterized by the

partial differential equation (PDE) given by [8]

∂u/∂t = div (c (‖∇u‖)∇u) (1)

where ‖.‖ and div denote, respectively, the L2 − norm and

divergence of the associated quantities, c(.) is a diffusivity

function, also referred to as the diffusion coefficients, and ∇u
represent the gradient of the diffusing image u. By carrying

out the divergence operation with respect to the independent

variables x and y , the above equation can be expressed as

follows:

∂u/∂t = c(.)∇2u + ∇c(.)∇u (2)

in which ∇2u denotes the Laplacian of u. A commonly

used discrete version [20], [22] of (1) (or equivalently of

(2)) in which the diffusivity function is approximated by the

arithmetic average of the diffusivity coefficients at the adjacent

nodes, is given by

u
(n+1)
i,j = u

(n)
i,j + τ

[
ci,j∇2ui,j

](n)
+

τ

2

[
∑

d

∇dci,j∇dui,j

](n)

(3)

where ∇d , d ∈ {N, S, E, W} , denotes the directional

gradient calculated as the difference of two adjacent pixel

values or diffusion coefficients in the north (N), south (S),

east (E) and west (W) directions, τ is the step-size of the

independent variable t used to approximate ∂u/∂t, and n is the

discrete time index (or the iteration number). The Laplacian

∇2u in the approximation given by (3) is actually the discrete

convolution of u with the so-called Rosenfeld-Kak Laplacian

kernel L1 [21]) given by

L1 =




0 1 0
1 −4 1
0 1 0




The Laplacian kernel L1 has an anisotropic response to step

edges [23] in the sense that the convolution result of the

constant-contrast edge is orientation dependent. To show this

anisotropic behavior, one can consider the four step edges with

the same contrast level of (u1 − u2) and the orientation given

by θ, as shown in Fig. 1

If the central pixel of each of these four intensity profiles

is denoted by I5, the Laplacian response of I5 corresponding

to each of the four orientation values is given by

θ = 90 ◦ θ = 0 ◦ θ = +45 ◦ θ = −45 ◦

∇2I5 = (u1 − u2) (u1 − u2) 2(u1 − u2) 2(u1 − u2)

This simple example shows that the response of L1 to an edge

in the horizontal or vertical direction is different from that to

the diagonal edge thus demonstrating the anisotropic behavior

of the discrete Laplacian operator.

We now focus our attention to study the impact of the

anisotropic behavior of the Laplacian operator L1 on the

performance of the discrete nonlinear diffusion filters, in as

far as their capability in preserving the edges.

In (3), the values of c(‖∇u‖), calculated based on the

central difference operator for ‖∇u‖ on both sides of a step

edge are the same; thus, the directional derivative of ∇dc(.) is

zero. Therefore, at step edges, the nonlinear diffusion equation

given in (3) becomes

u
(n+1)
i,j = u

(n)
i,j + τ

[
ci,j∇2ui,j

](n)
(4)

In fact, the same simplification is noted from the nonlinear

diffusion equation of Alvarez et al. [24] given by

ut = c (‖∇u‖)uξξ+

(c (‖∇u‖) + c′ (‖∇u‖) ‖∇u‖)uηη (5)

where uξξ and uηη are the second-order derivatives of u in the

direction of the level set (i.e. the direction parallel to the image

features) and the direction of the gradient (i.e. the direction

across the edge). In this case, ∇2u = uηη + uξξ and for step

edges uξξ = 0, this nonlinear diffusion filter at the step edges

in the continuous domain assumes the form

ut = c(‖∇u‖)∇2u (6)

which can be seen to have the same discrete version as the

one given by (4).

Equation (4) governing the diffusion process at edges

has another difference operator arising from the diffusion

coefficient c(.), which also has an anisotropic behavior. In

order to study the impact of only the anisotropic behavior

of the Laplacian operator (i.e. L1) on the diffusion process

of the edges, we use the Scharr kernels [25] to have the

rotationally invariant (isotropic) approximation of ‖∇u‖. Two

synthetic digital images shown in Fig. 2(a) and (b) containing

a vertical edge and a diagonal edge, respectively, are chosen.

The contrast level of the edge in both the images is 70 thus the

variance of either images is approximately 1225. These two

images are filtered in accordance with the diffusion process

of (4) in which the diffusivity function of Perona and Malik

given by

c (‖∇u‖) = K2/
(
K2 + ‖∇u‖2

)
(7)

where K is a positive parameter called a contrast parameter, is

used. The value of K, which is manually set, controlls the the

diffusion in the sense that a larger value of K results in a more

intense diffusion. The diffusion process is repeated by varying

the values of K from 5 to 25 in steps of 2.5. For each run, τ is

chosen as 0.1 and the diffusion process stopped after n = 30
iterations. The variance of the diffused image is calculated.

The result of the variance of the diffused image as a function

of K is plotted in Fig. 2(c). It is seen from this figure that the

image containing the vertical edge is less diffused than the

one with the diagonal edge. Thus, the same diffusion precess

can preserve a vertical edge better than a diagonal one.

It is important to note that the commonly used approxi-

mation of ‖∇u‖ is based on the central difference operator
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Fig. 1. Step edges with orientations of 0, 90, 45, and −45 degrees and a contrast level of u1 − u2.
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Fig. 2. Impact of the anisotropic behavior of the L1 kernel, when used
in (3), on the vertical and diagonal edges. (a) Image with a vertical edges.
(b) Image with a diagonal edge. (c) Variance of the diffused images using
isotropic and anisotropic discrete approximations of ‖∇u‖.

[17], which is an anisotropic operator. In our experiment, by

using this operator to calculate the diffusivity function and

L1 for the Laplacian operator, we obtain results that are also

depicted in Fig. 2(c). As seen from this figure, an isotropic or

anisotropic approximation of ‖∇u‖ has a little or no impact

on the diffusion of the edges. However, the results of Fig. 2(c)

also indicates that there are significant differences between the

diffusions of the vertical and diagonal edges. This observation

motivates us to develop a new kernel with the capability of

providing a better control of the diffusion of edges.

III. PROPOSED LAPLACIAN KERNEL

Our objective in this section is to explore the possibility of

designing a Laplacian kernel from the standpoint of reducing

the diffusion process of the edges and make the process less

dependent on the orientation of the edges. Hence, in the

context of Fig. 2(d), our objective is to raise the level of the

curves higher and closer to each other.

A. Design of a Laplacian Kernel for Curtailing the Edge

Diffusion

A generalized parametric realization of a Laplacian kernel

can be written in the form

L =




β/2 α β/2
α −4(α + β/2) α

β/2 α β/2



 (8)

From this generalized Laplacian kernel, one can obtain differ-

ent kernels depending on the values of the parameters α and

β. For example, the Laplacian kernel L1 can be obtained by

choosing α = 1 and β = 0. Similarly, for α = 0 and β = 1,

(8) yields

L2 =
1

2




1 0 1
0 −4 0
1 0 1




which is also a commonly used Laplacian kernel [19]. The

generalized parametric kernel given by (8) is a linear combi-

nation of two Laplacian kernels of L1 and L2 given by

L = αL1 + βL2 (9)

In order to study the effect of this Laplacian operator (L)

on the orthogonal (vertical and horizontal) and diagonal edges

shown in Fig. 1, we first obtain the response of L to each

pixel numbered as 1 to 9. For this purpose, we assume that

structure of the edges continues beyond the 3×3 region of the

image shown in this figure. The response to all the 9 pixels

in the 3 × 3 region containing the vertical edge (Fig. 1(b)) is

given as

∇2Ip =





(α + β)u2 − (α + β)u1, p = 1, 2, 3
−∇2Ip−3, p = 4, 5, 6
0, p = 7, 8, 9

(10)

and that for the pixels of the region containing the diagonal

edge with θ = 45◦ (Fig. 1(c)) is given by

∇2Ip =






(−1)p [(β/2)u1 − (β/2)u2] , p = 1, 6, 8
(−1)p[(2α + β/2)u2−

(2α + β/2)u1], p = 2, 3, 4, 5, 7
0, p = 9

(11)

Our objective is to curtail the diffusion of the edges by

making ∇2u to be zero at all the pixels on the edges and in

their immediate neighborhoods. This implies that we must find
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the values of the parameters α and β that reduces ∇2Ip to be

zero for all values of p ∈ {1, 2, · · · , 9}. It is obvious from (11)

that for the diagonal edge with θ = 45◦, the only values for

α and β that lead to ∇2Ip = 0 are the trivial values of α = 0
and β = 0. The same conclusion can be reached for a diagonal

edge with θ = −45◦. Thus, for a diagonal edge, there does not

exist a non-trivial Laplacian operator L that when operated on

the pixels lying on the edges or those in their neighborhoods

gives a zero response. However, for a vertical edge, it is seen

from (10) that for α = −β, ∇2Ip = 0 for all p = 1, 2, · · · , 9.

In this case, the Laplacian operator L as given by (8) can be

expressed as

L(γ) = γL3 (12)

where γ is an arbitrary constant and L3 is a Laplacian kernel

defined as

L3 =




−1 2 −1
2 −4 2
−1 2 −1




Note that the Laplacian kernel of L3 has been used in the

literature [26] for estimating of the noise variance of images.

It is now clear from the above study as to why L3 provides

a better estimate of the noise variance in images. As a matter

of fact, it eliminates the effect of orthogonal edges in the

Laplacian map of the images. However, our objective here

is to study the effect of L(γ) in the nonlinear diffusion filter

given by (3).

The nonlinear filter described by (3) has two diffusion terms,

namely (τc(.)∇2u) and (τ∇dc(.)∇du), which are linearly

scaled by the step-size τ . Although in practice both these terms

are linearly scaled by the same step-size τ , the possibility of

scaling each term by a different scale factor has been pointed

out in [27] in order to provide some controlling mechanism

to the forward and backward diffusion components of the

filtering process. In (3), when L(γ) = γL3 is used, the first

diffusion term becomes (τ ′c(.)(L3 ∗u)), where τ ′ = τγ and ∗
represents the convolution operation. Thus, the approximation

of the Laplacian operator by L(γ) effectively provides two

different scaling factors, τ ′ and τ , to the two diffusion terms,

respectively and the Laplacian operator is replaced by L3.

Now, we again consider the images shown in Fig. 2 containing

the orthogonal and diagonal edges to examine the effect of

L(γ) on the nonlinear diffusion of images in the presence of

edges. For this purpose, we chose γ = 1.

The image of Fig. 2(a) is filtered using (3) with the step-

size τ = 0.1 which employs the diffusivity function of (7)

with K = 10. Fig. 3(a) and Fig. 3(b) show the filtered images

after 25 and 100 iterations, respectively, resulting from the use

of the Laplacian operator L3. As expected, L3 is capable of

preserving the vertical edge of the image, since ∇dc(.) and u∗
L3 are exactly zero. Thus, the diffusion process is completely

halted at the edge. The same result could be observed in the

presence of a horizontal edge in the image.

Next, the filter given by (3) with the same parameter settings

as used for the orthogonal edge is applied to the image of

Fig. 2(b) i.e. an image with a diagonal edge (θ = 45◦). The

results after 25 and 100 iterations are shown in Fig. 3(c) and

Fig. 3(d), respectively. Even though L(γ) has been designed

(a) (b)

(d)(c)

Fig. 3. Diffusion of images containing vertical and diagonal step edges by
using the Laplacian kernel L(γ) in (3). The vertical edge after (a) 25 iterations,
(b) 100 iterations, and the diagonal edge after (c) 25 iterations, and (d) 100
iterations.

to preserve orthogonal edges, it is seen from these figures that

the use of the Laplacian kernel does not smooth the diagonal

edge. On the contrary, it gets enhanced as a result of an inverse

diffusion process taking place . However, as the number of

iterations is increased, ringing artifacts are formed resulting

from the up lifting and down lifting of the pixel intensities

on both sides of the edge. It also seen that the phenomenon

of these lifting of the pixel intensities violates the extremum

principle [28], [29]:

min(u(0)) ≤ un
(i,j) ≤ max(u(0)) ∀n ∈ [0, +∞] (13)

It is known that the nonlinear diffusion filter (3) using the

diffusivity function of (7) and the Laplacian kernel L1 supports

the extremum principle [13] even though it performs inverse

diffusion on regions where ‖∇u‖ > K . In the next subsection,

we will determine the condition under which the nonlinear

diffusion filter does not violate the extremum principle so that

a scheme overcoming this problem could be devised.

B. An Analysis of L(γ) in Context of Extremum Principle

In this subsection, we analyze the problem to determine

the condition for observing the extremum principle by the

nonlinear diffusion filter when it uses L(γ) as the Laplacian

kernel. For this analysis, we utilize an expression of the

nonlinear diffusion filter in the form of a system of ordinary

differential equations given by [13]

∂u/∂t = A(u)u (14)

u(t = 0) = f
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in which u = (u1, · · · , uq, · · · , uN) is a vector consisting of

the pixel values of the image taken column-wise such that uq

represents the pixel value at position (i, j), N denotes the total

number of pixels in the image, and A is an N×N matrix with

elements ak,l(u). When (14) employs the Laplacian kernel

L(γ), the element of A can be expressed as

ak,l =






(ck + cl)/2 + (2γ − 1)ck, l ∈ No(k)
−γck, l ∈ Nd(k)
−∑

l∈Nd(k){(ck + cl)/2+

(2γ − 1)ck} +
∑

l∈Ne(k) γck, l = k

0, else
(15)

where No(k) and Nd(k) denote the sets of the indices of the

immediate neighbors of uk in the 2-D image in the orthogonal

and diagonal directions, respectively, and cq is the diffusion

coefficient at pixel position q. In [30], it is shown that if matrix

A satisfies the conditions given by

(S1)
∑N

l=1 ak,l = 0
(S2) ak,l ≥ 0 for all l = 1, · · · , N (l 6= k) for all k =

1, · · · , N for which uk is an extremum

then the diffusion filter (14) satisfies the extremum principle.

It is seen from (15) that the filter employing the Laplacian

kernel L(γ) always satisfies the condition (S1); however, the

condition (S2) is not satisfied because of the the presence of

the negative entries in A for indices l ∈ Nd(k) and possible

negative terms in A for indices l ∈ No(k) whenever γ < 1/4.

In order for the filter given by (14) to satisfy the extremum

principle, we now propose to modify the matrix A by using a

function f(uk) as follows.

ak,l =






(ck + cl)/2 + (2γ − 1)ck, l ∈ No(k)
−γf(uk)ck, l ∈ Nd(k)
−∑

l∈Nd(k){(ck + cl)/2+

(2γ − 1)ck} +
∑

l∈Ne(k) γf(uk)ck, l = k

0, else
(16)

It is seen from the above equation that with the proposed

modification of A, the condition (S1) is still readily satisfied.

However, in order to satisfy the condition (S2), f(uk) should

be capable of making the entries of A for l ∈ Nd(k) to

vanish whenever uk is an extremum. In the next subsection,

we explain how this can be accomplished by designing a data-

dependent kernel and discuss its implication on the perfor-

mance of the filter.

C. An Edge Adapting Laplacian Kernel

Using the kernel L(γ) = γ(2L1 − 2L2) in (3), which is a

fully discrete version of (14), we obtain

(u
(n+1)
i,j − u

(n)
i,j )/τ = 2γ [c(.)i,j(u ∗ L1)i,j ]

(n) −

2γ [c(.)i,j(u ∗ L2)i,j ]
(n) +

1

2

[
∑

d

∇dc(.)i,j∇dui,j

](n)

(17)

The backward Laplacian diffusion term 2γ [c(.)i,j(u ∗ L2)i,j ]
in (17) results from the entries in Acorresponding to l ∈ Nd(k)
(i.e. −γck) and

∑
l∈Ne(k) γck part of the entries corresponding

to l = k of A. It is only these entries that are affected when

A is modified as in (16) using the function f(.). Thus, the

proposed modification of A results in modifying (17) as

(u
(n+1)
i,j − u

(n)
i,j )/τ = 2γ [c(.)i,j(u ∗ L1)i,j ]

(n) −

2γ [f(.)c(.)i,j(u ∗ L2)i,j ]
(n) +

1

2

[
∑

d

∇dc(.)i,j∇dui,j

](n)

(18)

In essence, the proposed modification of A simply affects the

backward Laplacian diffusion term by multiplying it with f(.).
Our objective is to make (18) independent of the backward

Laplacian diffusion term at an extremum of u by letting f(.)
assume a value of zero at such pixel positions of the image.

In [30], a non-standard approximation of the gradient mod-

ulus is suggested as

∇̃ui,j = [max(−∇Nui,j.∇Sui,j, 0)+

max(−∇Eui,j .∇W ui,j, 0)]1/2 (19)

which assumes a value of zero at an extremum of u. Using this

approximation for the gradient, ∇̃ui,j , we propose a function

f(.) to have the following form:

f(ui,j) = c(0) − c(∇̃ui,j) (20)

With this choice of f(ui,j), the backward Laplacian diffusion

term of the filter (18) is eliminated at exterma of u and the

filter satisfies the extremum principle. In the following, we

investigate the behavior of this modified filter given by (18).

Let us consider the value ur,s that is an edge pixel. Then, it

is easy to see that the approximate gradient modulus given by

(19) for such a pixel is zero; thus, the function f(ur,s) given

by (20) assumes a zero value. Since, as discussed in Section

II, the third diffusion term in (18) vanishes for an edge pixel,

(18) assumes the following form

(u(1)
r,s − u(0)

r,s)/τ = 2γ [c(.)r,s(u ∗ L1)r,s]
(0)

(21)

for the first iteration of the filtering operation, that is, a

forward diffusion is performed on this pixel. Thus, unlike the

filtering operation performed by (17) in which the diffusion

process on the orthogonal edges is completely halted, in the

filtering operation performed by the filter (18) all the edge

pixels including the orthogonal edge pixels would undergo the

diffusion operation. However, in order to make the filter (18)

not to perform more diffusion on the edges than done by (4),

one has to chose the value of γ ≤ 1/2. A small value of γ, on

the other hand, would impact negatively on the noise filtering

capability of (18) for the smooth regions of the image.

In order to increase the noise reduction performance of (18)

without hindering its edge preservation capability, it is required

to devise a mechanism of increasing the value of γ beyond

0.5 without increasing the forward diffusion on the edges. For

γ > 1/2, the forward Laplacian diffusion performed by (18)

is larger than that performed by the nonlinear diffusion filter

(4). In order to eliminate the impact of the extra diffusion on
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the edges, we modify the forward diffusion term 2γc(.)i,j(u ∗
L1)i,j of (18) as

c(.)i,j(u ∗ L1)i,j + f(.)(2γ − 1)c(.)i,j(u ∗ L1)i,j (22)

where the first term is exactly same as the forward Laplacian

diffusion term of (3) and the second term is the extra diffusion

part in (18). Thus, with the modified forward Laplacian

diffusion term, its negative effect on the edges would not

exceed that of (3) because of the presence of f(.), whereas

the performance of (18) in smooth regions should improve

because of the value of γ being greater than 1/2. The nonlinear

diffusion filter (18), after this modification, becomes

(u
(n+1)
i,j − u

(n)
i,j )/τ = [c(.)i,j(u ∗ L1)i,j ]

(n)
+

{f(.) [(2γ − 1)c(.)i,j(u ∗ L1)i,j − 2γc(.)i,j(u ∗ L2)i,j ]}(n)
+

1

2

[
∑

d

∇dc(.)i,j∇dui,j

](n)

(23)

It is important to note that the filter (23) still satisfies the

extremum principle, since the backward Laplacian diffusion

term is still intact compared to that in filter (18). The purpose

of modifying (18) into (23) has been to improve the noise

reduction capability of the resulting filter by using a larger

value of the parameter γ. We would now examine as to how

this modification affects the performance of (23) in terms of

processing orthogonal edges. Since, L3 = 2L1 − 2L2, the

second term on the right side of (23) can be simplified as

f(.) [(2γ − 1)c(.)i,j(u ∗ L1)i,j − 2γc(.)i,j(u ∗ L2)i,j ] =

f(.) [c(.)i,jγ(u ∗ L3)i,j − c(.)i,j(u ∗ L1)i,j ] (24)

As at the orthogonal edges (u ∗ L3) = 0, the diffusion

performed on these edges by (23) is independent of the value

of γ, and since it is generally assumed that c(0) = 1, the

Laplacian diffusion process carried out by filter (23) on an

orthogonal edge is given by

[c(.)i,j(u ∗ L1)i,j ] − f(.) [c(.)i,j(u ∗ L1)i,j ] =

c(‖∇ui,j‖)i,jc(∇̃ui,j)i,j(u ∗ L1)i,j (25)

If we compare the diffusion coefficient c(‖∇ui,j‖)c(∇̃ui,j)
of (23) with the diffusion coefficient c(‖∇ui,j‖) in (4), the

diffusion performed on the orthogonal edges by (23) is less

than that performed by (4) from iteration 2 onward, since

c(‖∇ui,j‖)(n) > c(‖∇ui,j‖)(n)c(∇̃ui,j)
(n) for c(.) ∈ (0.1].

Before closing this section, we make an explicit comparison

of the filters given by (3) and (23). By combining the first two

terms on the right side of (23), we have a single Laplacian

diffusion term in the form of c(.)(u ∗ L)i,j , where Li,j is

given by

Li,j = L1 − f(ui,j)((2γ − 1)L1 − 2γL2) (26)

Recall that in (3), the Laplacian operation is performed by

using the kernel L1 as ∇2u = L1 ∗ui,j . Note that if kernel L1

in (3) is replaced by Li,j , then (3) becomes the filter given by

(23). In a view of the fact that Li,j depends on ui,j , hereafter

we refer to it as the edge adapting kernel.

IV. SIMULATION RESULTS

In this section, we study the effect of the proposed edge

adapting kernel on the filtering performance of three nonlinear

diffusion filters. The nonlinear diffusion filters considered

for this purpose are the classical filter proposed by Perona

and Malik [8], the anisotropic filter introduced by Carmona

and Zhong [31] and a filter due to Yu and Chua [27]. The

performance of these filters are examined when the kernel

L1 of these filters is replaced by the proposed one. Their

performances are measured in terms of the SNR representing

the noise removal capability of the filters, and a figure of merit

(FOM) index introduced by Pratt’s [32] that represents the

edge preservation capability of the filters. The SNR is defined

as

SNR = 10 log10 (var(û)/var(I − û)) (27)

where û and I denote, respectively, the denoised and noiseless

images, var(.) and avg(.) denote, respectively, the variance

and average of the pixel values of the associated image. The

index FOM is defined in [32] as

FOM =
1

max(uD, uI)

uD∑

i=1

1

1 + φd2
i

(28)

where uD is the number of detected edge points, uI the

number of edge points in the image I , φ is a positive scaling

factor often chosen to be 1/9, and di the distance between the

ith detected edge pixel in û and the corresponding pixel in I .

For the evaluation of FOM, the Sobel operator is used for the

edge detection. Filters in these experiment are implemented

using a MATLAB 2008Ra simulation platform on a Windows-

based 64-bit icore5 machine with 4-GB RAM.

A. The nonlinear diffusion filter of Perona and Malik

The proposed edge adapting kernel used in the filter given

by (23) has a parameter γ. Recall that the lower limit of

1/4 of this parameter is dictated by the extremum principle.

On the other hand, a larger value of this parameter within a

limit ensuring the numerical stability of the discrete model

of the filter improves the noise reduction capability of the

filter. In order to see the impact of the value of γ chosen

on the diffusion of orthogonal and diagonal edges, we again

consider the synthetic images shown in Figs. 2(a) and (b)

containing, respectively, vertical and diagonal edges. These

images are diffused by employing the filters given by (23) and

(3) using the diffusivity function given by (7) for the value of

the contrast parameter K chosen in the interval [5, 25] and for

values of γ in the range [0.5, 1.5]. The filtering is performed

for n = 30 iterations and the time step size τ = 0.1.

The variance of the diffused images as a function of K for

different values of γ is depicted in Fig. 4 for the vertical and

diagonal edges. It is seen from this figure that the variance of

the images diffused by the proposed filter for both the diagonal

and vertical edges is consistently higher than that obtained by

using (3) indicating a smaller diffusion of the edges by the

proposed filter. Also, as expected, the diffusion performed by

(23) on the vertical edge is independent of the choice of the

value γ (Fig. 4(a)). Even though the noise reduction capability
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Fig. 4. The variance of the image as a function of the contrast parameter K
and γ illustrating the effects of using the L1 and Li,j kernels on the diffusion
precess of (3) for an image having (a) vertical edge and (b) a diagonal edge.

of the proposed filter is, in general, enhanced at the expense

of a reduced edge preservation capability by choosing a larger

value of γ, it is seen from Fig. 4(b) that even for γ = 1.5,

the diffusion of the diagonal edge by the proposed filter is

smaller than that by (3). Therefore, the value of γ for all of

the simulation study of this section is chosen to be 1.5.

In order to examine the performance of the filters given by

(3) and (23), we use the regularized version [16], c(‖∇(Gσ ∗
u)‖), of the diffusivity function given by (7) in which Gσ

denotes the Gaussian kernel with standard deviation σ. The

value of σ is chosen to be 1. The value of the contrast

parameter K is set using the so-called threshold freezing

scheme given in [33]:

K(n) =
1

ǫ + χ · n · τ (29)

where ǫ = 10−10 and χ is a threshold parameter, which

provides a non trivial steady state solution of the nonlinear

diffusion filter in a finite number of iterations. The itera-

tive filtering process is stopped once the condition ||u(n) −
u(n−1)||/||u(n−1)|| ≤ 10−4 is satisfied. The time step size τ
is chosen to be 0.05.

In this simulation study, the synthetic images of Disk, and

Flintstone, the natural image House, and an organic super-

conductor (OSC) image given in [34] are chosen. Table I

gives a comparative performance of the two schemes, when

L1 and the proposed kernel are considered. These images are

corrupted by a white Gaussian noise (AWGN) with standard

deviation SD = 15 and 25. For the purpose of comparison,

the SNR and the corresponding FOM values of the filtered

images are obtained at the threshold values χ = χopt that

provide the largest possible SNR for the filtered images. This

table also depicts the total number of iterations meeting the

stopping condition specified above, and the CPU time. It is

seen from this table that the proposed filter yields the SNR

and corresponding FOM values that are consistently higher

than that provided by the filter using the L1 kernel. On the

average, SNR and FOM values obtained by the filter using the

proposed kernel are, respectively, 0.98 dB and 6.98% higher

than when the L1 kernel is used. However, it is noted that

this improvement in the performance of the filter is achived

at the expense of an increased computantinal complexity. The

proposed scheme results in a higher number of iterations and

a CPU time that is on the average 46% larger.

Fig. 5 depicts the perceptual quality of the image House

processed by the two filters. The original image and the one

degraded by a noise with SD = 25 are shown in Figs. 5(a)

and (b), respectively. Figs. 5(c) and (d) show, respectively,

the images processed by filters (3) and (23) that employ

the optimal values of χ of the filters, that is, 0.2 and 0.08,

respectively. It is seen from these two images that filter

(3) is not as effective in removing the noise and preserving

the edges as filter (23). By increasing the value of χ to a

value larger than χopt, the noise reduction ability of the filters

would naturally be reduced. However, the resulting reduction

of the diffusion on the edges should increase the FOM value

compared to that for χopt. To see the effect of increasing

χ above χopt, we increase the value of χ in filter (3) from

its optimal value of 0.2 to 0.35, a value at which the FOM

value of the processed image by this filter becomes almost

equal to the FOM value of the filter (23) at its optimal χ,

i.e., 0.7005. It is seen from the the resulting processed image,

shown in Fig. 5(e), that the noise reduction ability of filter

(3) is considerably reduced, and quantitatively the SNR value

gets reduced from its optimal value of 15.46 dB (Fig. 5(c))

to 14.75 dB. Fig. 5(f) shows the image processed by the filter

(23) with the value of χ increased from its optimal value to

that of for filter (3), i.e., χ = 0.2. It is seen from this figure

that as expected more noise is left behind compared to that

in Fig. 5(d) due to a reduced diffusion, which is particularly

visible at the edges. However, the FOM value of the image in

Fig. 5(f) is 0.7606, which is larger than the value of 0.7006
for the image in Fig. 5(e).

In order to further compare the edge preservation capability

of the two filters, the residual images û−u(0) corresponding to

images processed by filters (3) and (23) at their respective χopt

are obtained and shown in Fig. 6. It is clear from this figure

that the diffusion process of the image edges as carried out

by (3) is stronger than that by (23). In order to quantitatively

analyze the results of the filtering operations carried out by (3)

and (23), the variance of the residual image, var(û − u(0)),
and absolute value of its correlation with the estimated image,

|corr(û−u(0), û)|, are obtained. These values are, respectively,

591 and 0.05 resulting from the filtering operation carried

out by (3) and, respectively, 616 and 0.01 resulting from the

filtering operation of (23). A higher value of the variance along

with a simultaneously lower value of the correlation in the

case when the filtering is carried out by (23) indicates the

effectiveness of the new kernel in both edge preservation and

noise reduction.
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TABLE I
QUANTITATIVE RESULTS OBTAINED BY USING THE LAPLACIAN KERNEL L1 AND THE PROPOSED KERNEL Li,j IN FILTER (3)

Degraded Image Filtered Image
Noise level Image SNR(dB) Kernel χopt SNR(dB) FOM n Time(s)

SD = 15

House 10.17
L1 0.40 17.60 0.7133 62 1.12

Proposed 0.23 17.96 0.7688 75 1.71

OSC 11.47
L1 0.56 17.08 0.7495 67 3.20

Proposed 0.52 17.34 0.7817 70 4.13

Disk 15.95
L1 0.28 28.43 0.8491 78 1.35

Proposed 0.05 31.16 0.8579 90 2.02

Flintstone 14.13
L1 0.55 17.97 0.8183 51 7.22

Proposed 0.45 18.09 0.8624 56 9.11

SD = 25

House 6.41
L1 0.2 15.46 0.6184 89 1.60

Proposed 0.08 16.11 0.7005 117 2.81

OSC 7.52
L1 0.28 14.33 0.6190 60 4.56

Proposed 0.22 14.52 0.6976 68 6.48

Disk 11.71
L1 0.17 25.23 0.8161 108 1.9

Proposed 0.025 28.56 0.8177 119 3.1

Flintstone 9.97
L1 0.3 15.48 0.7035 69 9.71

Proposed 0.21 15.65 0.7831 82 13.29

(a) (b) (c)

(d) (e) (f)

Fig. 5. The perceptual quality of the processed image House. (a) Original image. (b) Image contaminated by AWGN with SD=25. (c) Image denoised using
(3) with χopt = 0.2. (d) Image denoised using (23) with χopt = 0.08. (e) Image denoised using (3) with χ = 0.35; (f) Image denoised using (23) with
χ = 0.2.

For images containing edges with contrast higher than

the noise level, such as the image Disk shown in Fig. 7,

the diffusion coefficients corresponding to the edge pixels is

sufficiently small, which provides a good edge preservation

capability to both the processing filters. This can easily be

seen from FOM values, given in Table I, of the image Disk

processed by filters (3) and (23). The FOM value of the Disk

image processed by these two filters are the largest among the

images considered in our simulation study without drawing

any significant advantage from one filter over the other from

standpoint of their edge preservation capability. The good

edge preservation capability of both the filters can also be

seen perceptually from the images shown in Fig. 7. However,

in terms of noise reduction capability, one clearly sees the

superiority of the proposed filter (23) over filter (3) from SNR

value in Table I and perceptually from images processed by

the two filters shown in Fig. 7.

B. The Anisotropic Filter of Carmona and Zhong

As mentioned earlier, the proposed edge adapting kernel

Li,j can also be used in nonlinear diffusion settings other

than the one given in (3). In the following, we show how

the proposed kernel can be used in the anisotropic filter of
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(a) (b)

Fig. 6. The quality of edge preservation illustrated by the residual image û − u(0). The residual of the image processed by (a) filter (3) and (b) filter (23).

(a) (b)

(c) (d)

Fig. 7. The perceptual quality of the processed image Disk.(a) Original image. (b) Image contaminated by AWGN with SD = 25. (c) Image denoised by
(3). (d) Image denoised by (23).

Carmona and Zhong [31]. The PDE of this filter is given by

ut = a (‖∇u‖) (b (‖∇u‖)uξξ + c (‖∇u‖)uηη) (30)

where a(.), b(.) and c(.) are the diffusivity functions that

provide a great deal of flexibility in controlling the diffusion

process of the images. These diffusivity functions can be

chosen in a way such that the image edges are significantly

diffused in the direction of their level sets than in the direction

of their gradient. Introducing the notation ∇2u in (30) using

the fact that ∇2u = uξξ + uηη, we have

ut = a (‖∇u‖) (c (‖∇u‖)∇2u+

(b (‖∇u‖) − c (‖∇u‖))uξξ) (31)

Now in our simulation of the filter of Carmona and Zhong

given by the above equation, we use the kernel L1 and the

proposed kernel Li,j to approximate the Laplacian operator.

Note that the use of the approximation of the second-order

derivatives in the direction of the level set and gradient given
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by

uξξ =
uxxu2

y − 2uxuyuxy + uyyu2
x

u2
x + u2

y

(32)

and

uηη =
uxxu2

x + 2uxuyuxy + uyyu2
y

u2
x + u2

y

(33)

ensures that the filter given by (30) or (31) employs the L1

kernel. In order to use the proposed kernel, we use Li,j in

(31) to approximate the Laplacian operator and (32) for uξξ.

The parameter settings used for Li,j to perform the Lapla-

cian operator ∇2 are the same as that used in Section IVA

except that the contrast parameter K is now set to unity. The

diffusivity function a (‖∇u‖) is chosen to be the same as in

[31], i.e., a (‖∇u‖) =
[
K2/

(
K2 + ‖∇u‖2

)]1/2
with K given

by (29), b (‖∇u‖) is set to be unity, and c (‖∇u‖) is given by

(7) with K set to have a value of 10. The time step size is

chosen to be 0.05 for the first 50 iterations and 0.25 afterward.

The stopping criterion used in the filter simulation is the same

as that in Section IV.A.

Table II gives the quantitative results in terms of the SNR

and FOM of the four images degraded by AWGN with

SD = 25 and then processed by the Carmona and Zhong

filter employing the L1 and Li,j kernels. It is seen from this

table that replacing the kernel L1 by Li,j enables the Carmona

and Zhong filter to perform consistently better in processing

all the four images. On the average, the proposed kernel yields

the values of the SNR and FOM that are, respectively, 0.76
dB and 5.3% higher than when the kernel L1 is employed.

However, the convergence rate of the filter using the proposed

kernel is lower than that when L1 used, and this is reflected

in making the computational time of the filter with Li,j kernel

to be 24.5% higher.

C. GVF-based Anisotropic Filter

Nonlinear diffusion filters can be used for simultaneous

deblurring and denoising, since they can be set to perform

an inverse diffusion on the edges. One of the techniques

for performing deblurring-denoising, introduced by Yu and

Chua [27], is the gradient vector flow (GVF)-based anisotropic

diffusion filter given by

ut = c (‖∇u‖)∇2u− →
v ·∇u (34)

where
→
v is a gradient vector flow field calculated through an

evolutionary process given by

→
v t= µ∇2 →

v −
(
→
v −∇E

)
‖∇E‖2 (35)

→
v (t = 0) = ∇E

and E is the image edge map defined by

E = 1 − 1√
2πK

e(−‖∇u‖2/2K2) (36)

In (35), µ is a positive blending coefficient used to smoothen

the GVF field,
→
v . The deblurring process performed by (34)

is due to the inverse diffusion of the edges carried out by the

second term of right of (34).

The filter given by (34) has a Laplacian forward diffusion

term, c(.)∇2u, which in a discrete setting is implemented as

c(.)i,j(u ∗ L1)i,j . In order to use the proposed edge adapting

kernel, we simply replace the Laplacian kernel L1 in this

forward diffusion term by the kernel Li,j .

In this simulation study, filter (34) using the L1 and Li,j

kernels is set up as follows:

1) The evolutionary processes of (34) and (35) are dis-

cretized in the temporal domain using the forward Euler

approximation with the time-step size τ set to 0.1
2) The spatial derivatives in (34) and (35) are based on the

central difference operators with a reflective boundary

condition.

3) The total number of iterations for the discretized diffu-

sion precess of (34) is chosen to be 50 with the value

of
→
v updated after each 10 iterations using (35). The

total number of iterations for the discretized realization

of (35) is chosen to be 20.

4) The blending coefficient, µ, in (35) is set to unity.

5) The diffusivity function is computed as c (‖∇u‖) =
e(‖∇u‖/2K2) with the value of K at each iteration set to

the 80% value of the integral of the gradient magnitude

of the image. The same value of K is also used in (36)

for the evaluation of E.

6) Parameter settings used for the Li,j kernel are the same

as those used in Section IV.B.

In order to see the effect of the proposed kernel in the

deblurring-denoising process of (34), the same four images as

considered earlier are first blurred using a 15 × 15 Gaussian

kernel with the standard deviation of 1.5 and then contam-

inated with an AWGN having SD = 15. Table III gives

the quantitative results for the four images in terms of the

SNR and FOM. It is seen from this table that the use of

the proposed kernel in the filtering process of (34) yields the

values of SNR and FOM that are consistently better than that

in the case when the L1 kernel is used. On the average, the

SNR and FOM values are, respectively, 1.1 dB and 25.73%
higher. This improvement in the performance of the filter using

the proposed kernel is achieved at the expense of a modest

increase of only 10% in the comutational time. Fig. 8 depicts

the perceptual quality of the image OSC processed by (34)

using the L1 and Li,j kernels. The original test image is shown

in Fig. 8(a) and the corresponding degraded image (blurred

and noise contaminated) is shown in Fig. 8(b). Figs. 8(c) and

(d) show the images resulting from the processing of image

of Fig. 8(b) by the filter (34) with the L1 and Li,j kernels,

respectively. It is seen from these two processed images that

the proposed kernel is more effective in deblurring the edges.

V. CONCLUSION

In this paper, a new scheme to enhance the edge preservation

capability of nonlinear diffusion filters has been developed.

In contrast with the existing methods for increasing the edge

preservation capability of nonlinear diffusion filters in which

the focus is on significantly reducing the value of diffusion

coefficient at the edges, the new scheme is motivated by the
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TABLE II
QUANTITATIVE COMPARISON OF THE RESULTS OBTAINED BY USING THE LAPLACIAN KERNEL L1 AND THE PROPOSED KERNEL Li,j IN FILTER (31)

Degraded Image Filtered Image
Noise level Image SNR(dB) Kernel χopt SNR(dB) FOM n Time(s)

Proposed 17.82 0.7305 85 0.038 3.04

SD = 25

House 6.41
L1 0.33 15.14 0.6095 185 2.34

Proposed 0.21 15.76 0.6682 193 3.04

OSC 7.52
L1 0.43 14.42 0.6198 258 10.10

Proposed 0.31 14.74 0.6484 273 12.56

Disk 11.71
L1 0.2 27.04 0.8336 155 1.93

Proposed 0.1 28.46 0.8368 156 2.43

Flintstone 9.97
L1 0.4 15.23 0.6843 172 18.66

Proposed 0.3 15.73 0.7301 178 19.27

TABLE III
QUANTITATIVE COMPARISON OF THE RESULTS OBTAINED BY THE FILTER (34) USING KERNELS L1 AND THE PROPOSED KERNEL Li,j

Degraded Image Filtered Image
Image SNR(dB) FOM Kernel SNR(dB) FOM Time(s)

House 8.85 0.5039
L1 13.48 0.4748 2.16

Proposed 14.13 0.5484 2.51

OSC 8.71 0.2816
L1 10.45 0.3043 4.87

Proposed 11.30 0.3757 5.39

Disk 14.87 0.5804
L1 22.22 0.7975 2.11

Proposed 22.49 0.8015 2.45

Flintstone 9.79 0.1179
L1 8.34 0.2106 11.37

Proposed 11.02 0.3442 12.39

(a) (b) (c) (d)

Fig. 8. The perceptual quality of an image restored by (34) using the L1 and Li,j kernels. (a) The original image OSC. (b) Degraded image blurred by
the 15 × 15 Gaussian kernel with SD = 1.5 and contaminated by AWGN with SD=15. (c) Image processed by (34) using L1. (d) Image processed by (34)
using Li,j .

result of a study on the impact of the anisotropic behavior in-

herent in the discrete approximations of the Laplacian operator

on the diffusion of the edges. The study has shown that the

Laplacian kernel when it operates on pixels of the orthogonal

edges results in a smaller diffusion of these pixels compared

to the case of diagonal edges. Motivated by this result, a new

Laplacian kernel has been designed, which when operates on

pixels of the orthogonal edges yields a zero response. It has

been shown that even though the filter employing this kernel

completely halts the diffusion process of the orthogonal edges,

the filter itself in this case does not satisfy the extremum

principle. This problem has been analytically investigated to

drive a sufficient condition for observance of the extremum

principle and eventually to propose an edge adapting Laplacian

kernel. To demonstrate the effectiveness of the new kernel,

extensive simulations have been carried out by employing this

kernel in some well known nonlinear diffusion filters. It has

been shown that at the expense of a little or modest increase

in the processing time, the use of the proposed kernel in the

nonlinear diffusion filters not only provides improved FOM

values but also enhances their noise reduction capability.
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