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Abstract

Cyanide is a powerful chemical asphyxiant found in some forensic cases following

voluntary (suicide) or involuntary ingestion (fire, accidental exposure). A quantifica-

tion method for cyanide that is specifically suited to post-mortem forensic purposes

was developed. Determination was performed by headspace gas chromatography

coupled to mass spectrometry using a GS-GASPRO column on an HP-6890 gas chro-

matograph with an HP-5973N mass detector. The biological sample was treated with

an internal standard, frozen, glacial acetic acid was added and the sample was then

incubated at 60 ◦C for 15 min. The headspace was sampled with a disposable syringe,

and analyzed to quantify hydrogen cyanide. Isotopically labeled cyanide (13C15N)

was used as the internal standard to minimize matrix effect and sampling error. The

method produced an extended linear dynamic range (0.07–50 𝜇𝑔∕𝑚𝐿), and a method

detection limit of 0.02 𝜇𝑔∕𝑚𝐿. Identical calibration curves were obtained when

blood, gastric contents and aqueous solutions were used as the calibration standard

matrix. This method was also successful in quantitating cyanide in gastric contents,

one of the most variable biological fluids. The method has been validated and is being

used for current forensic cases such as fire victims and suicides.
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1 INTRODUCTION

Cyanide is a powerful toxic agent. It acts mainly as a chemical asphyxiant through fixation to cytochrome C oxidase, the

mitochondrial enzyme responsible for the last step in cell respiration, and the blood oxygen transporter hemoglobin1,2,3.

Cyanide can be voluntarily ingested in suicides, usually in the form of a salt (KCN, NaCN) but recently a suicide case by

inhalation of HCN was also reported4. Cyanide exposure and absorption can also occur through inhalation of HCN produced in

fires, or in cigarette smoke, due to the incomplete combustion of nitrogen products2. A synergistic effect is suspected between

cyanide and carbon monoxide in fires5. Cyanide was reported to be responsible for a “knockout effect” in some fires, rendering

the person unconscious well before carbon monoxide reached lethal levels. Finally, low levels of cyanide are generated in the

body as a metabolite of nitroprusside, acetonitrile, acrylonitrile and cyanogenic glycosides6.
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The average endogenous level of cyanide in blood is 0.059 𝜇𝑔∕𝑚𝐿 for non-smokers and 0.123 𝜇𝑔∕𝑚𝐿 for smokers7. These

value were compiled from multiple results by Baselt, but it should be noted that there is a large range of endogenous concen-

trations found depending on the study8. The blood concentrations found in suicide cases range from 1 to 53 𝜇𝑔∕𝑚𝐿 (average

of 12.4 𝜇𝑔∕𝑚𝐿)7. In fire cases, the average blood concentration is reported to be 1.12 𝜇𝑔∕𝑚𝐿7. There is no consensus on the

precise toxic threshold for cyanide, but concentrations over 1 𝜇𝑔∕𝑚𝐿 are generally considered toxic6.

Quantification of cyanide can be performed using various methods. Spectrophotometric assays have been used for a long

time in forensic laboratories9,10,11. More recently, methods using HPLC12,13,14,15 have been reported, but they typically require

time consuming derivatization. Several GC methods have been demonstrated, either with ECD detection16, NPD detec-

tion17,18,19,20,21,22,23 or MS detection6,24. The headspace GC–MS method developed by Dumas et al. and Murphy et al. 6,24 is

very sensitive, fast and makes use of isotopically labeled cyanide as an internal standard. However, this method is not very

well adapted for the postmortem forensic context because of its narrow linear dynamic range and limited applicability to

non-traditional matrices.

In this paper the validation of a headspace GC–MS method of cyanide quantification specifically adapted for post-mortem

toxicology is presented, as well as the results obtained for various forensic cases.

2 MATERIALS AND METHODS

2.1 Reagents
Sodium cyanide (reagent grade, 97%) and sodium thiocyanate (trace metal basis, ≥ 99.9%) were obtained from Sigma–Aldrich

(St. Louis, MO, USA). Isotopically labeled potassium cyanide (K13C15N) was purchased from Cambridge Isotope Laboratories

(13C: 99% and 15N: 98%+ Andover, MA, USA). Our analysis revealed that this reagent contains ∼ 0.4% of K12C14N. Sodium

hydroxide was purchased from Anachemia (Montreal, QC, Canada). Ascorbic acid and glacial acetic acid were obtained from

Fisher (Fair Lawn, NJ, USA). Bovine blood was obtained from MacDonald farm, McGill University (Ste-Anne-de-Bellevue,

QC, Canada).

2.2 Analytical methods
2.2.1 Sample preparation
In a 20 𝑚𝐿 headspace vial (LabSphere Inc., North Sutton, NH, USA), 1.0 𝑚𝐿 of sample (unknown or spiked matrix) was mixed

with 1.0 𝑚𝐿 of deionised water and 0.25 𝑚𝐿 of internal standard (100 𝜇𝑔∕𝑚𝐿 13C15N– in NaOH 0.1 𝑁). The sample was

vortexed for 10 𝑠. A cap with an 8 𝑚𝑚 center hole and 3.0 𝑚𝑚 thick dark gray butyl septum was placed on the vial without

crimping (Part 20031157, LabSphere Inc., North Sutton, NH, USA). The sample was then stored either for 2 h at −20 ◦C, for

40 min at −80 ◦C, or until it was frozen. Glacial acetic acid (0.45 𝑚𝐿) was then added to the sample and the vial quickly sealed

by crimping the cap. The sample was then incubated in a Reacti-ThermTM heating/stirring module (Thermo, Rockford, IL, USA,

model 18970) at 60 ◦C for a minimum of 1 min in order for the blood to thaw and vortexed for 10 𝑠. After a minimum of 15 min

of incubation the sample was vortexed again for 10 𝑠. Finally, 0.60 𝑚𝐿 of the headspace was injected manually in the GC with

a 1 𝑚𝐿 25G 5/8 disposable syringe (BD, Franklin Lakes, NJ, USA).

2.2.2 Headspace GC-MS analysis
An HP-6890 GC coupled to an HP-5973 mass selective detector was used for the analysis. The separation was accomplished on

an Agilent GS-GASPRO column (30 𝑚 length, 0.32 𝑚𝑚 ID, 0.25 𝑚𝑚 film thickness). Injections were made in the splitless mode.

The injector was held at 150 ◦C and at a pressure of 5.7 psi. A GC ThermogreenTM LB-2 11 𝑚𝑚 septa (Supelco, St. Louis, MO,

USA) and a gooseneck liner without glass wool (product 5183-4696, Agilent, Missisauga, ON, Canada) were used. The helium

carrier gas (spec grade 5.0, BOC Gas, Montreal, QC, Canada) flow to the column was set to 2.3 𝑚𝐿∕𝑚𝑖𝑛. A purge step of 3 min

was added, where a gas flow of 50.0 𝑚𝐿∕𝑚𝑖𝑛 went through the liner and to the vent in order to flush remaining products in the

liner. The Gas Saver mode was turned off in order to allow more helium to run through the liner to displace any residual HCN,

hence reducing the carry-over. The initial oven temperature was 50 ◦C, and was ramped at a rate of 10 ◦C/min to 135 ◦C, and then
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at a rate of 60 ◦C/min to 230 ◦C and held for 2 min. The run time was 12.1 min with a solvent delay of 7 min. The retention time of

the analyte was 8.5 min. The mass spectrometer was calibrated manually using the masses 18 (H2O), 28 (N2) and 32 (O2) while

the PFTBA was turned off. This procedure yielded better sensitivity for low masses. Chromatograms of ions 27 (H12C14N+)

and 29 (H13C15N+) were acquired using Selected Ion Monitoring (SIM) mode, with a dwell time of 350 𝑚𝑠, which was selected

after optimization. The MS source was held at 230 ◦C, the transfer line at 250 ◦C and the MS quadrupole was held at 150 ◦C.

2.2.3 Data analysis
Data analysis was performed using Agilent MSD Chemstation, version E.02.01.1177. The ratio of integrated peaks (area of

ion 27)/(area of ion 29) was used for quantification. Inverse weighing was used to build linear calibration models.

2.3 Experimental methods
2.3.1 Linearity and accuracy
Five calibrations, each of seven points (0.00; 0.10; 0.40; 1.00; 5.00; 25.00 and 50.00 𝜇𝑔∕𝑚𝐿), with two quality controls (QC;

0.50 and 15.00 𝜇𝑔∕𝑚𝐿) were prepared in bovine blood over a one month period. The slope and intercepts were compared to

theoretical values, and the 𝑅2 was used to evaluate linearity.

2.3.2 Reproducibility
The reproducibility of the method was evaluated by analyzing three bovine blood samples doped with different concentrations

(0.75, 7.50 and 37.50 𝜇𝑔∕𝑚𝐿) in triplicate on three different days (nine measurements for each concentration) spread over

21 days. During this period, the system was opened for routine maintenance (column changed, MS vented) between the different

sets of injections. To evaluate reproducibility, the %RSD of the ratio of analyte area to internal standard area was used.

2.3.3 Limits of detection and quantification
Eight blank injections of bovine blood were used in order to calculate 𝜎𝑏𝑙𝑎𝑛𝑘. These blank samples consisted of bovine blood not

doped with cyanide but treated with internal standard.

2.3.4 Robustness
To evaluate the robustness of the method, key parameters of the analytical procedure were modified and the system was cal-

ibrated, including QC samples as specified in Section 2.3.1. First, robustness toward the oven temperature was checked by

changing the original temperature gradient to an isothermal program at 105 ◦C. Robustness toward the volume of headspace

injected was tested by injecting 300 𝑚𝐿 of headspace instead of 600 𝑚𝐿. Finally, robustness toward the analyst was checked by

having the method carried out by four previously untrained analysts.

2.3.5 Specificity toward thiocyanate
To validate the method against thiocyanate interference, bovine blood samples containing either no cyanide or 0.50 𝜇𝑔∕𝑚𝐿
of cyanide were spiked at concentrations of 1 𝜇𝑔∕𝑚𝐿 and 12 𝜇𝑔∕𝑚𝐿 of thiocyanate, in order to reproduce the extremities of

the endogenous concentration range. Cyanide in these four different samples was quantified in duplicate. It was possible that

thiocyanate was already present in bovine blood, but the additions insured that the thiocyanate concentrations of the samples

were at least 1 𝜇𝑔∕𝑚𝐿 and 12 𝜇𝑔∕𝑚𝐿.

The use of ascorbic acid to prevent the interconversion of thiocyanate to cyanide was tested. Ascorbic acid (100𝑚𝑔) was added

to the samples before the acetic acid, as described in a published method6. Using this procedure, the method was calibrated and

two samples (spiked with 12 𝜇𝑔∕𝑚𝐿 of thiocyanate) were quantified.

2.3.6 Specificity toward decomposition products
In order to make sure that no interference from decomposition products occurred, cardiac and femoral blood samples from

victims with ages ranging from 17 to 70 years were analyzed. For this experiment, 17 victims in total were used, 13 males,
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4 females, 4 provided both cardiac and femoral blood, 7 provided cardiac blood and 6 provided femoral blood samples. About

half of the victims were already decomposed or mummified when the cardiac or femoral blood samples were taken by the

forensic pathologist. Cardiac blood samples were conserved in a plastic container and femoral blood samples were conserved

in a BD Vacutainer tube with 100 𝑚𝑔 of sodium fluoride and 20 𝑚𝑔 of potassium oxalate. All samples were stored at 4 ◦C. All

of the samples originated from suspicious death victims but the cause of death was established and elevated levels of cyanide

were not expected. Cyanide was quantified using a calibration curve as specified in Section 2.3.1.

2.3.7 Reduced sample volume
The use of 0.25 𝑚𝐿 or 0.50 𝑚𝐿 of bovine blood sample for the analysis was validated. The reduced volume of sample was diluted

to 1.00 𝑚𝐿 with either bovine blood or water, and the normal procedure was then followed. Sample cyanide concentrations,

before dilution, of 0.50 and 15.00 𝜇𝑔∕𝑚𝐿 were tested.

2.3.8 Matrices other than blood
Three calibration curves of five points each (0.0, 0.1, 1.0, 5.0 and 50.0 𝜇𝑔∕𝑚𝐿) were prepared in three different spiked matrices:

bovine blood, gastric contents and water. Since gastric contents are highly variable, three gastric content samples from three

cases, each with different consistencies and pH ranging from 5 to 7 were selected to evaluate the impact on the results. To allow

quantitative aliquoting of the sample it was homogenized with a blender prior to cyanide addition.

2.3.9 Repeated injections from the same vial
Successive injections (20) were made from bovine blood with a cyanide 0.10 𝜇𝑔∕𝑚𝐿 concentration. The headspace was sampled

every 17 min, the time required for the GC–MS to complete the chromatographic run and be ready for the next injection.

2.3.10 Stability of cyanide in blood
Human blood stocks were spiked at two different concentrations (0.50 and 50.00 𝜇𝑔∕𝑚𝐿) and stored at 4 ◦C and −20 ◦C for

a two week period. Samples were aliquoted before storage in order to avoid freeze-thaw cycles. Triplicate samples were then

analyzed every day for fifteen days.

2.3.11 Analysis of forensic cases
Cyanide in samples from forensic cases (poisoning or fires) were quantified. These biological samples were stored at the Labora-

toire de Sciences Judiciaires et de Médecine Légale, which is the only mandated forensic laboratory in the province of Québec.

According to the internal procedure, biological samples are stored for a period of 5 years following the production of a toxicology

report, and are then destroyed. While the case is being analyzed, samples are stored at 4 ◦C in the same containers as specified

in Section 2.3.6. When the case is closed, the samples are transferred to a freezer kept at −20 ◦C. Cyanide was quantified using

a calibration curve as specified in Section 2.3.1.

3 RESULTS AND DISCUSSION

3.1 Chromatogram
The developed method combines headspace analysis with a highly selective detector to yield a simple chromatogram (Figure 1 )

with a single peak. The analyte peak obtained exhibits a small amount of fronting, but produced plate numbers of 81500, which

compares favorably to the expected performance provided by the manufacturer (62400 theoretical plates).

3.2 Linearity and accuracy
The average slope obtained was 0.0389 (±3.4%, 𝑛 = 5) and the average intercept 0.00509 (±6.2%) which compares favorably

with the expected slope of 0.04. Contamination of the internal standard (estimated at 1 𝜇𝑔 12C14N/dose of IS) resulted in the
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FIGURE 1 Selected ion chromatograms obtained for (a) 𝑚∕𝑧 27 (HCN) for bovine blood samples of 0.1, 1.0 and 5.0 𝜇𝑔∕𝑚𝐿
and (b) 𝑚∕𝑧 29 (H13C15N) for a bovine blood sample (0.1 𝜇𝑔∕𝑚𝐿).

non-zero intercept, however, this was compensated for in the calibration. The endogenous CN in the bovine blood used for the

standards introduced a negligibly small systematic error compared to the random error and can be discarded. All curves had

𝑅2 > 0.990, which show a high degree of linearity even for the large dynamic range. The high linearity is further confirmed by

the small standard error of the estimate, which is 4.3 × 10−3 𝜇𝑔∕𝑚𝐿. The QC samples showed an average accuracy of 109.9%

at 0.50 𝜇𝑔∕𝑚𝐿 and 108.4% at 15.00 𝜇𝑔∕𝑚𝐿 concentrations (𝑛 = 5). These results show the high accuracy of the method.

3.3 Reproducibility
The intra-day relative standard deviation ranged from 1.8% to 2.6% and the inter-day %RSD ranged from 2.1% to 4.8% which

is satisfactory. This shows that the internal standard corrects adequately for variations due to manual injection.

3.4 Limits of detection and quantification
The calculated 3𝜎𝑏𝑙𝑎𝑛𝑘 LOD was 0.02 𝜇𝑔∕𝑚𝐿 and the 10𝜎𝑏𝑙𝑎𝑛𝑘 LOQ was 0.07 𝜇𝑔∕𝑚𝐿. Other published methods have lower

LOD, but this is most likely attributable to automation1,24. In any event, the LOQ obtained allows quantification at endogenous

levels and quantification at lower levels would not serve any useful forensic purpose.

3.5 Robustness
The method proved to be robust with respect to the oven temperature and the volume of headspace injected (300 𝜇𝐿 injected

yielded deviations from the expected concentrations under 10%). The QC samples quantified by three different analysts all fell

within the expected range with deviations under 10%. The only training these analysts received was to watch the method being

performed once. Therefore, this method does not require extensive training and is robust toward inter-analyst variation.
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3.6 Specificity
3.6.1 Toward thiocyanate
Artifactual formation of cyanide from thiocyanate has been reported to occur in the presence of oxyhemoglobin in an acidic

environment25. Therefore there is a reasonable concern that this may happen during blood sample acidification and heating

steps of this method. Thiocyanate is a metabolite of cyanide produced by the enzyme rhodanese, using thiosulfate as a sub-

strate2. Endogenous concentrations of thiocyanate in blood range from 1 to 12 𝜇𝑔∕𝑚𝐿7. Based on the work of Seto et al.,

several published methods1,6,23,26 recommend the use of ascorbic acid to prevent thiocyanate interference.

The cyanide concentrations found in blood samples spiked with thiocyanate (1 and 12 𝜇𝑔∕𝑚𝐿) were, on average, increased

by 0.04 𝜇𝑔∕𝑚𝐿 and 0.13 𝜇𝑔∕𝑚𝐿, respectively. These results suggest that there is a systematic error in the calculated cyanide

concentration due to presence of thiocyanate in blood.

Given these results, addition of ascorbic acid to prevent thiocyanate interference was attempted. The use of ascorbic acid led

to an average decrease of 9.6% peak area in the mass spectrometer. This phenomenon has already been reported by Murphy

et al. 24. Moreover, the samples still yielded a cyanide concentration that was on average 0.13 𝜇𝑔∕𝑚𝐿 above the expected

concentration. Therefore it remains unproven that the use of ascorbic acid prevents thiocyanate interference.

Consequently, analysts have to be aware that thiocyanate interference is a possibility. However, even at the highest reported

endogenous concentrations of thiocyanate, the interference is not likely to change the interpretation of the blood cyanide concen-

tration by the forensic toxicologist. That is, it is improbable that a case would be falsely interpreted as being cyanide intoxication

due to the thiocyanate. Future work should concentrate on characterizing more precisely the mechanisms of this interference

and removing it.

3.6.2 Decomposition products
Published methods using isotopically labeled cyanide as an internal standard have been validated for aqueous solutions and

well-preserved (clinical) blood6,24, not for post-mortem samples. Forensic blood samples are characterized by the presence of

decomposition products and are often partially or fully hemolyzed. The developed analytical strategy minimizes the complexity

of the biological matrix by using a highly selective detector producing a chromatogram with a single peak. However, decom-

position products are often volatile and could very well be sampled with the headspace.

All samples analyzed were found to have cyanide concentrations below the LOQ of the method, except 2 samples: a concen-

tration of 0.10 𝜇𝑔∕𝑚𝐿 was found in one cardiac blood sample and a concentration of 0.08 𝜇𝑔∕𝑚𝐿 was found in one femoral

blood sample. However, in both of these cases, the concentrations found were below the endogenous level expected for cyanide

in smoker’s blood. These results suggest that interference from the decomposition products would not produce erroneously high

measurements with this method.

3.7 Reduced sample volume
In forensic toxicology, it is common to have limited sample volume, especially if multiple analyses must be performed. This

is particularly true in fire cases where the pathologist is often able to collect only a few milliliters of femoral blood for all

analyses. In these situations, using one milliliter of sample for the cyanide analysis might not be practical or even possible.

Previously published methods usually require either 0.5 𝑚𝐿1,23,24,27 or 1.0 𝑚𝐿6,28 of blood sample. Only Frison et al. 29 went

below this volume and used 0.4 mL of blood.

Spiked samples at 0.50 𝜇𝑔∕𝑚𝐿 and 15.00 𝜇𝑔∕𝑚𝐿 (in the original sample) showed less than 10% deviation from the expected

value (90% < accuracy < 110%), whatever the initial volume or the diluant (0.25 𝑚𝐿 or 0.50 𝑚𝐿, water or blood). This demon-

strates that the original matrix is not affected by dilution. Therefore, a smaller volume of original sample can be used for the

analysis. Caution must be exercised in interpreting the detection and quantification limits when diluted samples are used as these

analytical figures would likely scale with the dilution factor.
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3.8 Matrices other than blood
Quantification of cyanide in matrices other than blood might be needed in a forensic context. In the event where cyanide is

ingested (solids or in a drink), establishing the cyanide concentration of the gastric contents might prove useful, for example

to determine route of administration. To the best of our knowledge, no published method has been validated for quantification

in gastric contents. This matrix is an analytical challenge because of its extreme variability. Since gastric content is an acidic

matrix, some cyanide is expected to escape in the form of gaseous hydrocyanic acid. However, when people are exposed to

massive doses of cyanide, an equilibrium process occurs, and if gastric contents are kept in a somewhat closed (stomach) or

completely closed (plastic container) environment, a good part of the cyanide will be retained. Quantification of cyanide in

aqueous solutions might also be required to analyze solutions (poisons) found at crime scenes.

Results of calibration showed excellent linearity (𝑅2 > 0.990 and small standard error of the estimate) and similarity of the

intercept and slope for all matrices as summarized in Table 1 . Considering these results, cyanide was quantified in water and

gastric contents using spiked bovine blood for calibration since bovine blood would be the normal calibration matrix. For quan-

tification at very low cyanide concentration, a calibration curve in water could be more accurate since it removes the systematic

error stemming from the presence of endogenous cyanide in bovine blood. However, for more elevated concentrations such as

those encountered in the forensic context, this small systematic error has no impact on the interpretation. Water samples showed

accurate quantification throughout the linearity range. For gastric contents, results showed a deviation of ±30% (𝑛 = 3) from the

expected value at the 0.50 𝜇𝑔∕𝑚𝐿 level. At the 1.00 𝜇𝑔∕𝑚𝐿 level and above, the precision improved to a maximum deviation of

±15% (𝑛 = 3) from the expected value. Since the minimal toxic dose for ingestion is considered to be 100 𝑚𝑔 7 which is likely

to produce concentrations well in excess of 1.00 𝜇𝑔∕𝑚𝐿 in the gastric contents, this quantification threshold is acceptable.

TABLE 1 Calibration parameters for bovine blood, water and different gastric contents. A linear fit with 1∕𝑥 weighing was

used.

These results suggest that cyanide can be quantified in diverse matrices using a single calibration curve with the potential to

save considerable analysis time and avoid the complications of preparing matrix-matched standards. However, quantification in

gastric contents can only be considered accurate (error of ±15%) for concentrations of 1.00 𝜇𝑔∕𝑚𝐿 and above.

3.9 Repeated injections from the same vial
Confidence in quantification results can be improved from replicate analyses, since the confidence interval is proportional to

the inverse square root of the number of measurements. However, the small volumes of forensic samples sometimes render

independent replicate analysis difficult. A partial solution to improving the precision is to inject replicates from the headspace

of the same vial. This strategy can improve the precision of the measurement process but cannot address sample preparation

error. Theoretically, if sampling the headspace does not alter the sample concentration significantly and if enough time is given

for equilibrium to be re-established between samplings, then the replicates should yield the same result. However, this is a

disputed procedure, and its application to a method requires validation30. Only Murphy et al. 24 used multiple sampling of the

headspace for cyanide quantification, with 𝑛 = 2.

The results showed that at least twenty injections could be done from the same vial without the results exceeding the 15%

error cutoff (Figure 2 ). These results suggest that the precision of the measurement can be improved, in an unbiased way, even

when very little sample is available, but it cannot compensate for sample preparation errors.
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FIGURE 2 Results of successive injections of the headspace of a 0.01 𝜇𝑔∕𝑚𝐿 bovine blood sample.

3.10 Stability of cyanide in blood
The time-course behavior of cyanide concentration needs to be known in order for the forensic toxicologist to account for the

delay between the time of death and the time of analysis and properly interpret the cyanide concentration. This poses a certain

problem as the stability of cyanide in blood is a controversial topic with dramatically divergent literature. The concentration of

cyanide in blood has been found to increase31, stay stable32 or decrease1,33 when the samples were stored at 4 ◦C. For samples

stored at −20 ◦C, concentration either increased31 or stayed stable33. None of these studies were performed with a GC–MS

method and often have a lower sensitivity or accuracy. Since the literature is contradictory, an experiment to test stability of

cyanide in human blood was done.

Figure 3 illustrates that no clear trend was observed: neither a systematic increase nor a decrease of the concentration. A

certain amount of variation is present, with a maximum value of 117% and a minimum value of 86%. The error, calculated over

the triplicate analysis, varies between 24% and 0.3%, with an average of 5%.

FIGURE 3 Percent of day 1 area counts for cyanide in human blood samples at a concentration of 0.50 𝜇𝑔∕𝑚𝐿, over a two

week period at storage temperatures of 4 ◦C (∙) and −20 ◦C (◦) and at a concentration of 50.00 𝜇𝑔∕𝑚𝐿, over a two week period

at storage temperatures of 4 ◦C (■) and −20 ◦C (□).
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It could be argued that a systematic variation of the concentration in blood should in principle be matched by a similar

variation of the isotopically labeled cyanide in aqueous solution (working solution of internal standard in 0.1 𝑁 NaOH). The

variation of both species in their respective matrices is expected to be the same because they both have the same chemical

reactivity. In this case, evaluating stability of cyanide through the ratio of ion 27 to ion 29 would lead to incorrect results.

However, since blood is a complex, chemically reactive mixture compared to an aqueous solution, this presumption might be

false. The same experiment was performed again, this time assessing the stability of cyanide through the raw area counts for

HCN (ion 27) rather than rationing to the internal standard. Although the variation was found to be larger (163–90%), no trend

(increase or decrease) can be observed. As all four different samples varied in the same way for any given day, the variation

seems to be mostly correlated on a daily basis. This indicates a possible instrumental effect, even though care was taken to keep

conditions identical. Standard deviation values for areas of ion 27 were below the 15% limit, which is within the error observed

in the reproducibility experiment, keeping in mind that manual injection could lead to large variations.

Another simple test for the stability of cyanide was performed, this time in aqueous solution. The calculated concentration

for a stock solution of cyanide that had been prepared 373 days (more than a year) earlier was compared with another one that

had been prepared on the same day. The same internal standard stock was used to do the analysis, which allowed a comparison

between the calculated concentrations to be made using the t-test. Results showed that the difference in concentration was not

statistically significant (𝑝 = 0.61), between fresh and 1 year old aqueous samples (storage at 4 ◦C).

3.11 Application to forensic cases
3.11.1 Cyanide poisoning
Only four cases of cyanide poisoning were available for analysis. The results obtained here can be contrasted with cases of

non-exposed individuals presented in Section 3.6.2. Additionally, analysis of 9 ante-mortem non-exposed individuals has been

performed. No cyanide was detected in 6 of these individuals, and cyanide was in the expected endogenous range for the other

three.

In the first case (P.1), a 77 year old man was found dead at home. There was a bottle of potassium cyanide beside him and

a small bottle containing an aqueous solution. Quantification using the current method yielded 18 𝜇𝑔∕𝑚𝐿 for the aqueous

solution found at the scene, 21 𝜇𝑔∕𝑚𝐿 for cardiac blood, 0.3 𝜇𝑔∕𝑚𝐿 for femoral blood and 33 𝜇𝑔∕𝑚𝐿 for gastric contents

(total volume of 30 𝑚𝐿). The high concentrations of the cardiac blood and gastric contents prove the necessity for an extended

linear dynamic range for forensic purposes. It is noteworthy that none of the published methods were validated at these elevated

concentrations. The phenomenon of post-mortem redistribution may explain the two order of magnitude difference between

the cardiac and femoral blood levels however, this has yet to be verified. Although high redistribution ratios have been found

in some cyanide cases34, the difference in concentrations in the present case is surprising. The route of ingestion might have

played a role in the difference in concentrations observed in this case, as well as the one observed in case P.4.

In the second case (P.2), a 58 year old man was found dead in his apartment along with a bottle of potassium cyanide. For

this case, only cardiac blood was available and was calculated to have 127 𝜇𝑔∕𝑚𝐿 cyanide, which was above the validated

linear dynamic range. While this result might not be the exact concentration it does not change the forensic interpretation: this

was a lethal level of cyanide (i.e. ≫ 1.00𝜇𝑔∕𝑚𝐿).

In the third case (P.3), a 33 year old man was found on a pedestrian trail. The forensic pathologist noticed a strange smell

coming from the gastric contents. For this case, only femoral blood was available. The blood was found to have a concentration

of 7.50 𝜇𝑔∕𝑚𝐿, which was above the lethal level.

In the fourth case (P.4), a 33 year old man was found dead at home. The measured concentrations were 2.4 𝜇𝑔∕𝑚𝐿 for the

cardiac blood, 2.3 𝜇𝑔∕𝑚𝐿 for the femoral blood and 20.34 𝜇𝑔∕𝑚𝐿 for the gastric content (total volume of 200 𝑚𝐿).

When the results obtained here are compared to those obtained previously using a spectrophotometric method35, we observe

an agreement in the order of magnitude of the results without the carry over associated with the spectrophotometric method.
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Furthermore the present method has significantly better precision at low concentrations and it can be readily applied to forensic

samples.

3.11.2 Fires
Mean blood concentrations of 1.12 𝜇𝑔∕𝑚𝐿 have been reported in fire cases7 but concentrations reported in the literature vary

widely. Lindsay et al. 2 summarized eight blood cyanide concentration studies for fire victims done by various groups. Concen-

trations found ranged from 0.021 to 9.86 𝜇𝑔∕𝑚𝐿. Only four studies were done on samples collected at the autopsy, while the

other four were done on samples taken at the hospital. None used GC–MS to quantify the cyanide. Most studies had incomplete

data, with either no mean, no standard deviation or no range available. Rarely was both femoral and cardiac blood analyzed.

To study the phenomenon of blood cyanide concentration in fire cases, fourteen cases were selected from 2008 to 2010.

When available, both femoral blood and cardiac blood samples were analyzed. The cases selected were house or car fires,

where the victim could possibly have inhaled HCN. Results of the analyses are shown in Table 2 .

TABLE 2 Cyanide concentrations found in cardiac and femoral blood samples from fire victims.

As can be seen, mean levels were above the endogenous level, even for smokers (0.123 𝜇𝑔∕𝑚𝐿). Moreover, in one case (F.5)

the concentration in femoral blood was greater than the toxic level indicating that the death could be attributed to cyanide as

opposed to carbon monoxide (HbCO was 31% in this case, while lethal level is 50%). These results confirm the pertinence of

performing cyanide analysis for fire cases.

A surprising phenomenon was observed: the concentrations in femoral blood were greater than the ones in cardiac blood. A

paired t-test (𝑝 = 0.0122) identified the effect as statistically significant at the 95% confidence level. This phenomenon has never

been reported before in the literature. One hypothesis to explain this discrepancy would be the presence of potassium oxalate as

a preservative in femoral blood tubes but not in cardiac blood containers. Oxalate could act as a chelator for iron in hemoglobin,

thus displacing cyanide and increasing the available concentration of cyanide. Because of the fixed quantity of hemoglobin in
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blood, this effect would be more apparent at low cyanide concentrations than at high concentrations, which would explain why

this discrepancy is not observed for poisoning cases.

4 CONCLUSION

A method to quantify cyanide in blood, aqueous solutions and gastric contents was developed and validated. This method had

a linear dynamic range from 0.07 to 50.00 𝜇𝑔∕𝑚𝐿 for blood samples with a LOD of 0.02 𝜇𝑔∕𝑚𝐿. Gastric contents, one of

the most variable matrices in forensic toxicology, could be quantified accurately from 1.00 𝜇𝑔∕𝑚𝐿. The method was built

for quantification with 1 𝑚𝐿 of sample but volumes of 0.25 𝑚𝐿 or 0.50 𝑚𝐿 can also be used. Multiple sampling from the

headspace can be done without any adverse effect on the quantification up to about 10 injections. Stability of cyanide in blood

was evaluated, and the concentration was not found to vary systematically over a two week period for samples stored at 4 ◦C
or −20 ◦C. The method was also successfully applied to forensic cases of cyanide poisoning and fire exposure. The method

developed is particularly well adapted to forensic science because of its wide linear range, its adaptability to different biological

matrices and its ease and rapidity of use.
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