Фаза (термодинамика)
Фаза је хомогени део хетерогеног система одвојен од остатака система дефинисном граничном површином (фазна граница) унутар кога се физичко хемијска својста континуирано мењају. У физичким наукама, фаза је скуп стања макроскопских физичких система који имају релативно унифоман хемијски састав и физичке особине (нпр. густину, кристалну структуру, индекс преламања, итд).[1][2][3] Промена једне фазе у другу настала као последица промена функција стања термодинамичког система назива се фазна промена или фазна трансформација. У систему који се састоји од леда и воде у стакленој тегли, коцке леда су једна фаза, вода је друга, а влажни ваздух изнад воде је трећа фаза. Стакло тегле је још једна засебна фаза.
Термин фаза се понекад користи као синоним за агрегатно стање материје, мада може да постоји неколико фаза које се не мешају, иако су у истом агрегатном стању. Исто тако, термин фаза се понекад користи за означавање скупа равнотежних стања раздвојених фазним границама на фазном дијаграму изражених у виду променљивих стања, као што су притисак и температура. Пошто се фазне границе односе на промене у организацији материје, као што су промене од течног до чврстог стања, или на суптилније промене једне кристалне структуре у другу, овај други вид примене је сличан примени „фазе” као синонима за стање материје.
Типови фаза
[уреди | уреди извор]Различите фазе система могу се представити кориштењем фазних дијаграма. Осе дијаграма су релевантне термодинамичке променљиве. За једноставне механичке системе, обично се користе притисак и температура.
Дистинктне фазе могу да постоје унутар датог агрегатног стања материје. Као што је приказано на дијаграму легураа гвожђа, постоји неколико фаза у чврстом и течном стању. Фазе се исто тако могу диференцирати по основи растворљивости, не поларне (хидрофилне) и неполане (хидрофобне). Смеша воде (поларне течности) и уља (неполарне течности) се спонтано раздваја у две фазе. Вода има веома ниску растворљивост (нерастворна је) у уљу, а уље има веома ниску растворљивост у води. Растворљивост је максимална количина растворка који се може растворити у растварачу пре него што раствора престане да се раствара и остаје у засебној фази. Смеша се може раздвојити у више од две фазе. Концепт сепарације фаза је применљив на чврсте материје, тј., чврсте материје могу да формирају чврсте растворе или да кристализују у дистинктне кристалне фазе. Метални парови који су узајамно растворни могу да формирају легуре, док метални париви који су узајамно нерастворни не могу.
Постоје системи који садрже и до осам немешљивих течних фаза[4] Узајамно немешљиве течне фазе се формирају од воде (водене фазе), хидрофобних органских растварача, перфлуороугљеника (флуорне фазе), силикона, неколико различитих метала, као и растопљеног фосфора. Сви органски растварачи се не мешају, нпр. смеша етилен гликола и толуена се може раздвојити у две засебне органске фазе.[5]
Фазе не морају да се спонтано макроскопски раздвајају. Емулзије и колоиди су примери немешљивих фаза парова комбинација који се физички не раздвајају.
Фазна равнотежа
[уреди | уреди извор]Кад су препуштене уравнотежењу, многе композиције формирају једну униформну фазу. С друге стране у зависности од температуре и притиска чак и појединачне супстанце се могу раздвојити у две или више засебних фаза. Свака фаза има униформна својства, док су својства различитих фаза различита.
Вода у затвореној посуди са ваздушним простором изнад ње формира двофазни систем. Највећи део воде је у течној фази, где се одржава путем узајамног привлачења молекула воде. Молекули воде који су у равнотежи се константно крећу, и повремено молекул течне фазе стекне довољну кинетичку енергију да се одвоји од течне фазе и уђе у гасну фазу. Слично томе, с времена на време молекул паре се судари са површином течности и кондензује се у течност. У равнотежи, процеси евапорације и кондензације се међусобно балансирају и нема нето промене запремине било које фазе.
На собној температури и притиску, суд са водом достиже равнотежу кад ваздух над водом има влажност од око 3%. Тај проценат се повећава са повећањем температуре. На 100 °C и атмосферском притиску, равнотежа се не достиже док ваздух не саџи 100% воде. Ако се течност загреје мало преко 100 °C, прелаз из течности у гас се јавља не само на површини, него у целој запремини течности: вода кључа.
Број фаза
[уреди | уреди извор]За дату композицију, само поједине фазе су могуће на датој температури и притиску. Број и тип фаза који ће се формирати је тешко предвидети и обично се експериментално одређује. Резултати таквих експеримената се могу приказати у облику фазних дијаграма.
Фазни дијаграм који је овде приказан је за једнокомпонентни систем. У том једноставном систему, могуће фазе зависе само од притиска и температуре. Ознаке приказују тачке где две или више фаза могу да истовремено постоје у равнотежи. На температурама и притисцима које су удаљене од ознака, постоји само једна фаза у равнотежи.
У дијаграму, плава линија која означава границу између течности и гаса се не продужава неограничено, него се завршава у тачци која се назива критична тачка. Кад температура и притисак приступају критичној тачки, својства течности и гаса постају прогресивно све сличнија. У критичној тачки, течност и гас се не разликују. Изнад критичне тачке, не постоји више разлика имеђу течне и гасовите фазе: постоји само генерична течна фаза која се назива суперкритични флуид. У води, критична тачка се јавља око 647 K (374 °C или 705 °F) i 22,064 MPa.
Необично својство воденег фазног дијаграма је да линија између чврсте и течне фазе (илустровано тачкастом зеленом линијом) има негативни нагиб. Код већине супстанци, нагиб је позитиван као што је илустровано тамно зеленом линијом. Ово необично својство воде је повезано са мањом густином леда од течне воде. Повећање притиска доводи воду у фазу веће густине, што узрокује топљење.
Још једно интересантно, мада не и необично, својство фазног дијаграма је тачка где се линија чврсте и течне фазе састаје са линијом течне и гасне фазе. Пресек се назива тројном тачком. У њој, све три фазе коегзистирају.
Експериментално, фазне линије се релативно лако мапирају услед независности температуре и притиска који се развија кад се формирају вишеструке фазе. Погледајте Гибсово фазно правило. Размотримо тест апарат који се састоји од затвореног и добро изолованог цилиндра, на коме је присутан пистон. Мењајући количину воде и загревања, систем се може довести у било коју тачку у гасном региону фазног дијаграма. Ако се пистон полако снижава, систем ће пратити криву повећане температуре и притиска унутар гасног региона фазног дијаграма. У тачки где се гас почне кондензовати у течност, смер криве температуре и притиска се нагло мења да би ишао дуж фазне линије док се сва вода не кондензује.
Види још
[уреди | уреди извор]Референце
[уреди | уреди извор]- ^ Modell, Michael; Robert C. Reid (1974). Thermodynamics and Its Applications. Englewood Cliffs, NJ: Prentice-Hall. ISBN 0-13-914861-2.
- ^ Fermi, Enrico (25. 4. 2012). Thermodynamics. Courier Corporation. стр. 86. ISBN 978-0-486-13485-7.
- ^ Adkins, Clement John (14. 7. 1983). Equilibrium Thermodynamics. Cambridge University Press. ISBN 978-0-521-27456-2.
- ^ One such system is, from the top: mineral oil, silicone oil, water, aniline, perfluoro(dimethylcyclohexane), white phosphorus, gallium, and mercury. The system remains indefinitely separated at , where gallium and phosphorus are in the molten state. From Reichardt, C. (2006). Solvents and Solvent Effects in Organic Chemistry. Wiley-VCH. стр. 9—10. 45 °CISBN 3-527-60567-3.
- ^ This phenomenon can be used to help with catalyst recycling in Heck vinylation. See Bhanage, B. M.; et al. (1998). „Comparison of activity and selectivity of various metal-TPPTS complex catalysts in ethylene glycol — toluene biphasic Heck vinylation reactions of iodobenzene”. Tetrahedron Letters. 39 (51): 9509—9512. doi:10.1016/S0040-4039(98)02225-4.
Литература
[уреди | уреди извор]- Fermi, Enrico (25. 4. 2012). Thermodynamics. Courier Corporation. стр. 86. ISBN 978-0-486-13485-7.
- Modell, Michael; Robert C. Reid (1974). Thermodynamics and Its Applications. Englewood Cliffs, NJ: Prentice-Hall. ISBN 0-13-914861-2.
- Сивухин Д. В. Общий курс физики. — Т. II. Термодинамика и молекулярная физика. — 5 изд., испр.. — М.: ФИЗМАТЛИТ, 2005. — 544 с. — ISBN 5-9221-0601-5.
- Predel, Bruno; Hoch, Michael J. R.; Pool, Monte (2004). Phase Diagrams and Heterogeneous Equilibria: A Practical Introduction. Springer. ISBN 978-3-540-14011-5.
- Papon, P.; Leblond, J.; Meijer, P. H. E. (2002). The Physics of Phase Transition: Concepts and Applications. Berlin: Springer. ISBN 978-3-540-43236-4.
- The International Association for the Properties of Water and Steam "Guideline on the Use of Fundamental Physical Constants and Basic Constants of Water", 2001
- Whitten, Kenneth W.; Galley, Kenneth D.; Davis, Raymond E. (1992). General Chemistry. (4th изд.). Saunders College Publishing.
- Dorin, Henry; Demmin, Peter E.; Gabel, Dorothy L. (1992). Chemistry: The Study of Matter Prentice (Fourth изд.). Prentice Hall. стр. 266–273. ISBN 978-0-13-127333-7.
- Averill, Bruce A.; Eldredge, Patricia (2012). „11.7 Phase Diagrams”. Principles of General Chemistry. Creative Commons.
- Petrucci, Ralph H.; Harwood, William S.; Herring, F. Geoffrey (2002). General Chemistry. Principles and Modern Applications (8th изд.). Prentice Hall.
- Laidler, Keith J.; Meiser, John H. (1982). Physical Chemistry. Benjamin/Cummings.
- Zemansky, Mark W.; Dittman, Richard H. (1981). Heat and Thermodynamics (6th изд.). McGraw-Hill. Figs. 2-3, 2-4, 2-5, 10-10, P10-1. ISBN 978-0-07-072808-0.
- Web applet: 3D Phase Diagrams for Water, Carbon Dioxide and Ammonia. Described in Glasser, Leslie; Herráez, Angel; Hanson, Robert M. (2009). „Interactive 3D Phase Diagrams Using Jmol”. Journal of Chemical Education. 86 (5): 566. Bibcode:2009JChEd..86..566G. doi:10.1021/ed086p566 .
- David, Carl (2016-08-08). „Verwiebe's "3-D" Ice phase diagram reworked”. Chemistry Education Materials.
- Prutton, Martin (1994). Introduction to Surface Physics. Oxford University Press. ISBN 978-0-19-853476-1.
- Luklema, J. (1995—2005). Fundamentals of Interface and Colloid Science. 1—5. Academic Press.
- Wennerström, Håkan; Lidin, Sven. „Scientific Background on the Nobel Prize in Chemistry 2007 Chemical Processes on Solid Surfaces” (PDF).
- Conrad, H.; Ertl, G.; Latta, E. E. (фебруар 1974). „Adsorption of hydrogen on palladium single crystal surfaces”. Surface Science. 41 (2): 435—446. Bibcode:1974SurSc..41..435C. doi:10.1016/0039-6028(74)90060-0.
- Christmann, K.; Ertl, G.; Pignet, T. (фебруар 1976). „Adsorption of hydrogen on a Pt(111) surface”. Surface Science. 54 (2): 365—392. Bibcode:1976SurSc..54..365C. doi:10.1016/0039-6028(76)90232-6.
- Christmann, K.; Schober, O.; Ertl, G.; Neumann, M. (1. 6. 1974). „Adsorption of hydrogen on nickel single crystal surfaces”. The Journal of Chemical Physics. 60 (11): 4528—4540. Bibcode:1974JChPh..60.4528C. doi:10.1063/1.1680935.
- Christmann, K.; Behm, R. J.; Ertl, G.; Van Hove, M. A.; Weinberg, W. H. (1. 5. 1979). „Chemisorption geometry of hydrogen on Ni(111): Order and disorder”. The Journal of Chemical Physics. 70 (9): 4168—4184. Bibcode:1979JChPh..70.4168C. doi:10.1063/1.438041.
- Imbihl, R.; Behm, R. J.; Christmann, K.; Ertl, G.; Matsushima, T. (2. 5. 1982). „Phase transitions of a two-dimensional chemisorbed system: H on Fe(110)”. Surface Science. 117 (1): 257—266. Bibcode:1982SurSc.117..257I. doi:10.1016/0039-6028(82)90506-4.
Додатна литература
[уреди | уреди извор]- „Phase Diagrams: The Beginning of Wisdom – Open Access Journal Article”. doi:10.1007/s11669-014-0343-5.
Спољашње везе
[уреди | уреди извор]- French physicists find a solution that reversibly solidifies with a rise in temperature – α-cyclodextrin, water, and 4-methylpyridine
- Chem. Commun. 1998, 787 Polymer induced multiphase generation in water/organic solvent mixtures. Strategies towards the design of triphasic and tetraphasic liquid systems (pdf)
- US patent application 20050215443 Архивирано на сајту Wayback Machine (8. новембар 2021) Multiphase aqueous cleansing composition
- (Movie) Oil and water separation by molecular dynamics simulation
- Iron-Iron Carbide Phase Diagram Example
- How to build a phase diagram
- Phase Changes: Phase Diagrams: Part 1 Архивирано на сајту Wayback Machine (16. мај 2009)
- Equilibrium Fe-C phase diagram
- Phase diagrams for lead free solders Архивирано на сајту Wayback Machine (27. јул 2009)
- DoITPoMS Phase Diagram Library
- DoITPoMS Teaching and Learning Package – "Phase Diagrams and Solidification"
- Binodal curves, tie-lines, lever rule and invariant points – How to read phase diagrams (Video by SciFox on TIB AV-Portal)