Tri rapide avancé (algorithme hybride)

Prérequis : Tri par insertion , Tri rapide , Tri par sélection
Dans cet article, un algorithme hybride combinant tri rapide et tri par insertion est implémenté. Comme son nom l’indique, l’algorithme hybride combine plusieurs algorithmes. 
Pourquoi l’algorithme hybride : L’algorithme  
Quicksort est efficace si la taille de l’entrée est très grande. Mais, le tri par insertion est plus efficace que le tri rapide dans le cas de petits arrayx car le nombre de comparaisons et d’échanges est inférieur à celui du tri rapide. Nous combinons donc les deux algorithmes pour trier efficacement en utilisant les deux approches.
Remarque : tri par sélectionalgorithme peut également être utilisé pour combiner avec quicksort . Bien que la complexité temporelle soit de O(N 2 ), ces algorithmes s’avèrent efficaces dans ce cas car ils ne sont utilisés que lorsque la taille du array est inférieure à une valeur seuil ( 10 dans cet article). 
 

Essai à blanc de l’algorithme : 
 

Soit arr[] = {24, 97, 40, 67, 88, 85, 15, 66, 53, 44, 26, 48, 16, 52, 45, 23, 90, 18, 49, 80}
 

Example pictorial explanation

Exemple d’explication

 

Approche : L’idée est d’utiliser la récursivité et de trouver en permanence la taille du array. Si la taille est supérieure à la valeur de seuil (10), la fonction de tri rapide est appelée pour cette partie du array. Sinon, le tri par insertion est appelé. 
Voici l’implémentation de l’algorithme hybride : 
 

C++

// C++ implementation of the above approach
 
#include<bits/stdc++.h>
using namespace std;
 
// Function to perform the insertion sort
 
void insertion_sort(int arr[], int low, int n)
  {
 
    for(int i=low+1;i<n+1;i++)
    {
      int val = arr[i] ;
      int j = i ;
    while (j>low && arr[j-1]>val)
      {
        arr[j]= arr[j-1] ;
      j-= 1;
    }
    arr[j]= val ;
    }
 
  }
 
//The following two functions are used
// to perform quicksort on the array.
 
 
// Partition function for quicksort
 
int partition(int arr[], int low, int high)
{
  int pivot = arr[high] ;
  int i ,j;
  i = low;
  j = low;
 
  for (int i = low; i < high; i++)
     {
      if(arr[i]<pivot)
      {
        int temp = arr[i];
      arr[i] = arr[j];
      arr[j] = temp;
      j += 1;
      }
    }
   
    int temp = arr[j];
    arr[j] = arr[high];
    arr[high] = temp;
 
  return j;
  }
 
 
// Function to call the partition function
// and perform quick sort on the array
 
 
void quick_sort(int arr[], int low,int high)
{
  if (low < high)
  {
    int pivot = partition(arr, low, high);
    quick_sort(arr, low, pivot-1) ;
    quick_sort(arr, pivot + 1, high) ;
   
   
  }
}
 
// Hybrid function -> Quick + Insertion sort
 
void hybrid_quick_sort(int arr[], int low, int high)
{
  while (low < high)
    {
 
    // If the size of the array is less
    // than threshold apply insertion sort
    // and stop recursion
 
    if (high-low + 1 < 10)
      {
        insertion_sort(arr, low, high);
      break;
    }
 
    else
       
        {
          int pivot = partition(arr, low, high) ;
 
      // Optimised quicksort which works on
      // the smaller arrays first
 
      // If the left side of the pivot
      // is less than right, sort left part
      // and move to the right part of the array
 
      if (pivot-low<high-pivot)
        {
          hybrid_quick_sort(arr, low, pivot - 1);
        low = pivot + 1;
      }
      else
        {
 
        // If the right side of pivot is less
        // than left, sort right side and
        // move to the left side
           
        hybrid_quick_sort(arr, pivot + 1, high);
        high = pivot-1;
        }
 
     }
 
   }
}
// Driver Code
int main()
{
 int  arr[21] = { 24, 97, 40, 67, 88, 85, 15,
  66, 53, 44, 26, 48, 16, 52,
  45, 23, 90, 18, 49, 80, 23 };
 
hybrid_quick_sort(arr, 0, 20);
   
  for(int i = 0; i < 21; i++)
    cout << arr[i] << ", ";
}
 
// This code is contributed by ishayadav2918

Java

/*package whatever //do not write package name here */
import java.io.*;
class GFG {
 
    private static void insertionSort(int a[], int low,
                                     int high)
    {
        for (int i = low + 1; i <= high; i++) {
            for (int j = i - 1; j >= low; j--) {
                if (a[j] > a[j + 1]) {
                    // Swap
                    int temp = a[j];
                    a[j] = a[j + 1];
                    a[j + 1] = temp;
                }
                else
                    break;
            }
        }
    }
 
    private static int partition(int arr[], int low,
                                int high)
    {
        int pivot = arr[high];
        int i = low;
        int j = low;
 
        while (i <= high) {
            if (arr[i] > pivot)
                i++;
            else {
                int temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
                i++;
                j++;
            }
        }
        return j - 1;
    }
 
    public static void hybridQuickSort(int arr[], int low,
                                       int high)
    {
        while (low < high) {
            // Check if array size on which we will be working is less than 10
            if (high - low < 10) {
                insertionSort(arr, low, high);
                break;
            }
            else {
                int pivot = partition(arr, low, high);
 
                // We will do recursion on small size
                // subarray So we can check pivot - low  and
                // pivot - high
 
                if (pivot - low < pivot - high) {
                    hybridQuickSort(arr, low, pivot - 1);
                    low = pivot + 1;
                }
                else {
                    hybridQuickSort(arr, pivot + 1, high);
                    high = pivot - 1;
                }
            }
        }
    }
   
  // Driver code
    public static void main(String[] args)
    {
 
        int arr[]
            = { 24, 97, 40, 67, 88, 85, 15, 66, 53, 44, 26,
                48, 16, 52, 45, 23, 90, 18, 49, 80, 23 };
 
        hybridQuickSort(arr, 0, arr.length - 1);
        for (int i : arr)
            System.out.print(i + "  ");
    }
}
 
// This code is contribute  by @mahi_07

Python3

# Python implementation of the above approach
 
# Function to perform the insertion sort
def insertion_sort(arr, low, n):
    for i in range(low + 1, n + 1):
        val = arr[i]
        j = i
        while j>low and arr[j-1]>val:
            arr[j]= arr[j-1]
            j-= 1
        arr[j]= val
 
# The following two functions are used
# to perform quicksort on the array.
 
# Partition function for quicksort
def partition(arr, low, high):
    pivot = arr[high]
    i = j = low
    for i in range(low, high):
        if arr[i]<pivot:
            a[i], a[j]= a[j], a[i]
            j+= 1
    a[j], a[high]= a[high], a[j]
    return j
 
# Function to call the partition function
# and perform quick sort on the array
def quick_sort(arr, low, high):
    if low<high:
        pivot = partition(arr, low, high)
        quick_sort(arr, low, pivot-1)
        quick_sort(arr, pivot + 1, high)
        return arr
 
# Hybrid function -> Quick + Insertion sort
def hybrid_quick_sort(arr, low, high):
    while low<high:
 
        # If the size of the array is less
        # than threshold apply insertion sort
        # and stop recursion
        if high-low + 1<10:
            insertion_sort(arr, low, high)
            break
 
        else:
            pivot = partition(arr, low, high)
 
            # Optimised quicksort which works on
            # the smaller arrays first
 
            # If the left side of the pivot
            # is less than right, sort left part
            # and move to the right part of the array
            if pivot-low<high-pivot:
                hybrid_quick_sort(arr, low, pivot-1)
                low = pivot + 1
            else:
                # If the right side of pivot is less
                # than left, sort right side and
                # move to the left side
                hybrid_quick_sort(arr, pivot + 1, high)
                high = pivot-1
 
# Driver code
 
a = [ 24, 97, 40, 67, 88, 85, 15,
      66, 53, 44, 26, 48, 16, 52,
      45, 23, 90, 18, 49, 80, 23 ]
hybrid_quick_sort(a, 0, 20)
print(a)
Production

15, 16, 18, 23, 23, 24, 26, 40, 44, 45, 48, 49, 52, 53, 66, 67, 80, 85, 88, 90, 97, 

Complexité temporelle : O(N^2)
Espace auxiliaire : O(N)

Post automatically translated

Article written by naina024 and translated by Acervo Lima. The original can be accessed here. Licence: CCBY-SA

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

15 + 11 =