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Experimental image datasets

Preparation of slide microscopy images and annotations in DICOM format

We downloaded SM images in SVS format from either the Genomics Data Commons (GDC) Data
Portal using the GDC Data Transfer Tool software or from TCIA via the CPTAC histopathology
interface in case of TCGA and CPTAC collections, respectively. In addition, we downloaded the
corresponding biospecimen and clinical metadata in JSON format via the GDC Data Portal for
both TCGA and CPTAC collections and additional metadata in JSON format via the CPTAC
Clinical Data API for the CPTAC collections. For each image contained in a given SVS file, we
created a DICOM VL Whole Slide Microscopy Image instance and stored it in a DICOM Part 10 file.
Briefly, we copied image pixel data contained in TIFF tiles as well as relevant pixel-related metadata
contained in TIFF tags (e.g., ImageLength, ImageWidth, ImageDescription, Compression, and
PhotometricInterpretation) into the corresponding DICOM data elements. We further enriched
DICOM data sets with information extracted from TCIA biospecimen metadata JSON documents,
e.g. fixatives and embedding media used for specimen preparation as well as relevant patient, study,
and specimen identifiers. For identifiers, we followed the same patterns used for the radiology data
sets to facilitate matching of pathology and radiology DICOM data sets.

As described in the Methods section, we structured the content of the SR documents based
on template TID 1500 “Measurement Report” and encoded image annotations using content items
defined either in template TID 1410 “Planar ROI Measurements and Qualitative Evaluations” in
case of graphical ROI annotations or TID 1501 “Measurement and Qualitative Evaluation Group”
in case the annotations applied to an entire image or series. In either case, we included content
item “Finding” (DCM 121071) to encode the concept that the given image or image region repre-
sents, e.g., “Neoplasm” (SCT 108369006). We further extended template TID 1501 and included
additional content items to encode measurements and qualitative evaluations of the image or image
region that are specific to cancer diagnosis in pathology or radiology. We included content items
“Morphology” (SCT 116676008) and “Topography” (SCT 116677004) with value type CODE to en-
code the tumor histomorphology (squamous cell carcinoma, adenocarcinoma, etc.) and tissue of
origin (bronchus, upper lobe, etc.) using the International Classification of Diseases for Oncology
(ICD-O-3) and the Clinical Modification of the International Classification of Diseases (ICD-10-
CM) coding systems, respectively. In addition, we included content items “Percent tumor cells”
(caDSR 5432686), “Percent tumor nuclei” (caDSR 5455534), and “Specimen necrosis” (caDSR
5455511) with value type NUM to provide measurements of the percentage of viable or dead tumor
tissue. We encoded graphical annotations of image regions of interest (ROIs) as vector graphics in
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DICOM Comprehensive SR or Comprehensive 3D SR documents as described above. For SM im-
ages used in the pathology experiments, graphical annotations of tumor regions were not available
in TCIA, and we therefore encoded image-level annotations in DICOM Comprehensive SR docu-
ments using TID 1501 “Measurement and Qualitative Evaluation Group”. However, we annotated
a subset of SM images using the SliM viewer 1 and encoded the resulting ROIs as content items
with type SCOORD3D in DICOM Comprehensive 3D SR documents using TID 1410 “Planar ROI
Measurements and Qualitative Evaluations”.

Preparation of computed tomography images and annotations in DICOM format

For the radiology experiments, we used the LIDC-IDRI dataset of 1018 diagnostic and screening
CT studies from multiple institutions. We downloaded CT images, consisting of a single axial series
per study, in DICOM format from TCIA using the NBIA Data Retriever software. Each scan in the
LIDC-IDRI dataset is annotated in the form of segmentation masks for lung nodules. Each scan
contains one or more annotated nodules, and each nodule may be annotated by multiple readers.
The annotations for this dataset were already available in the original custom XML-based format,
and also as DICOM Segmentation images and DICOM SR documents that were created in prior
work using the C++-based DCMQI toolkit [1, 2]. For the purpose of demonstrating a full workflow
within the Python programming language, we re-created annotations in both DICOM Segmenta-
tion and SR format from the original XML annotations, largely following Fedorov et al. [1, 2], using
highdicom and used the resulting datasets (rather than those created with DCMQI) for the subse-
quent experiments. The SEG images are hereby used to encode the annotation of a single nodule
by a single reader as a single segment, with a Segmented Property Category of “Morphologically
Abnormal Structure” (SCT 49755003) and Segmented Property Type “Nodule” (SCT 27925004).
The SR documents used the Comprehensive3DSR IOD and included measurements and qualita-
tive evaluations of each of the regions in the SEG images, referenced via a content item of type
IMAGE. Measurements of each nodule ROI included the “Volume” (SCT 118565006) and “Diameter”
(SCT 81827009) as NUM content items, and qualitative evaluations included the subtlety, internal
structure, calcification, sphericity, margin, lobulation, spiculation, texture, and malignancy of the
nodule using a range of coded concepts as suggested by [1, 2]. Note that these measurements and
qualitative evaluations were not used during model training, but were included in the annotation
SR for the sake of completeness. The script used for conversion is publicly available2.

Validation of DICOM data sets

We evaluated the compliance of preparated data sets with the DICOM standard using both auto-
mated validation tools and manual expert review. Specifically, we used the dciodvfy command line
tool of the dicom3tools 3 package to assert that individual DICOM files are structured according
the corresponding Information Object Definition (IOD) and the DicomSRValidator program of the
PixelMed Java DICOM Toolkit 4. We further used the dcdump and dcsrdump command line tools
of the dicom3tools package and the dcmdump command line tool of the DICOM toolkit (DCMTK) 5

package to manually review and validate the content of DICOM files.

1https://github.com/mghcomputationalpathology/slim
2https://url_redacted_for_review
3http://www.dclunie.com/dicom3tools.html
4http://www.pixelmed.com/dicomtoolkit.html
5https://dcmtk.org/
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Further model training details

We implemented the deep convolutional neural network models using the PyTorch Python li-
brary [3] and trained them on a Linux supercomputer with NVIDIA V-100 graphical processing
units (GPUs) using the CUDA and cuDNN C++ libraries. We optimized model parameters using
Adam optimizer with momentum and optimized the learning rate as well as other hyperparameters
using random search.

The data preprocessing pipelines were implemented in form of classes derived from torch.data.Dataset.
which load the images and corresponding image annotations from DICOM files into NumPy arrays,
transform the data in memory into the representation expected by the respective model, and return
a pair of image frames and labels as PyTorch tensors. Instances of these classes are instantiated
given the location of DICOM files on disk as well as the SOP Instance UIDs of DICOM SR docu-
ments, which contain annotations that are considered the ground truth for model training as well
as references to the source images from which the annotations were derived. For each example, the
getitem method loads image frames and annotations from DICOM files on disk into memory as

numpy.ndarray objects, transforms the data into the representation expected by the first layer of
the neural network (optionally performing data augmentation), and returns the pair of transformed
pixel data and associated labels as a tuple of torch.tensor objects.

Model evaluation

We selected one pathology and radiology model on a validation set and evaluated the performance
of selected models on a hold-out test set.

For pathology, we developed classifiers to categorize whole slide images into either normal
lung tissue, lung adenocarcinoma, or lung squamous cell carcinoma. To this end, we thresholded
the probabilistic fractional segmentation images outputted by the neural network model (using a
threshold value of 0.5 probability) for each class and used thereby generated binary segmentation
masks to compute the relative tumor area, i.e., the ratio of the number of image frames classified
as tumor and the number of image frames classified as tissue. Based on these aggregated measure-
ments, we created binary whole slide image classifiers to distinguish normal lung from non-small
cell lung cancer (NSCLC, lung adenocarcinoma or lung squamous cell carcinoma), lung adeno-
carcinoma (LUAD), or lung squamous cell carcinoma (LUSC). The optiomal threshold for each
classifier was determined via Receiver Operator Characteristic (ROC) analysis (Supplementary
Figure S1A). Evaluating the classifiers at the selected threshold values, we achieved an accuracy
of 0.98 for separating normal lung from NSCLC (Supplementary Figure S1B), a high correlation
between the predicted relative tumor area and the annotated tumor cell percentage for NSCLC
examples (Supplementary Figure S1C), and an accuracy of 0.85 for distinguishing between LUAD
and LUSC (Supplementary Figure S1D).

For radiology, we evaluated the CT lung nodule detection model in terms of study-level results.
Nodule sensitivity (recall) was calculated as the fraction of annotated nodules for which any pre-
dicted box overlapped any reader’s annotated with intersection-over-union (IoU) of 0.5 or greater
on any frame. False positives in neighboring frames were clustered together if their IoU (in the
x and y directions only) was greater than 0.5, and assigned the score of the highest score in the
cluster. This gave an average precision metric of 0.582 for nodule detection. The free-response
receiver operating characteristic (FROC), which plots nodule sensitivity (recall) against the aver-
age number of false positives per study as the detection score threshold is varied (Supplementary
Figure S2).

3



Visualization of Outputs

Figures S3 and S4 contain examples of image annotations and model outputs visualized within
open source tools.
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Figure S1: Performance of SM image classifiers (NSCLC — non-small cell lung cancer, LUAD
— lung adenocarcinoma, LUSC — lung squamous cell carcinoma). A Receiver operating charac-
teristic curve for each binary classification problem. B Confusion matrix comparing the ground
truth against predicted class labels for the classification of normal lung versus non-small cell lung
cancer using the threshold selected in A. C Correlation between annotated percent tumor cells
and predicted percent tumor area considering examples that were classified as non-small cell lung
cancer. D Confusion matrix comparing the ground truth against predicted class labels for the
classification of lung adenocarcinoma versus lung squamous cell carcinoma considering examples
that were correctly classified as non-small cell lung cancer.
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Figure S2: Free-response receiver operating characteristic for the CT lung nodule detection model.

Figure S3: A Lung nodule annotation in a CT image of the LIDC-IDRI collection encoded as a
segment in a DICOM Segmentation image using highdicom and displayed in the open-source OHIF
viewer. B Bounding box detection output from the CT lung nodule detection model encoded as a
DICOM SR document and visualized using the open-source 3D Slicer software and the Quantitative
Reporting extension [4]. Detected bounding boxes are shaded by their detection scores from purple
(very low score) to yellow (high score).
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Figure S4: Lung adenocarcinoma regions detected in a slide microscopy image of the TCGA-LUAD
collection encoded as SCOORD3D content items in a DICOM Comprehensive 3D SR document
using highdicom and displayed in the open-source SliM viewer.
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