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Appendix A Further Details

A.1 Definitions

The following definition of the error distribution
follows Hothorn et al (2018).

Definition 1 Error Distributions Let Z : Ω → R
be a U − B measurable function from (Ω,U) to the
Euclidian space with Borel σ-algebra B with abso-
lutely continuous distribution PZ = fZ ⊙ µL on the
probability space (R,B,PZ) and µL the Lebesque mea-
sure. We define FZ and F−1

Z as the corresponding
distributions and assume FZ(−∞) = 0, FZ(∞) = 1.
0 < fZ(z) < ∞ ∀z ∈ R with log-concave, twice-
differentiable density fZ with bounded first and second
derivatives.

A.2 Propositions

Proposition 1 (Interpretation of (11)) The ATM
as defined in (8) and further specified in (11) can
be seen as an additive regression model with outcome
h1t(yt), predictor h2t((h1t ⊙ Yt | Ft−1,x) | x) and
error term ε ∼ FZ .

Proof We first define an additive regression model with
outcome λ1 := h1t(yt), predictor λ̃2 := −h2t((h1t ⊙
Yt | Ft−1,x) | x) and error term ε ∼ FZ , i.e.,

λ1 = λ̃2 + ε, ε ∼ FZ ,

where we use λ̃2 = −λ2 instead of λ2 for convenience
without loss of generality. This implies that λ1 − λ̃2 =
λ1 + λ2 = ε or equally λ1 + λ2 ∼ FZ . Optimizing this
model is equal to fitting an ATM as defined in (8) with
structural assumption as defined in (11).

Proposition 2 (Equivalence of AR(p) and AT(p)
models) An autoregressive model of order p (AR(p))
with independent white noise following the distribu-
tion FZ in the location-scale family is equivalent to an
AT(p) model for M = 1, ϑ(x) ≡ ϑ, r(x) ≡ 0 and error
distribution FZ .

Proof The transformation function of an AT(p) model
with BSPs of order M defined on an interval [ιl, ιu],
ϑ(x) ≡ ϑ and r(x) ≡ 0 is given by

h1t + h2t = a(yt)
⊤ϑ+

p∑
j=1

ϕja(yt−j)
⊤ϑ.
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We can further simplify the model by making a(yt)
more explicit:

a(yt) = (M + 1)−1



fBE(1,M+1)(ỹt)
...

fBE(m,M−m+1)(ỹt)
...

fBE(M+1,1)(ỹt)


∈ RM+1

with ỹt = (y − ιl)/(ιu − ιl) and Beta distribution
density fBE(κ,µ) with parameters κ, µ. For simplicity
and w.l.o.g. assume that yt ≡ ỹt. Setting M to 1, we
get

h1t = (ϑ0fBE(1,2) + ϑ1fBE(2,1))/2

= ϑ0(1− yt) + ϑ1yt

= ϑ0 + (ϑ1 − ϑ0)yt

= ϑ0 + ϑ̃1yt.

The transformation of the AT(p) model is thus given by

ht(yt | Ft−1,x) = ϑ0 + ϑ̃1yt +

p∑
j=1

ϕj(ϑ0 + ϑ1yt−j)

=
yt + ϑ̃0 +

∑p
j=1 ϕ̃jyt−j

ϑ̃−1
1

(A1)

with ϑ̃0 = (ϑ0(1 +
∑

j ϕj))/ϑ̃1 and ϕ̃j = ϕjϑ1/ϑ̃1.
From (8) we know

P(Yt ≤ yt | Ft−1,x) = FZ(ht(yt | Ft−1,x)). (A2)

The AR(p) model with coefficients φ0, . . . , φp is given
by

yt = φ0 +

p∑
j=1

φjyt−j + σεt, εt ∼ FZ

⇔ Z =
yt − φ0 −

∑p
j=1 φjyt−j

σ
∼ FZ .

(A3)

The equivalence of (A2) in combination (A1) with (A3)
is then given when setting ϑ̃0 = −φ0, ϕ̃j = −φj∀j ∈
{1, . . . , p} and σ = ϑ̃−1

1 . Since both models find their
parameters using Maximum Likelihood and it holds
ϑ̃1 > 0 (as required for σ) by the monotonicity restric-
tion on the BSPs coefficient, the models are identical
up to different parameterization.

A.3 Proof of Theorems

The provided theorems 1-3 can be proven by observing
that AT(p)s’ model structure and all made assumptions
follow the general asymptotic theory for time series
models as given in Ling and McAleer (2010). It is left
to show that our setup and assumptions are equivalent
to this general theory.

Proof. Our setup described in Section 4 together
with Assumption 1(i) corresponds to the setup de-
scribed in Ling and McAleer (2010), Section 2. Our
Assumption 1(ii-iv) corresponds to their Assumption
2.1. In contrast, we do not consider the case of infinite
Y0, but the extension is straightforward, by replacing
initial values by some constant. Since AT(p)s and non-
linear extensions are fully-parameterized time series
models (Equation 11) with parameter estimator θ̂T
found by MLE, all necessary assumptions are met to
apply Theorem 2.1 in Ling and McAleer (2010) includ-
ing the subsequent remark, which yields the proof of
our theorems 1-3. □

Appendix B Interpretability
Example

Next to the theoretical properties of ATMs described in
Section 3.2, we will give an illustrative example in this
section to make the different interpretability aspects
of ATMs more tangible.

Example 1 Assume that the true generating process
is additive on a log-scale and influenced by the two
previous time points t − 1 and t − 2. For example, t
can be thought of as days in a year and the process
Yt is an interest rate. Assume that the interest rate
is multiplicatively influenced by the year xt ∈ E and
further differs in its mean depending on a cyclic effect
of the month ηt. An example for a corresponding data
generating process would be

log(yt) =0.5 log(yt−1)

∑
e∈E

θeI(xt = e)

+

0.2 log(yt−2)

∑
e∈E

θeI(xt = e)

+

sin(ηt) + εt, εt ∼ FZ .

In this case, the transformation function h1t can be
defined as h1t(yt) = log(yt)(

∑
e∈E θeI(xt = e)) and

approximated by a(yt)
⊤ϑ(xt), where a is the BSP

evaluation of yt and ϑ a vector of coefficients depending
on the year xt. Further ϕ1 = 0.5, ϕ2 = 0.2, and the
exogenous shift r = sin(ηt), which in practice would
be approximated using a basis function representation.
The interpretability properties listed in Section 3.2 can
be explained as follows:

1. The additivity assumption in ϑ allows to in-
terpret the individual effects of the year xt on
the transformation function h1 individually (ce-
teris paribus) as log(yt)(

∑
e∈E θeI(xt = e)) =



3 ∑
e∈E log(yt)θeI(xt = e). Here, this would al-

low statements how a certain year e influences
the interest rate’s density.

2. The use of the BSP basis for a in combination
with 1. allows to visualize a forecasted density
analytically for every additive term in ϑ. For
example, to interpret year e, we evaluate ϑ(xt =
e) and visualize h1t(y) = a(y)⊤ϑ(xt = e) as a
function of y on a given domain of interest.

3. The structural assumptions of ATMs, i.e., their
separation into two transformation functions h1

and h2, allows to interpret both transformation
functions h1, h2 individually (ceteris paribus).
In this example, the effect of the year can be
interpreted using 1. and 2. while keeping the
month fixed, and vice versa, the effect of the
month can be interpreted by fixing the year.
The applied transformation h1 for AT(p) models
further allows to to individually interpret the
influence of different lags (here these are the
multiplicative effects phi1 = 0.5 and ϕ2 = 0.2).

Appendix C Parametric
Bootstrap

To assess the parameter uncertainty included in the
estimated density, we propose to use a parametric
Bootstrap (similar to the one suggested in Hothorn
et al, 2018) that is based on the following steps:

1. Generate θ̂(ν), ν = 1, . . . , N from the limiting
distribution (Theorem 2 and 3);

2. Draw samples Zt̃ ∼ FZ , t̃ ∈ T and calculate

Yt̃,ν = inf{y ∈ Ξ | ht̃(y, θ̂
(ν)) ≥ Zt̃};

3. Refit the model for each data set {Yt̃,ν}t̃∈T , ν =
1, . . . , N ;

4. Calculate the N model densities.

Based on these N model densities, uncertainty in the
originally estimated density can be analyzed, e.g., vi-
sually by plotting all densities together as done in
Figure 1 and 3.

Appendix D Experimental
Setup

All codes are available at https://github.com/
davidruegamer/ATMs experiments.

Table D1 Average MSE in percent (with standard
deviation in brackets) of estimated coefficients by the
AR(p) and AT(p) model (rows) for different simulation
settings (columns) over 100 replications.

p = 1 p = 2 p = 5

T = 200
AR(p) 0.54 (0.73) 0.49 (0.49) 0.55 (0.4)
AT(p) 0.73 (1) 0.68 (0.6) 0.69 (0.42)

T = 1000
AR(p) 0.12 (0.16) 0.12 (0.13) 0.12 (0.09)
AT(p) 0.17 (0.25) 0.15 (0.16) 0.17 (0.11)

T = 5000
AR(p) 0.019 (0.03) 0.02 (0.02) 0.02 (0.02)
AT(p) 0.06 (0.09) 0.05 (0.05) 0.05 (0.03)

D.1 Simulations

In this subsection, we describe the details of the data
generating process used in Figure 1 and provide results
on experiments for the equivalence and consistency
paragraph of Section 5.1 in Section D.1.2.

D.1.1 Data Generating Process Toy
Example

For Figure 1, we simulate T = 1000 time points
y1, . . . , yT that exhibit two modes as follows:

1. Set y0 = 0;
2. Define a shift ϱ = 2 and sample x1, . . . , xT from

{−ϱ, ϱ} with equal probability;
3. Define a autoregressive coefficient ϕ1 = 0.1
4. For t = 1, . . . , T , sample yt ∼ N (ϕ1yt−1 +xt, 1)

When providing the model with the marginal distribu-
tion of yt and defining xt as latent, unobserved variable,
yt will exhibit two modes centered around ±ϱ.

D.1.2 AR(p) comparison

The data generating process for the simulation of
Section 5.1 is an AR model with the p first coefficients
0.4, 0.2, 0.1, 0.05, 0.025. A standard implementation
for the AR model was used. For the AT model we use
the implementation provided in Rügamer et al (2022)
using 2500 epochs, batch size of 50, and early stopping
based on 10% of the training data.

Table D2 Mean and standard deviation (brackets) of the
mean squared error (×102 for better readability) between
estimated and true coefficients in an AR(p) model using
our approach on the tampered data (bottom row) and the
corresponding oracle based on the true data (Oracle).

p = 1 p = 2 p = 4

T = 200
Oracle 0.65 (0.84) 0.45 (0.46) 0.46 (0.32)
AT(p) 0.49 (0.62) 0.57 (0.76) 0.65 (0.45)

T = 400
Oracle 0.33 (0.31) 0.22 (0.19) 0.25 (0.13)
AT(p) 0.52 (0.46) 0.33 (0.3) 0.34 (0.23)

T = 800
Oracle 0.27 (0.34) 0.13 (0.12) 0.13 (0.085)
AT(p) 0.26 (0.36) 0.17 (0.17) 0.18 (0.12)

https://github.com/davidruegamer/ATMs_experiments
https://github.com/davidruegamer/ATMs_experiments
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D.1.3 Influence of M on the
distribution’s shape

Based on a Gamma-distributed time series with first-
order lag influence, we run 20 simulation repetitions
while M to investigate influence of the order of BSP on
the the distribution’s shape. Figure D1 depicts the true
(red) and estimated densities (black) for different M .
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Figure D1 Demonstration of the influence of M (different
facets) on the shape of the fitted distribution (black lines;
each line corresponds to one simulation repetition) when
fitting an AT(p) model to a Gamma-distributed time series
(true density in red).

D.2 Details on the benchmark study

D.2.1 Datasets

Table D3 summarizes the characteristics of the data
sets used. For elec and traffic we use the 24 hours
forecasting horizon and a pre-defined subset of one week
of data. For m4 and tour the test sets are already pre-
defined with 48 hours and 24 months forecast windows,
respectively.

Electricity

The dataset is available at https://archive.ics.uci.edu/
ml/datasets/ElectricityLoadDiagrams20112014. Ac-
cording to Chen et al (2020), Appendix A.3, the dataset
describes the series of the electricity consumption
(kWh) of 370 customers. The electricity usage values
are recorded per 15 minutes from 2011 to 2014. We
select the data of the last three years. By aggregating
the records of the same hour, we use the hourly con-
sumption data of size 370 · 26304, where 26304 is the

length of the time series (Yu et al, 2016). The data
used for modelling ranges from ’2014-06-07 23:00:00’
to ’2014-06-09 23:00:00’ including 1 day of validation
and test data.

Exchange

The dataset is available from Lai et al (2018) and con-
tains 8 bilateral exchange rate series for business days
between Jan 1991 and May 2013. The split between
training (60%), validation (20%) and test (20%) is done
based on the chronological order.

Traffic

The traffic dataset is available at https://archive.ics.
uci.edu/ml/datasets/PEMS-SF. It describes the occu-
pancy rates (between 0 and 1) of 963 car lanes of San
Francisco bay area freeways. The measurements are car-
ried out over the period from 2008-01-01 to 2009-03-30
and are sampled every 10 minutes. The original dataset
is split into training and test. Hourly aggregation is
applied to obtain hourly traffic data (Yu et al, 2016).
The final time series are of length 10560 (the occu-
pancy rates). The data used for modelling ranges from
’2008-05-01 00:00:00’ to ’2008-05-09 23:00:00’ including
1 day of validation and test data.

Tourism

The dataset is available at https://robjhyndman.com/
publications/the-tourism-forecasting-competition/.
Data is available on a monthly, quarterly and yearly
level. We used the 366 monthly series which measure
tourism demand. The data is split into test and
train. 67 month are the minimum that is available for
training and forecasting horizon is defined to be 24
months. The starting date for each monthly series is
different. See Section 4 of Athanasopoulos et al (2011)
for details.

m4

The dataset is taken from Makridakis et al (2018). It
contains 414 time series which are summarized in the
m4 hourly data set. The split between training and
test is already provided. Details on further background
can be found on Wikipedia: https://en.wikipedia.org/
wiki/Makridakis Competitions. The starting point of
each series is different. The minimum training length
is 700 hours. The forecasting horizon is 48 hours.

Software

For ATMs we extended the software deepregression

(Rügamer et al, 2022) by including an additional
additive component for lags and used optimization

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/PEMS-SF
https://archive.ics.uci.edu/ml/datasets/PEMS-SF
https://robjhyndman.com/publications/the-tourism-forecasting-competition/
https://robjhyndman.com/publications/the-tourism-forecasting-competition/
https://en.wikipedia.org/wiki/Makridakis_Competitions
https://en.wikipedia.org/wiki/Makridakis_Competitions
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Table D3 Characteristics of the benchmark datasets.

electricity exchange traffic tourism m4

# time series 370 8 963 366 414
frequency hourly daily hourly monthly hourly

forecast horizon 24/72 1219 24/72 24 48
# training samples 71040 39048 184896 10980 269514

techniques considered in Rügamer et al (2020); Bau-
mann et al (2021). For ARIMA, we use the forecast

R package (Hyndman et al, 2021).

D.2.2 Further Results

In the benchmark of the main paper, we only include
an indicator variable for every measurement unit as co-
variate for the shift term. Figure D2 exemplary depicts
how the shift term of the AT(p) model is influenced
if we would include the hour of the day as another
variable in the exogenous.

−2

−1

0

0 5 10 15 20
Time (hour)

S
hi

ft

Figure D2 Estimated shift of the distribution for different
times of the day (hour) when including the variable hour
in r(x) in h2t for the traffic dataset.

D.2.3 Computational Setup

All models were run on a server with 90GB RAM,
20 vCPUs from type Intel Xeon Processor (Skylake,
IBRS), and a server with 64GB RAM, 32 vCPUs from
type Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz.

Appendix E Run-time
Complexity

In addition to forecasting performance comparisons, we
also conduct a run-time benchmark to compare the run-
time complexity of ATMs with other approaches. We
use two different implementations for ATMs and mea-
sure their run-time. We contrast these run-times with
the ARIMA model as implemented in the forecast

R package (Hyndman et al, 2021) and additionally in-
clude Prophet from the prophet R package (Taylor

and Letham, 2021) as another fast alternative method
for Bayesian forecasting.

The timing benchmark results (averaged over 10
replications) for different numbers of observations T are
given in Table E4. Results suggest that - as expected

Table E4 Comparison of run-times for different methods
(in columns) on different numbers of observations (#Obs.)
T (in rows).

#Obs. ATM (plain) ARIMA Prophet ATM (neural)

102 0.199 0.005 0.372 22.20
103 0.513 0.024 0.097 31.30
104 3.920 0.118 0.342 28.80
105 94.62 1.121 33.99 32.30

– ATMs in a neural network are very slow compared
to ARIMA, Prophet and also a plain ATM implemen-
tation in R. However, all methods show an exponential
increase in time consumption while the time consump-
tion of the neural network implementation of ATMs
(ATM (neural)) with mini-batch training and early
stopping does only slightly increase in runtime for an
exponential increase in number of observations. More-
over, for 105 observations, ATM (plain) and Prophet
already yield longer runtimes.
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