

1

Appendix

1 List of Tables

Table no. Table Name Page no.

Table 1 Dataset statistics 2

Table 2 Entity-wise implicit

aspect list

3

Table 3 Feature engineering

task

3

Table 4 Type-Token Ratio

scores

5

Table 5 Detailed example of

level 1 annotation

5

Table 6 Detailed example of

level 2 annotation

5

Table 7 Annotated and

labelled list of

example sentence

5

Table 8 Entity ID List 6

Table 9 TF-IDF Vectorization 6

Table 10 ROC-AUC Scores for

classification of entities
7

2 List of Equations

Equation

no.

Equation Purpose Page

no.

1. Maximum likelihood of

CRF optimization using

stochastic gradient descent

with L2 regularization

4

2. Derived result of maximum

likelihood using CRF

optimized using stochastic

gradient descent with L2

regularization

4

3. Type Token Ratio Formula 5

4. Zipf’s first law 5

3 List of Algorithms

Algorithm

no.

Algorithm

purpose

Page no.

1 Augmenting

word

embedding

vector

generation

using pre-

trained glove

6

4 List of Figures

Figure no. Figure name Page no.

1 Cabin class

imbalance

rectified with

SMOTE

7

A. Appendix A

1. List of Airlines

Sr no. Airline Website(s)

1 Aer Lingus Airline Ratings

2 Air Arabia Airline Ratings,

Trip Advisor

3 Air Asia Airline Ratings,

Trip Advisor

4 Air France Airline Ratings,

Trip Advisor

5 Air Canada Airline Ratings,

Trip Advisor

6 Air France Airline Ratings,

Trip Advisor

7 Air India Airline Ratings,

Trip Advisor

8 Vistara Airline Ratings,

Trip Advisor

9 British Airways Trip Advisor

10 Emirates Trip Advisor

Appendix

Implicit aspect-based opinion mining and analysis of airline industry

based on user generated reviews

Kanishk Verma

School of Computing

Dublin City University

Dublin, Ireland

kanishk.verma@dcu.ie
 0000-0001-7172-4098

mailto:kanishk.verma@dcu.ie

2

11 American Airlines Airline Ratings

12 United Airlines Trip Advisor

13 Virgin Atlantic Trip Advisor

14 Virgin Australia Trip Advisor

15 Indigo Airlines Airline Ratings

16 Dragon Air Airline Ratings

1.1. Website-wise Airlines

Website Number of Airlines

Trip Advisor 11

Airline Ratings 10

Common 6

2. Annotation Guidelines

Following a supervised learning approach for the

scope of this study, labelled data was required to

train the machine learning and ensemble learning

models to identify, extract and classify airline-

specific implicit aspects and opinions. Since, the

data was fresh, new and one of a kind, it was

important to manually annotate and label the data.

With two annotators, manually annotating

about 1803 reviews, there was a need to metricize

the agreement level between the annotators which

would act as the basis of ground truth for this

project scope.

Refer to the inter-annotator guideline

agreement document for detailed annotation rules

for the scope of this research study. (See Inter-

annotator agreement)

3. Kappa Co-efficient

Cohen’s Kappa co-efficient is a method to

measure inter-rater reliability for categorical data.

(Rosenberg and Binkowski, 2004). The way static

kappa co-efficient is calculated is as follows,

𝐾 =
𝑝(𝐴) − 𝑝(𝐸)

1 − 𝑝(𝐸)

Where, K is the kappa value, p(A) is the

probability of the actual outcome and p(E) is the

probability of the expected outcome. (Rosenberg

and Binkowski, 2004)

For this study, the method to calculate kappa

value was calculated is the same described in the

paper by Rosenberg and Binkowski et. al. section

5. (Rosenberg and Binkowski, 2004)

The results for this study for two annotators

range from 0.8048 and 0.8213. Since, the

annotation was performed on two levels, the kappa

value of 0.8048 indicates the inter-annotator

agreement level for Entity-wise labelling. The

kappa value of 0.8213 indicates the inter-annotator

agreement level for implicit-aspect wise labelling.

Figure 1. gives a graphical representation of the

same.

Figure 1. Kappa level-wise score

Detailed kappa values for each entity-wise

labelling is available in figure 2.

Figure.2. Kappa entity-wise score

B. Appendix B

1. Feature Engineering Tasks

Detailed description of all feature engineering

tasks is as below,

1.1. Word Features

1.1.1. Part-Of-Speech Tags

1.1.2. Dependency Parsing

1.2. Numeric Features

1.2.1. Count Vectorizer

1.2.2. Term frequency – inverse document

frequency

1.2.3. Augmenting word embeddings

Part-of-speech Tags

3

Parts-of-speech or POS indicates how a word in a

sentence functions both grammatically and

contextually i.e. what it means. (Ratnaparkhi,

1996)

In natural language processing Stanford

university devised and developed a part-of-speech

tagging methodology. When a list of sentences or

paragraphs are parsed through the product of this

methodology, it automatically assigns a part-of-

speech tag to each word in the sentence.

(“Document (Stanford CoreNLP API),” n.d.)

In table 1, one can find a list of part-of-speech

tags that are assigned to each word and what it

indicates. This has been adapted from the Penn

Treebank. (“Penn Treebank P.O.S. Tags,” n.d.)

Tag Description

CC Co-ordinating

conjunction

JJ Adjective

JJR Adjective,

comparative

JJS Adjective, superlative

NN Noun

NNS Noun, plural

NNP Proper Noun, singular

NNPS Proper noun, plural

PRP Personal noun

VB Verb base form

VBD Verb past tense

Table 1. POS tag list

Example for this study,

Input: “Overall the experience was comfortable

and spacious with delicious meals”

POS-Tags: [('overall', 'JJ'), ('experience', 'NN'),

('comfortable', 'JJ'), ('spacious', 'JJ'), ('delicious',

'JJ'), ('meals', 'NNS')]

Here the tags “JJ”, “NN” and “NNS” mean

adjective, noun and singular noun respectively.

Dependency Parsing

Adopted from the early works of French Linguist

Lucien Tesnière, dependency grammar is a notion

that words are connected to each other by directed

links. Dependency parsing is a technique which

extracts such a dependent relation between words

in a sentence(s) or paragraph(s). Universal

1 API: application programming interface.

dependencies developed a framework allows one

to parse raw text and get these dependent relations

between words in the text. This framework is

available through Stanford’s CORE NLP API 1 .

(“Document (Stanford CoreNLP API),” n.d.)

For this study, the result of the following sentence

can be found below,

Input: “Overall the experience was comfortable

and spacious with delicious meals”

Output: [('overall', 'advmod'), ('comfortable',

'ROOT'), ('the', 'det'), ('experience', 'nsubj'), ('was',

'cop'), ('and', 'cc'), ('spacious', 'conj'), ('with',

'case'), ('meals', 'obl'), ('delicious', 'amod')]

This can be visualized and understood by a

dependency graph tree using GraphViz as seen in

figure 3.

Figure 3. Dependency tree graph

Count Vectorizer

Here, the collection of text reviews is converted

into a matrix of token counts. The basic operation

of this technique is to check each word in the

document and count the number of their

representations and create a matrix of these counts.

For this experiment study, since the methodology

does try to keep certain punctuations and special

characters, a need is felt to create own tokenizer.

The results for an example sentence,

Sentence: ‘so overall I highly recommend this airline’
So Over

-all
I High

-ly
Reco
mm-
end

Th-is airli
ne

5 3 2 1 4 6 0

4

Table 2. Count Vectorizer example

Term frequency – inverse document frequency

It is commonly referred as TF-IDF. It can be

divided as two terms namely, Term Frequency and

Inverse Document Frequency.

Term Frequency (TF) can be defined as a ratio of

count of the word present in a sentence to the

length of the sentence.

Inverse Document Frequency (IDF) can be termed

as measure of rareness of a term in the corpus.

Article words like “a”, “an” or “the” appear in

almost every corpus, but rare words might not be

present in all documents.

Augmenting Word Embeddings

Word embedding as the name suggests is a

collective name for language modelling and

feature engineering techniques of Natural

Language Processing. In this technique, the word

phrases are mapped to vectors of real numbers.

Before going in the details of our methodology for

implementation of word embeddings, there are

certain terminology that needs to be understood in

context of word embeddings.

Language Model: The concept of a language

model has a probabilistic character. It is essentially

described as a function that provides a probability

distribution of strings drawn from a vocabulary2.

Vector Space Models: An algebraic model to

represent text documents as vector of identifiers.

Documents can be represented as (Bengio et al.,

2001)

𝑑𝑗 = (𝑤1,j, 𝑤2,j, 𝑤3,j, . . , 𝑤t,j)

wherein each dimension is a separate term in the

document

Distributional Semantics: In 1954, Harris stated

that the basis of distributional semantics is

distributional hypothesis i.e. similarity of

distribution in linguistics is resulted by similarity

in meaning.(Harris, 1954)

n-gram: They are essentially sequencing of

characters or words extracted from a text. It can be

2 Vocabulary: Set of unique words in a text corpus is
referred to as a vocabulary.

deduced as a set of n consecutive characters from a

word.(Majumder et al., n.d.)

Since this experiment study has limited and a small

size of corpus, a decision was made for using pre-

trained Twitter Glove vectors. The approach for

this experiment study includes training a

Word2Vec model for the experiment corpus on-top

of the pre-trained Twitter Glove

vectors.(Pennington et al., 2014)

CBOW or Continuous Bag of Words: It is a

methodology that tends to predict the probability

of a word given a context. A context can either be

a single or a group of words. The objective function

of CBOW language model is as follows(Paltoglou

and Thelwall, 2013)

𝐽𝛩

=
1

𝑇
∑ log 𝑝 (𝑤𝑡| 𝑤𝑡−𝑛, . . , 𝑤𝑡−1, 𝑤𝑡+1, . . , 𝑤𝑡+𝑛)

𝑇

𝑡=1

Where, a training corpus containing a sequence of

T training words w1, w2, w3, …, wT that belongs to

vocabulary V of size |V| and Θ is the parameters of

the model.

Advantages of using CBOW:

1. Generally, it performs superior to

deterministic methods because of its

probabilistic nature.

2. Unlike a co-occurrence matrix, it does not

have huge RAM requirements.

Limitations of using CBOW:

1. For example, the word Apple can mean

both fruit and company. CBOW will take

an average of both contexts and place it in

the middle of a cluster of both these

entities.

2. Optimization is highly important, else the

training using a CBOW model will take

forever.

Skip Gram: The aim of a skip gram language

model is to predict the context given a word. It

follows the inverse of CBOW’s architecture. In

simpler terms, skip-gram model will use the center

word to predict the surrounding words, unlike a

5

CBOW model which uses surrounding words to

predict center word.(Barazza, 2017)

The skip-gram objective function sums up the log

probabilities of the surrounding n words to the right

and left of the target word wt and can be

represented as below

𝐽𝛩 =
1

𝑇
 ∑ ∑ log 𝑝 (𝑤𝑡+𝑗|𝑤𝑡)

−𝑛 ≤𝑗≤𝑛

𝑇

𝑡=1

So, instead of computing P (wt) target word given

wt+j surrounding words, skip-gram computes

surrounding word given target word.(Barazza,

2017)

Negative Sampling: In the year 2013 Mikolov et

al. (Mikolov et al., 2013) deduced an efficient

method to derive meaningful word embeddings

using negative sampling. Though based on Skip-

gram model, it is optimizing a different objective.

Let’s consider, a pair (w, c) where w and c

determine word and context respectively.(Mikolov

et al., 2013)

If the pair of word and context derive from the

training data then it can be notated as

P (D = 1 | w, c) [a]

and if the word pair does not come from training

data then it can be simply represented as

P (D = 0 | w, c) [b]

So, from equations a & b, one can rewrite b as

P (D = 0 | w, c) = [1 – P(D = 1 | w, c)]

Assuming, there are Θ parameters controlling this

distribution and can be represented as follows,

𝑃 (𝐷 = 1 |𝑤, 𝑐, 𝛩)

The goal is to make all observations come from

training data. And in order to do so, we must

maximize this probability and it can be denoted as

below(Goldberg and Levy, 2014)

arg 𝑚𝑎𝑥𝛩 𝛱(𝑤,𝑐)Є𝐷 𝑃 (𝐷 = 1 |𝑤, 𝑐; 𝛩)

3 It is a normalized exponential function that takes vector a

of R real numbers as input and normalizes it into a

= arg 𝑚𝑎𝑥𝛩 log 𝛱(𝑤,𝑐)Є𝐷 𝑃 (𝐷 = 1 |𝑤, 𝑐; 𝛩)

= arg 𝑚𝑎𝑥𝛩 ∑ 𝑃(𝐷 = 1 |𝑤, 𝑐; 𝛩)
(𝑤,𝑐)Є𝐷

Using soft-max3 distribution, above equation can

be rewritten as follows,(Goldberg and Levy, 2014)

P (D = 1 |w, c; Θ) =
1

1 + 𝑒−𝑉𝑐∗𝑉𝑤

This can be represented as objective function as

follows,

arg 𝑚𝑎𝑥𝛩 = ∑ log
1

1 + 𝑒−𝑉𝑐∗𝑉𝑤
(𝑤,𝑐)Є𝐷

The only limitation of the above is that it allows

same (w,c) pair combinations to occur.

So, ahead a mechanism will be developed that

prevents vectors with same value. This can be

achieved by introducing (w,c) pairs that are not in

the data. So generate new pairs which are not in

training data and are represented as

below(Goldberg and Levy, 2014)

𝐷1 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑤, 𝑐)𝑝𝑎𝑖𝑟𝑠

Since, these pairs are assumed to be incorrect, this

approach is named as negative sampling and the

objective function can now be optimized as below,

arg 𝑚𝑎𝑥𝛩 𝛱(𝑤,𝑐)Є𝐷 𝑝(= 1 |𝑐, 𝑤; 𝛩) . 𝛱(𝑤,𝑐)Є𝐷 𝑃(𝐷

= 0 |𝑐, 𝑤; 𝛩)

= arg 𝑚𝑎𝑥𝛩 𝛱(𝑤,𝑐)Є𝐷 𝑝(𝐷 =

1 |𝑐, 𝑤; 𝛩) . 𝛱(𝑤,𝑐)Є𝐷 [1 − 𝑃(𝐷 =1 | c,w; Θ)

= arg 𝑚𝑎𝑥𝛩 ∑ log 𝑃 (𝐷 = 1|𝑐, 𝑤; 𝛩)

(𝑐,𝑤)Є 𝐷1

+ ∑ log 𝑃 (𝐷 = 0|𝑐, 𝑤; 𝛩)

(𝑐,𝑤)Є 𝐷1

= arg 𝑚𝑎𝑥𝛩 ∑ log 𝑃 (𝐷 = 1|𝑐, 𝑤; 𝛩)

(𝑐,𝑤)Є 𝐷1

+ ∑ log[1 − 𝑃 (𝐷 = 0|𝑐, 𝑤; 𝛩)]

(𝑐,𝑤)Є 𝐷1

probability distribution consisting of R probabilities

proportional to the exponential of input numbers

6

= arg 𝑚𝑎𝑥𝛩 ∑ log
1

1 + 𝑒−𝑉𝑐∗𝑉𝑤

(𝑐,𝑤)Є 𝐷1

+ ∑ log[1 −
1

1 + 𝑒−𝑉𝑐∗𝑉𝑤
]

 (𝑐,𝑤)Є 𝐷1

= arg 𝑚𝑎𝑥𝛩 ∑ log
1

1 + 𝑒−𝑉𝑐∗𝑉𝑤

(𝑐,𝑤)Є 𝐷1

+ ∑ log
1

1 + 𝑒𝑉𝑐∗𝑉𝑤

 (𝑐,𝑤)Є 𝐷1

Replacing,
1

1+ 𝑒−𝑥
 𝑏𝑦 𝜎(𝑥), 𝑤𝑒 𝑔𝑒𝑡

arg 𝑚𝑎𝑥𝛩 ∑ log
1

1 + 𝑒−𝑉𝑐∗𝑉𝑤

(𝑐,𝑤)Є 𝐷1

+ ∑ log
1

1 + 𝑒𝑉𝑐∗𝑉𝑤

 (𝑐,𝑤)Є 𝐷1

= arg 𝑚𝑎𝑥𝛩 ∑ log 𝜎(𝑉𝑐 . 𝑉𝑤)

(𝑐,𝑤)Є 𝐷1

+ ∑
log 𝜎(−𝑉𝑐 . 𝑉𝑤)

(𝑐,𝑤)Є 𝐷1

The aim is to represent that 𝐷 ∪ 𝐷1 depicts the

entire corpus.

In the work of Mikolov et al. (Mikolov et al., 2013)

each context is a word

and all words appear as context and so

𝑃𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑥) = 𝑃𝑤𝑜𝑟𝑑𝑠(𝑥) =
𝑐𝑜𝑢𝑛𝑡(𝑥)

|𝑡𝑒𝑥𝑡|
 (Goldberg

and Levy, 2014)

Context Window: The context window thus

determines which contextual neighbours are

accounted when estimating the vector

representations context window is the maximum

window size (i.e. the maximum distance between

the focus word and its contextual neighbours). This

parameter is the easiest one to adjust using existing

software, which is why it is comparatively well

studied. Larger windows are known to induce

embeddings that are more ‘topical’ or ‘associative’,

improving their performance on analogy test sets,

while smaller windows induce more ‘functional’

and ‘synonymic’ models, leading to better

performance on similarity test sets (Goldberg and

Levy, 2014)

C. Appendix C

D. Appendix D

1. TSNE

7

T-SNE (t-distributed stochastic neighboring

embedding)

T-SNE is quite useful in case it is necessary to

visualize similarity between objects which are

located into multidimensional space. With a large

dataset, it is becoming more and more difficult to

make an easy-to-read t-SNE plot, so it is common

practice to visualize groups of the most similar

words. Hyperparameters of T-SNE: (Smetanin,

2018)

• perplexity: It is a value which in context

of T-SNE, may be viewed as a smooth

measure of the effective number of

neighbours. It is related to the number of

nearest neighbours that are employed in

many other manifold learners (Smetanin,

2018)

• n_components: dimension of the output

space

• n_iter: Maximum number of iterations

for optimization

• init: Initialization of embedding matrix

The visualization in figure 4, can be useful to

understand how Word2Vec works and how to

interpret relations between vectors captured from

your texts before using them in neural networks or

other machine learning algorithms.(Smetanin,

2018)

Interpretation: From the Test Dataset, using TF-

IDF we found that the words "Food" and "Hour"

are most common. So, to find the words in the

embedding that are most associated with these two

words, we plotted a TSNE-plot. As, described

before, TSNE finds the nearest neighbour

embedding for the words and thus, the TSNE

plotted shows clusters of words that are closely

embeded together. Orange highlights the words

that are associated for the word-HOUR, Blue

highlights the words that are associated for the

word-FOOD. and the Brown highlighted words are

associated with both the words Hour and Food

Cosine Similarity Index

It computes similarity between a simple mean of

the projection weight vectors of the given words

and the vectors for each word in the model. The

method corresponds to the word-analogy and

distance scripts in the original word2vec

implementation. It is a metric used to measure how

similar the documents are irrespective of their size.

E. Appendix E

In sequential labelling or learning, previously most

of the work was done using two machine learning

approaches. One of which was a generative

probabilistic method and the other was a sequential

classification method.

The generative probabilistic method depends on k-

order generative probabilistic models of paired

input and label sequences using either Hidden

Markov Models or Multi-level Markov Models.

This approach though provides a good training and

decoding algorithms of Markov Models it requires

more strict conditional independence assumptions.

Thus, making it impractical to use a windowed

sequence of input as well as surrounding labels to

make a label dependent on such a sequence.

(McCallum et al., n.d.)

As demonstrated in work of maximum-entropy by

McCallum(McCallum et al., n.d.) and Ratnaparkhi

(Ratnaparkhi, 1996), many correlated features can

be handled by a sequential classifiers like linear-

classifiers, AdaBoost and support vector machines.

Generative models can trade off decisions at

different positions against one another, this cannot

be done by Sequence Classifiers. This compelled

even the best sequential learning classifiers to use

heuristic combinations of forward-moving and

backward-moving sequential classifiers. (Lafferty

et al., n.d.)

Conditional Random fields brings the best out of

both worlds of generative probabilistic modelling

and sequential label classification.

It can adjust to a variety of statistically correlated

features as input just like a sequential label

classifier. And just like a generative probabilistic

model it can trade off decisions at different

sequence to obtain a global optimal labelling.

Lafferty et al. defined conditional random field on

a set of X observations with a set of Y labels, for

example X might range over sentences and Y

might range over part-of-speech tags. These

random variables X and Y are jointly distributed,

but in a discriminative framework, a conditional

model is constructed p(Y|X) from paired

observations and label sequences.(Lafferty et al.,

n.d.)

8

The principle is because the conditional probability

of a label 𝑌𝑦 depends on a label 𝑌𝑤 if and only if

there is affinity with 𝑌𝑦

The joint distribution over the label sequences Y

given X has the form: (Lafferty et al., n.d.)

P Θ (y | x) ∝ exp (∑e Є E,K λk fk (y |e, x)
+ ∑v Є V,K μk gk(v, y|v, x)

where x is data sequence, y is label sequence,

y | s is the set of components of y associated with

vertices in subgraph S, fk and gk are feature

functions and Θ is the set of weight parameters.

Θ = (λ1, λ2, λ3, … , μ1, μ2, μ3)

Typically to the subset of {0,1}, the feature

functions fk and gk maps a set of observations X to

a real number. The feature functions are built in

such a way that the observations Xi are modelled

as a vector. These are usually hand-crafted Boolean

values.(Lafferty et al., n.d.)

Details of Hyperparameter optimized CRF

Top likely transitions:

p -> p 4.504740

f -> f 4.498736

e -> e 4.313616

i -> i 4.186723

o -> o 4.164468

st -> st 4.052589

c -> c 4.040683

s -> s 3.888215

p -> e -2.751032

e -> p -2.751032

c -> e -2.881683

e -> c -2.881683

p -> c -2.941894

c -> p -2.941894

p -> i -3.046743

i -> p -3.046743

c -> i -3.185999

i -> c -3.185999

e -> i -3.226524

i -> e -3.226524

Top unlikely transitions:

o -> c -4.005861

c -> o -4.005861

f -> s -4.139228

s -> f -4.139228

st -> i -4.162967

i -> st -4.162967

p -> o -4.219411

o -> p -4.219411

f -> st -4.254724

st -> f -4.254724

f -> o -4.305534

o -> f -4.305534

o -> i -4.442339

i -> o -4.442339

s -> st -4.664813

st -> s -4.664813

s -> o -4.675678

o -> s -4.675678

o -> st -4.840923

st -> o -4.840923

Top positive:

1.283725 c previousWord:underseat

1.204137 c previousWord:everyone’s

0.985568 i previousWord:pillow

0.883634 c nextWord:comfort

0.873309 f depWord:awesome

0.857807 p depWord:infuriate

0.853878 i depWord:perth

0.846330 i depWord:face

0.819825 f depWord:wine

0.799197 i previousWord:slot

0.799132 p depWord:sigh

0.779110 p depWord:view

0.776045 s depWord:stuck

0.774272 s previousWord:thirtysix

0.773041 p depWord:retrieve

0.770658 s previousWord:access

0.767794 st nextWord:assistant

0.767100 f depWord:glass

0.765888 e depWord:collection

0.758168 st depWord:rep

0.752351 i depWord:flushing

0.749732 i depWord:towel

0.745956 i previousWord:boarded

0.742228 s nextWord:awful

0.740946 f depWord:beverages

0.739252 s depWord:reallocation

0.738875 o depWord:multilingual

0.729930 st depWord:competent

0.726705 f previousWord:try

0.720303 p nextWord:12

Top negative:

-0.212331 p depWord:started

-0.213428 p depWord:went

-0.216759 p depWordPos:IN

-0.216992 o depWord:looked

-0.219010 f depTag:acl:to

-0.219329 st depWord:able

9

-0.220520 s previousWord:pretty

-0.223933 f previousWord:they

-0.226742 s nextWord:provided

-0.227997 f previousWord:any

-0.228220 o depWord:help

-0.235643 o depWord:bags

-0.236823 i depWord:to

-0.242775 e depWord:seat

-0.243770 o previousWord:some

-0.249494 st depWord:checkin

-0.256180 p depTag:obl:to

-0.258356 i previousWord:for

-0.259542 o previousWord:other

-0.264707 o previousWord:smooth

-0.270876 f previousWord:service

-0.273975 f depTag:compound:prt

-0.283252 i depTag:nmod:for

-0.283458 st previousWord:website

-0.294158 f previousWord:could

-0.307149 s depWord:for

-0.320006 f previousWord:journey

-0.354515 p previousWord:more

-0.375808 f nextWord:such

-0.451217 f previousWord:all

F. Appendix F

Classification Algorithms

SVM: For defining the hyperplane, the following

equation is used,

𝑤𝑇 . 𝑥 + 𝑏 = 0

where, w denotes weight vector, x is the input

vector and b as bias. (Suykens and Vandewalle,

1999)

This helps in creating a hyperplane with as big a

margin as possible.

Decision Tree: In the beginning of this algorithm,

the whole training dataset is the root of the tree,

where root node represents the entire population.

Each box represented in the above figure is a node

at which tests (T) are applied to recursively split

the dataset in smaller groups. The letters (A, B, C)

at each leaf node represent the labels assigned to

every observation. (Safavian and Landgrebe,

1991)

Figure 5. Decision Tree

The test (T) is basically making the best choice to

reduce the entropy to minimum and thereby

improving information gain to maximum. This

process is carried recursively till entropy is

minimized among all branches of the

tree.(Safavian and Landgrebe, 1991)

Entropy and information gain are calculated as

follows,

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ −𝑝𝑖. 𝑙𝑜𝑔2𝑝𝑖

𝑐

𝑖=1

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛

= 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑏𝑒𝑓𝑜𝑟𝑒−𝑠𝑝𝑙𝑖𝑡

− 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑎𝑓𝑡𝑒𝑟−𝑠𝑝𝑙𝑖𝑡

Boosting: It is an implementation of gradient

boosted decision trees. (Chen and Guestrin, 2016)

For a given dataset, with n examples and m features

𝐷 = {(𝑥𝑖, 𝑦𝑖)}, (|D| = n, xi ∈ R m, yi ∈ R)

the output predicted by such a tree ensemble

technique can be depicted as below,

𝑦𝑇
𝑖 = φ(𝑥𝑖)

= ∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘Є 𝐹

𝐾

𝑘=1

(Chen and Guestrin, 2016)

where 𝐹 = {𝑓(𝑥) = 𝑤𝑞(𝑥)}{𝑞: 𝑅𝑚 → 𝑇, 𝑤 Є𝑅𝑇 }

describes the space of the trees.

The boosting algorithm has been
optimized using Algorithm 1

10

Random Forest: Random Forest is essentially an

ensemble classifier that uses several decision trees

and then outputs the class that is predicted by the

maximum number of trees. It is a robust method

and proves to output high accuracy, because of it

not being dependent on any decision tree, but a

bunch, or forest of them. The idea implements

Breiman’s “bagging” technique, which is a way to

decrease the variance of the prediction by

generating supplementary data o train from dataset

using several combinations with repetition,

therefore producing multi-sets of the original data.

(Cutler et al., 2012)

Voting Classifier: Voting Classifier is an ensemble

technique which is based on a simple working

mechanism, that is ‘voting’. Several different

algorithms are trained on the dataset, and the

output of each is combined to predict the final

class. It works on a ‘majority’ principle, and the

class being predicted by the greatest number of

classifiers, is chosen as the ensemble result for the

data. The models used were decision trees, random

forest and extra trees classifier. Extra trees

classifier, or extremely randomized trees uses all

the data available in the training set to build each

decision tree with depth set to one, also called as

stump. Furthermore, the best split to form the root

node or any other node is determined by searching

in a subset of randomly selected features having

size equal to square root of the number of features.

For each selected feature, the split is chosen

randomly. Therefore, the degree of randomness is

more extreme than that of random forest. Thus,

although decision tree, random forest and extra

trees, all implement decision trees, they have

different understanding of the data. Hence, the

output of each of these classifiers is taken into

consideration and the class predicted the maximum

number of times is voted as the final predicted

class. (Saha and Ekbal, 2013)

SMOTE

It was observed that some aspects inspite of being

important, were not talked about much. For

example, food temperature is an important aspect

of food, but the reviews containing food

temperature aspect were quite less in number than

that of the reviews talking about food taste.

Similarly, reviews containing cabin fragrance

aspect were less in number than the reviews

containing cabin condition aspect. Such a

difference in numbers would create an unwanted

bias in the model, increasing the chances of

overfitting. To handle this imbalance, Synthetic

Minority Over-sampling Technique (SMOTE)

approach is adapted for high dimensional binary

settings. Generally, used for handling class

imbalance. (Chawla et al., 2002)

It is an over sampling technique that synthetically

over samples minority classes using novel distance

metric approaches.

SMOTE, computes neighbourhood for each

minority sample and considers only a subset of the

available attributes of the task. (Chawla et al.,

2002)

It uses Euclidean, Chebyshev and Manhattan

distance metrics and Fisher Score, Mutual

Information, Eigenvector and Correlation score as

ranking strategies.

For the study, SMOTE over each of our

classification algorithms to be able to determine

implied aspects of each.

G. Appendix G

It is crucial to understand the fact that the stop

words removal step is both, a boon and a bane, as

removal of these words leads to breakage of the

sentence structure, making it difficult to analyse

the text semantically. Therefore, in dependency

parsing step, the text was used without removing

the stop words. Another part of pre-processing text

is dealing with contraction, which means

shortening of words or syllables. It was noticed that

several words were present in the data in many

different forms, for instance, the term “could not”

was present in terms of “couldn’t” as well. These

contractions occur depending upon the tone of the

reviewer or the context of the review. It is often

seen that the implied meaning of the phrase does

not differ, but the model considers them as different

words, leading to poor training. Therefore, the need

arises to alter the text in such a way that the model

links up the different variations that have the same

implied meaning. In this example, we change the

11

term “couldn’t” to “could not”. Such expansion of

contracted terms helps with text standardization.

Apart from this, all the text is changed to

lowercase, to create a uniform text dataset, which

initially contained a mixture of uppercase and

lowercase texts. Additionally, numerals are

converted to words, for example- ‘$3000’ is

changed to ‘three thousand dollars’.

Corpus can be defined as a collection of textual

data, or a body of writing, that is based around a

subject. The reviews after the above steps are

added collectively to a list of reviews, henceforth

referred to as “Corpus”. This corpus could be

thought of a collection of all the scraped data, for

all the airlines, referring to many different entities

and opinions- after cleaning and preprocessing.

This corpus serves as a basis of document for

further steps.

H. Appendix H

Type Token Ratio

There are some rules for calculating TTR, which

are adapted in this study. These rules include

following, (TEMPLIN, 1957)

a) Compound nouns and hyphen words are

considered as one word

b) Parts of verbal phrases are considered as

separate words, example, phrase like

“meals were served” counts as three

tokens, meals, were and served

c) Contractions are considered as two words,

example couldn’t, is counted as could not

Results of TTR

Since, the present study is for user generated data

for airlines, it is expected that there will be words

that might be repeated quite often. Data is gathered

for 16 airlines from two different websites and the

type token ratio is observed to be between 0.2 to

0.6 for almost all airlines.

Figure 6. Type-Token Ratio for Airline Ratings

Figure 7 Type-Token Ratio for Trip Advisor

Type token ratio between both data sources is

observed to be 0.27, which means that there are

many words that are repeated between them.

Zipf’s law

Zipf’s other law states that the number of meanings

(m) of a word is the square root of its

frequency.(Powers, 1998)

𝐺𝑖𝑣𝑒𝑛 𝑓𝑖𝑟𝑠𝑡 𝑙𝑎𝑤, 𝑚 ∝
1

√m
,

𝑚 ∝ √f
This means that the second most repeated word

will have a frequency that is half of the first word

and the third most repeated word will have a

frequency that is half of the second most repeated

word.

As seen below, our corpus does follow Zipf’s

distribution.

Figure 8. Zipf’s distribution

I. Appendix I

The project can majorly be divided into these parts-

Entity extraction, Aspect identification/extraction,

sentiment analysis. Several parameters are used to

check the level of righteousness of the project.

A point to be pondered about is as to which of the

performance metrics should be accounted, to better

judge the model. The most common idea,

“accuracy” works best when the false positives and

false negatives have similar cost. However, the

12

airline reviews contained an unequal number of

positive and negative opinions for different

aspects- because opinions are a subjective matter

and could differ for any two people. Therefore, the

performance metrics used were F1, precision and

recall. (“The relationship between Precision-

Recall and ROC curves | Proceedings of the 23rd

international conference on Machine learning,”

n.d.) These are defined below:

Precision: The measure of the correctly identified

positive cases from collectively all the predicted

positive cases. It is beneficial when the costs of

False Positives is high. (“The relationship between

Precision-Recall and ROC curves | Proceedings of

the 23rd international conference on Machine

learning,” n.d.)

Recall: The measure of the correctly identified

positive cases from collectively all the actual

positive cases. (“The relationship between

Precision-Recall and ROC curves | Proceedings of

the 23rd international conference on Machine

learning,” n.d.)

It is significant when the cost of False Negatives is

high. Mutually, F1 score is the weighted average of

Precision, Recall, and takes both false positives

and false negatives into account. Therefore, it

proved to be the best choice.

Performance metrics for “Food” entity based on

different approaches, simultaneously applying.

In following figures, the scores for best

identification model for each algorithm can be

found.

1. Conditional Random Field

Figure 9. CRF ROC-AUC Curve

Figure 10. CRF Precision-Recall Curve

Figure 11. CRF Classification Report, F1 and Average

absolute error scores

2. Support Vector Machines

Figure 12. SVM ROC-AUC Curve

Figure 13. SVM Classification Report, F1 and Average

absolute error scores

13

3. Decision Tree

Figure 14. Decision Tree ROC-AUC Curve

Figure 15. Decision Tree Classification Report, F1 and

Average absolute error scores

4. Random Forest

Figure 16. Random Forest ROC-AUC Curve

Figure 17. Random Forest Classification Report, F1

and Average absolute error scores

5. Voting Classifier

Figure 18. Voting Classifier ROC-AUC Curve

Figure 19. Voting Classifier Classification Report, F1

and Average absolute error scores

6. XG BOOST

Figure 20. XG BOOST ROC-AUC Curve

14

Figure 21. XG-BOOST Classification Report, F1 and

Average absolute error scores

BIBLIOGRPAHY

Barazza, L., 2017. How does Word2Vec’s Skip-Gram

work? [WWW Document]. Medium. URL

https://becominghuman.ai/how-does-word2vecs-

skip-gram-work-f92e0525def4 (accessed 4.23.20).

Bengio, Y., Ducharme, R., Vincent, P., 2001. A Neural

Probabilistic Language Model, in: Leen, T.K.,

Dietterich, T.G., Tresp, V. (Eds.), Advances in

Neural Information Processing Systems 13. MIT

Press, pp. 932–938.

Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer,

W.P., 2002. SMOTE: Synthetic Minority Over-

sampling Technique. jair 16, 321–357.

https://doi.org/10.1613/jair.953

Chen, T., Guestrin, C., 2016. XGBoost: A Scalable

Tree Boosting System, in: Proceedings of the 22nd

ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. Presented

at the KDD ’16: The 22nd ACM SIGKDD

International Conference on Knowledge Discovery

and Data Mining, ACM, San Francisco California

USA, pp. 785–794.

https://doi.org/10.1145/2939672.2939785

Cutler, A., Cutler, D.R., Stevens, J.R., 2012. Random

Forests, in: Zhang, C., Ma, Y. (Eds.), Ensemble

Machine Learning: Methods and Applications.

Springer US, Boston, MA, pp. 157–175.

https://doi.org/10.1007/978-1-4419-9326-7_5

Document (Stanford CoreNLP API) [WWW

Document], n.d. URL

https://nlp.stanford.edu/nlp/javadoc/javanlp-

3.5.0/edu/stanford/nlp/dcoref/Document.html

(accessed 8.17.20).

Goldberg, Y., Levy, O., 2014. word2vec Explained:

deriving Mikolov et al.’s negative-sampling word-

embedding method. arXiv:1402.3722 [cs, stat].

Harris, Z.S., 1954. Distributional Structure. WORD

10, 146–162.

https://doi.org/10.1080/00437956.1954.11659520

Lafferty, J., McCallum, A., Pereira, F.C.N., n.d.

Conditional Random Fields: Probabilistic Models

for Segmenting and Labeling Sequence Data 10.

Majumder, P., Mitra, M., Chaudhuri, B.B., n.d. N-

gram: a language independent approach to IR and

NLP 7.

McCallum, A., Freitag, D., Pereira, F., n.d. Maximum

Entropy Markov Models for Information Extraction

and Segmentation 26.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S.,

Dean, J., 2013. Distributed Representations of

Words and Phrases and their Compositionality, in:

Burges, C.J.C., Bottou, L., Welling, M.,

Ghahramani, Z., Weinberger, K.Q. (Eds.), Advances

in Neural Information Processing Systems 26.

Curran Associates, Inc., pp. 3111–3119.

Paltoglou, G., Thelwall, M., 2013. More than Bag-of-

Words: Sentence-based Document Representation

for Sentiment Analysis, in: Proceedings of the

International Conference Recent Advances in

Natural Language Processing RANLP 2013.

Presented at the RANLP 2013, INCOMA Ltd.

Shoumen, BULGARIA, Hissar, Bulgaria, pp. 546–

552.

Penn Treebank P.O.S. Tags [WWW Document], n.d.

URL

https://www.ling.upenn.edu/courses/Fall_2003/ling

001/penn_treebank_pos.html (accessed 8.24.20).

Pennington, J., Socher, R., Manning, C., 2014. GloVe:

Global Vectors for Word Representation, in:

Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing

(EMNLP). Presented at the EMNLP 2014,

Association for Computational Linguistics, Doha,

Qatar, pp. 1532–1543.

https://doi.org/10.3115/v1/D14-1162

Powers, D.M.W., 1998. Applications and Explanations

of Zipf’s Law, in: New Methods in Language

Processing and Computational Natural Language

Learning.

Ratnaparkhi, A., 1996. A Maximum Entropy Model for

Part-Of-Speech Tagging, in: Conference on

Empirical Methods in Natural Language

Processing.

Rosenberg, A., Binkowski, E., 2004. Augmenting the

kappa statistic to determine interannotator

reliability for multiply labeled data points, in:

Proceedings of HLT-NAACL 2004: Short Papers.

Presented at the HLT-NAACL 2004, Association for

Computational Linguistics, Boston, Massachusetts,

USA, pp. 77–80.

Safavian, S.R., Landgrebe, D., 1991. A survey of

decision tree classifier methodology. IEEE

15

Transactions on Systems, Man, and Cybernetics 21,

660–674. https://doi.org/10.1109/21.97458

Saha, S., Ekbal, A., 2013. Combining multiple

classifiers using vote based classifier ensemble

technique for named entity recognition. Data &

Knowledge Engineering, Natural Language for

Information Systems: Communicating with

Anything, Anywhere in Natural Language 85, 15–

39. https://doi.org/10.1016/j.datak.2012.06.003

Smetanin, S., 2018. Google News and Leo Tolstoy:

Visualizing Word2Vec Word Embeddings with t-

SNE [WWW Document]. Medium. URL

https://towardsdatascience.com/google-news-and-

leo-tolstoy-visualizing-word2vec-word-

embeddings-with-t-sne-11558d8bd4d (accessed

4.23.20).

Suykens, J.A.K., Vandewalle, J., 1999. Least Squares

Support Vector Machine Classifiers. Neural

Processing Letters 9, 293–300.

https://doi.org/10.1023/A:1018628609742

TEMPLIN, M.C., 1957. Certain Language Skills in

Children: Their Development and

Interrelationships, NED-New edition. ed.

University of Minnesota Press.

https://doi.org/10.5749/j.ctttv2st

The relationship between Precision-Recall and ROC

curves | Proceedings of the 23rd international

conference on Machine learning [WWW

Document], n.d. URL

https://dl.acm.org/doi/abs/10.1145/1143844.11438

74?casa_token=5k6e4hFjZhgAAAAA:JrMAFwEe

EMTjdPbM0txoFOee59B5RK9Mj2sORe3I04GG

Yu6g0G2y0pf5LwbdD6hyT7YXtUIQ5x8

(accessed 8.24.20).

