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A. Appendix A 

1. List of Airlines 

Sr no. Airline Website(s) 

1 Aer Lingus Airline Ratings 

2 Air Arabia Airline Ratings, 

Trip Advisor 

3 Air Asia Airline Ratings, 

Trip Advisor 

4 Air France Airline Ratings, 

Trip Advisor 

5 Air Canada Airline Ratings, 

Trip Advisor 

6 Air France Airline Ratings, 

Trip Advisor 

7 Air India Airline Ratings, 

Trip Advisor 

8 Vistara Airline Ratings, 

Trip Advisor 

9 British Airways Trip Advisor 

10 Emirates  Trip Advisor 
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11 American Airlines Airline Ratings 

12 United Airlines Trip Advisor 

13 Virgin Atlantic Trip Advisor 

14 Virgin Australia Trip Advisor 

15 Indigo Airlines Airline Ratings 

16 Dragon Air Airline Ratings 

 

1.1. Website-wise Airlines 

 

Website Number of Airlines 

Trip Advisor 11 

Airline Ratings 10 

Common  6 

 

2. Annotation Guidelines 

 

Following a supervised learning approach for the 

scope of this study, labelled data was required to 

train the machine learning and ensemble learning 

models to identify, extract and classify airline-

specific implicit aspects and opinions. Since, the 

data was fresh, new and one of a kind, it was 

important to manually annotate and label the data. 

With two annotators, manually annotating 

about 1803 reviews, there was a need to metricize 

the agreement level between the annotators which 

would act as the basis of ground truth for this 

project scope. 

Refer to the inter-annotator guideline 

agreement document for detailed annotation rules 

for the scope of this research study. (See Inter-

annotator agreement) 

 

3. Kappa Co-efficient 

 

Cohen’s Kappa co-efficient is a method to 

measure inter-rater reliability for categorical data. 

(Rosenberg and Binkowski, 2004). The way static 

kappa co-efficient is calculated is as follows, 

𝐾 =  
𝑝(𝐴) − 𝑝(𝐸)

1 − 𝑝(𝐸)
 

Where, K is the kappa value, p(A) is the 

probability of the actual outcome and p(E) is the 

probability of the expected outcome. (Rosenberg 

and Binkowski, 2004) 

For this study, the method to calculate kappa 

value was calculated is the same described in the 

paper by Rosenberg and Binkowski et. al. section 

5. (Rosenberg and Binkowski, 2004) 

 

The results for this study for two annotators 

range from 0.8048 and 0.8213. Since, the 

annotation was performed on two levels, the kappa 

value of 0.8048 indicates the inter-annotator 

agreement level for Entity-wise labelling. The 

kappa value of 0.8213 indicates the inter-annotator 

agreement level for implicit-aspect wise labelling. 

Figure 1. gives a graphical representation of the 

same. 

 

 
Figure 1. Kappa level-wise score 

 

Detailed kappa values for each entity-wise 

labelling is available in figure 2. 

 
Figure.2.  Kappa entity-wise score 

B. Appendix B 

1. Feature Engineering Tasks 

Detailed description of all feature engineering 

tasks is as below,  

 

1.1. Word Features 

1.1.1.  Part-Of-Speech Tags 

1.1.2.  Dependency Parsing 

1.2. Numeric Features 

1.2.1. Count Vectorizer 

1.2.2. Term frequency – inverse document 

frequency 

1.2.3. Augmenting word embeddings 

 

Part-of-speech Tags 
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Parts-of-speech or POS indicates how a word in a 

sentence functions both grammatically and 

contextually i.e. what it means. (Ratnaparkhi, 

1996) 

In natural language processing Stanford 

university devised and developed a part-of-speech 

tagging methodology. When a list of sentences or 

paragraphs are parsed through the product of this 

methodology, it automatically assigns a part-of-

speech tag to each word in the sentence. 

(“Document (Stanford CoreNLP API),” n.d.) 

In table 1, one can find a list of part-of-speech 

tags that are assigned to each word and what it 

indicates. This has been adapted from the Penn 

Treebank. (“Penn Treebank P.O.S. Tags,” n.d.) 

 

Tag Description 

CC Co-ordinating 

conjunction 

JJ Adjective 

JJR Adjective, 

comparative 

JJS Adjective, superlative 

NN Noun 

NNS Noun, plural 

NNP Proper Noun, singular 

NNPS Proper noun, plural 

PRP Personal noun 

VB Verb base form 

VBD Verb past tense 

Table 1. POS tag list 

 

Example for this study, 

Input: “Overall the experience was comfortable 

and spacious with delicious meals” 

 

POS-Tags: [('overall', 'JJ'), ('experience', 'NN'), 

('comfortable', 'JJ'), ('spacious', 'JJ'), ('delicious', 

'JJ'), ('meals', 'NNS')] 

 

Here the tags “JJ”, “NN” and “NNS” mean 

adjective, noun and singular noun respectively.  

 

Dependency Parsing 

Adopted from the early works of French Linguist 

Lucien Tesnière, dependency grammar is a notion 

that words are connected to each other by directed 

links. Dependency parsing is a technique which 

extracts such a dependent relation between words 

in a sentence(s) or paragraph(s). Universal 

 
1 API: application programming interface.   

dependencies developed a framework allows one 

to parse raw text and get these dependent relations 

between words in the text. This framework is 

available through Stanford’s CORE NLP API 1 . 

(“Document (Stanford CoreNLP API),” n.d.) 

 

For this study, the result of the following sentence 

can be found below, 

 

Input: “Overall the experience was comfortable 

and spacious with delicious meals” 

 

Output: [('overall', 'advmod'), ('comfortable', 

'ROOT'), ('the', 'det'), ('experience', 'nsubj'), ('was', 

'cop'), ('and', 'cc'), ('spacious', 'conj'), ('with', 

'case'), ('meals', 'obl'), ('delicious', 'amod')] 

This can be visualized and understood by a 

dependency graph tree using GraphViz as seen in 

figure 3.  

 

Figure 3. Dependency tree graph 

 

Count Vectorizer 

Here, the collection of text reviews is converted 

into a matrix of token counts. The basic operation 

of this technique is to check each word in the 

document and count the number of their 

representations and create a matrix of these counts. 

For this experiment study, since the methodology 

does try to keep certain punctuations and special 

characters, a need is felt to create own tokenizer. 

The results for an example sentence, 

Sentence: ‘so overall I highly recommend this airline’  
So  Over

-all  
I  High

-ly  
Reco
mm-
end  

Th-is  airli
ne  

5  3  2  1  4  6  0 
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Table 2. Count Vectorizer example 
 

 

Term frequency – inverse document frequency 

It is commonly referred as TF-IDF. It can be 

divided as two terms namely, Term Frequency and 

Inverse Document Frequency. 

Term Frequency (TF) can be defined as a ratio of 

count of the word present in a sentence to the 

length of the sentence. 

Inverse Document Frequency (IDF) can be termed 

as measure of rareness of a term in the corpus. 

Article words like “a”, “an” or “the” appear in 

almost every corpus, but rare words might not be 

present in all documents. 

 

Augmenting Word Embeddings 

Word embedding as the name suggests is a 

collective name for language modelling and 

feature engineering techniques of Natural 

Language Processing. In this technique, the word 

phrases are mapped to vectors of real numbers.  

Before going in the details of our methodology for 

implementation of word embeddings, there are 

certain terminology that needs to be understood in 

context of word embeddings. 

Language Model: The concept of a language 

model has a probabilistic character. It is essentially 

described as a function that provides a probability 

distribution of strings drawn from a vocabulary2. 

Vector Space Models: An algebraic model to 

represent text documents as vector of identifiers. 

Documents can be represented as (Bengio et al., 

2001) 

𝑑𝑗 =  (𝑤1,j, 𝑤2,j, 𝑤3,j, . . , 𝑤t,j) 

wherein each dimension is a separate term in the 

document 

 

Distributional Semantics: In 1954, Harris stated 

that the basis of distributional semantics is 

distributional hypothesis i.e. similarity of 

distribution in linguistics is resulted by similarity 

in meaning.(Harris, 1954) 

 

n-gram: They are essentially sequencing of 

characters or words extracted from a text. It can be 

 
2 Vocabulary: Set of unique words in a text corpus is 
referred to as a vocabulary. 

deduced as a set of n consecutive characters from a 

word.(Majumder et al., n.d.) 

Since this experiment study has limited and a small 

size of corpus, a decision was made for using pre-

trained Twitter Glove vectors. The approach for 

this experiment study includes training a 

Word2Vec model for the experiment corpus on-top 

of the pre-trained Twitter Glove 

vectors.(Pennington et al., 2014) 

CBOW or Continuous Bag of Words: It is a 

methodology that tends to predict the probability 

of a word given a context. A context can either be 

a single or a group of words. The objective function 

of CBOW language model is as follows(Paltoglou 

and Thelwall, 2013) 

𝐽𝛩

=  
1

𝑇
∑ log  𝑝 (𝑤𝑡| 𝑤𝑡−𝑛, . . , 𝑤𝑡−1, 𝑤𝑡+1, . . , 𝑤𝑡+𝑛)

𝑇

𝑡=1

 

Where, a training corpus containing a sequence of 

T training words w1, w2, w3, …, wT that belongs to 

vocabulary V of size |V| and Θ is the parameters of 

the model. 

Advantages of using CBOW: 

1. Generally, it performs superior to 

deterministic methods because of its 

probabilistic nature. 

2. Unlike a co-occurrence matrix, it does not 

have huge RAM requirements. 

Limitations of using CBOW: 

1. For example, the word Apple can mean 

both fruit and company. CBOW will take 

an average of both contexts and place it in 

the middle of a cluster of both these 

entities. 

2. Optimization is highly important, else the 

training using a CBOW model will take 

forever. 

Skip Gram: The aim of a skip gram language 

model is to predict the context given a word. It 

follows the inverse of CBOW’s architecture. In 

simpler terms, skip-gram model will use the center 

word to predict the surrounding words, unlike a 
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CBOW model which uses surrounding words to 

predict center word.(Barazza, 2017) 

The skip-gram objective function sums up the log 

probabilities of the surrounding n words to the right 

and left of the target word wt and can be 

represented as below 

𝐽𝛩 =  
1

𝑇
 ∑ ∑ log  𝑝 (𝑤𝑡+𝑗|𝑤𝑡)

−𝑛 ≤𝑗≤𝑛

𝑇

𝑡=1

 

 

So, instead of computing P (wt) target word given 

wt+j surrounding words, skip-gram computes 

surrounding word given target word.(Barazza, 

2017) 

Negative Sampling: In the year 2013 Mikolov et 

al. (Mikolov et al., 2013) deduced an efficient 

method to derive meaningful word embeddings 

using negative sampling. Though based on Skip-

gram model, it is optimizing a different objective.  

Let’s consider, a pair (w, c) where w and c 

determine word and context respectively.(Mikolov 

et al., 2013) 

If the pair of word and context derive from the 

training data then it can be notated as  

P (D = 1 | w, c)   [a] 

and if the word pair does not come from training 

data then it can be simply represented as  

P (D =  0 | w, c)   [b] 

So, from equations a & b, one can rewrite b as 

P (D = 0 | w, c) =  [ 1 –  P(D = 1 | w, c) ] 

Assuming, there are Θ parameters controlling this 

distribution and can be represented as follows, 

𝑃 (𝐷 = 1 |𝑤, 𝑐, 𝛩 ) 

The goal is to make all observations come from 

training data. And in order to do so, we must 

maximize this probability and it can be denoted as 

below(Goldberg and Levy, 2014) 

arg 𝑚𝑎𝑥𝛩  𝛱(𝑤,𝑐)Є𝐷 𝑃 (𝐷 = 1 |𝑤, 𝑐; 𝛩) 

 
3 It is a normalized exponential function that takes vector a 

of R real numbers as input and normalizes it into a 

=  arg 𝑚𝑎𝑥𝛩 log 𝛱(𝑤,𝑐)Є𝐷 𝑃 (𝐷 = 1 |𝑤, 𝑐; 𝛩) 

=  arg 𝑚𝑎𝑥𝛩  ∑ 𝑃(𝐷 = 1 |𝑤, 𝑐; 𝛩)
(𝑤,𝑐)Є𝐷

 

Using soft-max3  distribution, above equation can 

be rewritten as follows,(Goldberg and Levy, 2014) 

P (D =  1 |w, c;  Θ) =  
1

1 + 𝑒−𝑉𝑐∗𝑉𝑤
 

This can be represented as objective function as 

follows, 

arg 𝑚𝑎𝑥𝛩 =  ∑ log
1

1 +  𝑒−𝑉𝑐∗𝑉𝑤
(𝑤,𝑐)Є𝐷

 

The only limitation of the above is that it allows 

same (w,c) pair combinations to occur.  

So, ahead a mechanism will be developed that 

prevents vectors with same value. This can be 

achieved by introducing (w,c) pairs that are not in 

the data. So generate new pairs which are not in 

training data and are represented as 

below(Goldberg and Levy, 2014) 

𝐷1 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑤, 𝑐)𝑝𝑎𝑖𝑟𝑠 

Since, these pairs are assumed to be incorrect, this 

approach is named as negative sampling and the 

objective function can now be optimized as below, 

arg 𝑚𝑎𝑥𝛩 𝛱(𝑤,𝑐)Є𝐷  𝑝(= 1 |𝑐, 𝑤;  𝛩) . 𝛱(𝑤,𝑐)Є𝐷  𝑃(𝐷

= 0 |𝑐, 𝑤;  𝛩) 

=  arg 𝑚𝑎𝑥𝛩 𝛱(𝑤,𝑐)Є𝐷  𝑝(𝐷 =

1 |𝑐, 𝑤;  𝛩) . 𝛱(𝑤,𝑐)Є𝐷  [1 − 𝑃(𝐷 =1 | c,w; Θ) 

= arg 𝑚𝑎𝑥𝛩 ∑ log 𝑃 (𝐷 = 1|𝑐, 𝑤; 𝛩)

(𝑐,𝑤)Є 𝐷1

+  ∑ log 𝑃 (𝐷 = 0|𝑐, 𝑤; 𝛩) 
 

(𝑐,𝑤)Є 𝐷1

 

= arg 𝑚𝑎𝑥𝛩 ∑ log 𝑃 (𝐷 = 1|𝑐, 𝑤; 𝛩)

(𝑐,𝑤)Є 𝐷1

+  ∑ log[1 −  𝑃 (𝐷 = 0|𝑐, 𝑤; 𝛩) ]
 

(𝑐,𝑤)Є 𝐷1

 

probability distribution consisting of R probabilities 

proportional to the exponential of input numbers 
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= arg 𝑚𝑎𝑥𝛩 ∑ log
1

1 +  𝑒−𝑉𝑐∗𝑉𝑤

(𝑐,𝑤)Є 𝐷1

+  ∑ log[1 −
1

1 +  𝑒−𝑉𝑐∗𝑉𝑤
] 

 (𝑐,𝑤)Є 𝐷1

 

 

= arg 𝑚𝑎𝑥𝛩 ∑ log
1

1 +  𝑒−𝑉𝑐∗𝑉𝑤

(𝑐,𝑤)Є 𝐷1

+  ∑ log
1

1 +  𝑒𝑉𝑐∗𝑉𝑤
 

 (𝑐,𝑤)Є 𝐷1

 

Replacing,  
1

1+ 𝑒−𝑥 
 𝑏𝑦 𝜎(𝑥), 𝑤𝑒 𝑔𝑒𝑡 

arg 𝑚𝑎𝑥𝛩 ∑ log
1

1 +  𝑒−𝑉𝑐∗𝑉𝑤

(𝑐,𝑤)Є 𝐷1

+  ∑ log
1

1 +  𝑒𝑉𝑐∗𝑉𝑤
 

 (𝑐,𝑤)Є 𝐷1

 

= arg 𝑚𝑎𝑥𝛩 ∑ log  𝜎(𝑉𝑐 . 𝑉𝑤)

(𝑐,𝑤)Є 𝐷1

+  ∑
log  𝜎(−𝑉𝑐 . 𝑉𝑤) 

 
(𝑐,𝑤)Є 𝐷1

 

 

 

 

 

 

 

 

 

 

The aim is to represent that 𝐷 ∪ 𝐷1  depicts the 

entire corpus. 

In the work of Mikolov et al. (Mikolov et al., 2013) 

each context is a word  

and all words appear as context and so 

𝑃𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑥) = 𝑃𝑤𝑜𝑟𝑑𝑠(𝑥) =  
𝑐𝑜𝑢𝑛𝑡(𝑥)

|𝑡𝑒𝑥𝑡|
 (Goldberg 

and Levy, 2014) 

Context Window: The context window thus 

determines which contextual neighbours are 

accounted when estimating the vector 

representations context window is the maximum 

window size (i.e. the maximum distance between 

the focus word and its contextual neighbours). This 

parameter is the easiest one to adjust using existing 

software, which is why it is comparatively well 

studied. Larger windows are known to induce 

embeddings that are more ‘topical’ or ‘associative’, 

improving their performance on analogy test sets, 

while smaller windows induce more ‘functional’ 

and ‘synonymic’ models, leading to better 

performance on similarity test sets (Goldberg and 

Levy, 2014) 

C. Appendix C 

D. Appendix D 

1. TSNE 
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T-SNE (t-distributed stochastic neighboring 

embedding) 

T-SNE is quite useful in case it is necessary to 

visualize similarity between objects which are 

located into multidimensional space. With a large 

dataset, it is becoming more and more difficult to 

make an easy-to-read t-SNE plot, so it is common 

practice to visualize groups of the most similar 

words. Hyperparameters of T-SNE: (Smetanin, 

2018) 

• perplexity: It is a value which in context 

of T-SNE, may be viewed as a smooth 

measure of the effective number of 

neighbours. It is related to the number of 

nearest neighbours that are employed in 

many other manifold learners (Smetanin, 

2018) 

• n_components: dimension of the output 

space  

• n_iter: Maximum number of iterations 

for optimization  

• init: Initialization of embedding matrix  

 

The visualization in figure 4, can be useful to 

understand how Word2Vec works and how to 

interpret relations between vectors captured from 

your texts before using them in neural networks or 

other machine learning algorithms.(Smetanin, 

2018) 

 

Interpretation: From the Test Dataset, using TF-

IDF we found that the words "Food" and "Hour" 

are most common. So, to find the words in the 

embedding that are most associated with these two 

words, we plotted a TSNE-plot. As, described 

before, TSNE finds the nearest neighbour 

embedding for the words and thus, the TSNE 

plotted shows clusters of words that are closely 

embeded together. Orange highlights the words 

that are associated for the word-HOUR, Blue 

highlights the words that are associated for the 

word-FOOD. and the Brown highlighted words are 

associated with both the words Hour and Food 

 

Cosine Similarity Index 

It computes similarity between a simple mean of 

the projection weight vectors of the given words 

and the vectors for each word in the model. The 

method corresponds to the word-analogy and 

distance scripts in the original word2vec 

implementation. It is a metric used to measure how 

similar the documents are irrespective of their size. 

 

E. Appendix E 
 

In sequential labelling or learning, previously most 

of the work was done using two machine learning 

approaches. One of which was a generative 

probabilistic method and the other was a sequential 

classification method.  

 

The generative probabilistic method depends on k-

order generative probabilistic models of paired 

input and label sequences using either Hidden 

Markov Models or Multi-level Markov Models. 

This approach though provides a good training and 

decoding algorithms of Markov Models it requires 

more strict conditional independence assumptions. 

Thus, making it impractical to use a windowed 

sequence of input as well as surrounding labels to 

make a label dependent on such a sequence. 

(McCallum et al., n.d.) 

 

As demonstrated in work of maximum-entropy by 

McCallum(McCallum et al., n.d.) and Ratnaparkhi 

(Ratnaparkhi, 1996), many correlated features can 

be handled by a sequential classifiers like linear-

classifiers, AdaBoost and support vector machines. 

Generative models can trade off decisions at 

different positions against one another, this cannot 

be done by Sequence Classifiers. This compelled 

even the best sequential learning classifiers to use 

heuristic combinations of forward-moving and 

backward-moving sequential classifiers. (Lafferty 

et al., n.d.) 

Conditional Random fields brings the best out of 

both worlds of generative probabilistic modelling 

and sequential label classification. 

 

It can adjust to a variety of statistically correlated 

features as input just like a sequential label 

classifier. And just like a generative probabilistic 

model it can trade off decisions at different 

sequence to obtain a global optimal labelling.  

 

Lafferty et al. defined conditional random field on 

a set of X observations with a set of Y labels, for 

example X might range over sentences and Y 

might range over part-of-speech tags. These 

random variables X and Y are jointly distributed, 

but in a discriminative framework, a conditional 

model is constructed p(Y|X) from paired 

observations and label sequences.(Lafferty et al., 

n.d.) 
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The principle is because the conditional probability 

of a label 𝑌𝑦 depends on a label 𝑌𝑤  if and only if 

there is affinity with 𝑌𝑦 

 

The joint distribution over the label sequences Y 

given X has the form: (Lafferty et al., n.d.) 

 

P Θ (y | x )  ∝  exp (∑e Є E,K λk fk (y |e, x)  
+  ∑v Є V,K μk gk(v, y|v, x) 

 

where x is data sequence, y is label sequence,  

y | s is the set of components of y associated with 

vertices in subgraph S, fk and gk are feature 

functions and Θ is the set of weight parameters.  

 

Θ =  (λ1, λ2, λ3, … , μ1, μ2, μ3)   
 

Typically to the subset of {0,1}, the feature 

functions fk and gk maps a set of observations X to 

a real number. The feature functions are built in 

such a way that the observations Xi are modelled 

as a vector. These are usually hand-crafted Boolean 

values.(Lafferty et al., n.d.) 

 

Details of Hyperparameter optimized CRF 

 

Top likely transitions: 

p      -> p       4.504740 

f      -> f       4.498736 

e      -> e       4.313616 

i      -> i       4.186723 

o      -> o       4.164468 

st     -> st      4.052589 

c      -> c       4.040683 

s      -> s       3.888215 

p      -> e       -2.751032 

e      -> p       -2.751032 

c      -> e       -2.881683 

e      -> c       -2.881683 

p      -> c       -2.941894 

c      -> p       -2.941894 

p      -> i       -3.046743 

i      -> p       -3.046743 

c      -> i       -3.185999 

i      -> c       -3.185999 

e      -> i       -3.226524 

i      -> e       -3.226524 

 

Top unlikely transitions: 

o      -> c       -4.005861 

c      -> o       -4.005861 

f      -> s       -4.139228 

s      -> f       -4.139228 

st     -> i       -4.162967 

i      -> st      -4.162967 

p      -> o       -4.219411 

o      -> p       -4.219411 

f      -> st      -4.254724 

st     -> f       -4.254724 

f      -> o       -4.305534 

o      -> f       -4.305534 

o      -> i       -4.442339 

i      -> o       -4.442339 

s      -> st      -4.664813 

st     -> s       -4.664813 

s      -> o       -4.675678 

o      -> s       -4.675678 

o      -> st      -4.840923 

st     -> o       -4.840923 

 

Top positive: 

1.283725 c        previousWord:underseat 

1.204137 c        previousWord:everyone’s 

0.985568 i        previousWord:pillow 

0.883634 c        nextWord:comfort 

0.873309 f        depWord:awesome 

0.857807 p        depWord:infuriate 

0.853878 i        depWord:perth 

0.846330 i        depWord:face 

0.819825 f        depWord:wine 

0.799197 i        previousWord:slot 

0.799132 p        depWord:sigh 

0.779110 p        depWord:view 

0.776045 s        depWord:stuck 

0.774272 s        previousWord:thirtysix 

0.773041 p        depWord:retrieve 

0.770658 s        previousWord:access 

0.767794 st       nextWord:assistant 

0.767100 f        depWord:glass 

0.765888 e        depWord:collection 

0.758168 st       depWord:rep 

0.752351 i        depWord:flushing 

0.749732 i        depWord:towel 

0.745956 i        previousWord:boarded 

0.742228 s        nextWord:awful 

0.740946 f        depWord:beverages 

0.739252 s        depWord:reallocation 

0.738875 o        depWord:multilingual 

0.729930 st       depWord:competent 

0.726705 f        previousWord:try 

0.720303 p        nextWord:12 

 

Top negative: 

-0.212331 p        depWord:started 

-0.213428 p        depWord:went 

-0.216759 p        depWordPos:IN 

-0.216992 o        depWord:looked 

-0.219010 f        depTag:acl:to 

-0.219329 st       depWord:able 
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-0.220520 s        previousWord:pretty 

-0.223933 f        previousWord:they 

-0.226742 s        nextWord:provided 

-0.227997 f        previousWord:any 

-0.228220 o        depWord:help 

-0.235643 o        depWord:bags 

-0.236823 i        depWord:to 

-0.242775 e        depWord:seat 

-0.243770 o        previousWord:some 

-0.249494 st       depWord:checkin 

-0.256180 p        depTag:obl:to 

-0.258356 i        previousWord:for 

-0.259542 o        previousWord:other 

-0.264707 o        previousWord:smooth 

-0.270876 f        previousWord:service 

-0.273975 f        depTag:compound:prt 

-0.283252 i        depTag:nmod:for 

-0.283458 st       previousWord:website 

-0.294158 f        previousWord:could 

-0.307149 s        depWord:for 

-0.320006 f        previousWord:journey 

-0.354515 p        previousWord:more 

-0.375808 f        nextWord:such 

-0.451217 f        previousWord:all 

 

F. Appendix F 
 

Classification Algorithms 

 

SVM: For defining the hyperplane, the following 

equation is used,  

𝑤𝑇 . 𝑥 + 𝑏 = 0 

where, w denotes weight vector, x is the input 

vector and b as bias. (Suykens and Vandewalle, 

1999) 

This helps in creating a hyperplane with as big a 

margin as possible. 

Decision Tree: In the beginning of this algorithm, 

the whole training dataset is the root of the tree, 

where root node represents the entire population. 

Each box represented in the above figure is a node 

at which tests (T) are applied to recursively split 

the dataset in smaller groups. The letters (A, B, C) 

at each leaf node represent the labels assigned to 

every observation. (Safavian and Landgrebe, 

1991) 

 
Figure 5. Decision Tree 

 

The test (T) is basically making the best choice to 

reduce the entropy to minimum and thereby 

improving information gain to maximum. This 

process is carried recursively till entropy is 

minimized among all branches of the 

tree.(Safavian and Landgrebe, 1991) 

Entropy and information gain are calculated as 

follows, 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑ −𝑝𝑖. 𝑙𝑜𝑔2𝑝𝑖

𝑐

𝑖=1

 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛

= 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑏𝑒𝑓𝑜𝑟𝑒−𝑠𝑝𝑙𝑖𝑡

−  𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑎𝑓𝑡𝑒𝑟−𝑠𝑝𝑙𝑖𝑡 

 

Boosting: It is an implementation of gradient 

boosted decision trees. (Chen and Guestrin, 2016) 

For a given dataset, with n examples and m features 
 

𝐷 = {(𝑥𝑖, 𝑦𝑖)}, (|D|  =  n, xi ∈  R m, yi ∈  R) 
  

the output predicted by such a tree ensemble 

technique can be depicted as below,  

 

𝑦𝑇
𝑖  =  φ(𝑥𝑖)  

=  ∑ 𝑓𝑘(𝑥𝑖),   𝑓𝑘Є 𝐹

𝐾

𝑘=1

(Chen and Guestrin, 2016) 

where 𝐹 = {𝑓(𝑥) =  𝑤𝑞(𝑥)}{𝑞: 𝑅𝑚 → 𝑇, 𝑤 Є𝑅𝑇 }  

describes the space of the trees.  

The boosting algorithm has been 
optimized using Algorithm 1 
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Random Forest: Random Forest is essentially an 

ensemble classifier that uses several decision trees 

and then outputs the class that is predicted by the 

maximum number of trees. It is a robust method 

and proves to output high accuracy, because of it 

not being dependent on any decision tree, but a 

bunch, or forest of them. The idea implements 

Breiman’s “bagging” technique, which is a way to 

decrease the variance of the prediction by 

generating supplementary data o train from dataset 

using several combinations with repetition, 

therefore producing multi-sets of the original data. 

(Cutler et al., 2012) 

 

Voting Classifier: Voting Classifier is an ensemble 

technique which is based on a simple working 

mechanism, that is ‘voting’. Several different 

algorithms are trained on the dataset, and the 

output of each is combined to predict the final 

class. It works on a ‘majority’ principle, and the 

class being predicted by the greatest number of 

classifiers, is chosen as the ensemble result for the 

data. The models used were decision trees, random 

forest and extra trees classifier. Extra trees 

classifier, or extremely randomized trees uses all 

the data available in the training set to build each 

decision tree with depth set to one, also called as 

stump. Furthermore, the best split to form the root 

node or any other node is determined by searching 

in a subset of randomly selected features having 

size equal to square root of the number of features. 

For each selected feature, the split is chosen 

randomly. Therefore, the degree of randomness is 

more extreme than that of random forest. Thus, 

although decision tree, random forest and extra 

trees, all implement decision trees, they have 

different understanding of the data. Hence, the 

output of each of these classifiers is taken into 

consideration and the class predicted the maximum 

number of times is voted as the final predicted 

class. (Saha and Ekbal, 2013) 

 

 

SMOTE 

It was observed that some aspects inspite of being 

important, were not talked about much. For 

example, food temperature is an important aspect 

of food, but the reviews containing food 

temperature aspect were quite less in number than 

that of the reviews talking about food taste. 

Similarly, reviews containing cabin fragrance 

aspect were less in number than the reviews 

containing cabin condition aspect. Such a 

difference in numbers would create an unwanted 

bias in the model, increasing the chances of 

overfitting. To handle this imbalance, Synthetic 

Minority Over-sampling Technique (SMOTE) 

approach is adapted for high dimensional binary 

settings. Generally, used for handling class 

imbalance. (Chawla et al., 2002) 

It is an over sampling technique that synthetically 

over samples minority classes using novel distance 

metric approaches.  

SMOTE, computes neighbourhood for each 

minority sample and considers only a subset of the 

available attributes of the task. (Chawla et al., 

2002) 

It uses Euclidean, Chebyshev and Manhattan 

distance metrics and Fisher Score, Mutual 

Information, Eigenvector and Correlation score as 

ranking strategies.  

For the study, SMOTE over each of our 

classification algorithms to be able to determine 

implied aspects of each. 

 

 

G. Appendix G 

 
It is crucial to understand the fact that the stop 

words removal step is both, a boon and a bane, as 

removal of these words leads to breakage of the 

sentence structure, making it difficult to analyse 

the text semantically. Therefore, in dependency 

parsing step, the text was used without removing 

the stop words. Another part of pre-processing text 

is dealing with contraction, which means 

shortening of words or syllables. It was noticed that 

several words were present in the data in many 

different forms, for instance, the term “could not” 

was present in terms of “couldn’t” as well. These 

contractions occur depending upon the tone of the 

reviewer or the context of the review. It is often 

seen that the implied meaning of the phrase does 

not differ, but the model considers them as different 

words, leading to poor training. Therefore, the need 

arises to alter the text in such a way that the model 

links up the different variations that have the same 

implied meaning. In this example, we change the 
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term “couldn’t” to “could not”. Such expansion of 

contracted terms helps with text standardization. 

Apart from this, all the text is changed to 

lowercase, to create a uniform text dataset, which 

initially contained a mixture of uppercase and 

lowercase texts. Additionally, numerals are 

converted to words, for example- ‘$3000’ is 

changed to ‘three thousand dollars’.  

Corpus can be defined as a collection of textual 

data, or a body of writing, that is based around a 

subject. The reviews after the above steps are 

added collectively to a list of reviews, henceforth 

referred to as “Corpus”. This corpus could be 

thought of a collection of all the scraped data, for 

all the airlines, referring to many different entities 

and opinions- after cleaning and preprocessing. 

This corpus serves as a basis of document for 

further steps. 

 

H. Appendix H 

 
Type Token Ratio 

There are some rules for calculating TTR, which 

are adapted in this study. These rules include 

following, (TEMPLIN, 1957) 

 

a) Compound nouns and hyphen words are 

considered as one word  

b) Parts of verbal phrases are considered as 

separate words, example, phrase like 

“meals were served” counts as three 

tokens, meals, were and served  

c) Contractions are considered as two words, 

example couldn’t, is counted as could not  

 

Results of TTR  

Since, the present study is for user generated data 

for airlines, it is expected that there will be words 

that might be repeated quite often. Data is gathered 

for 16 airlines from two different websites and the 

type token ratio is observed to be between 0.2 to 

0.6 for almost all airlines. 

 

 
Figure 6. Type-Token Ratio for Airline Ratings 

 

 
Figure 7 Type-Token Ratio for Trip Advisor 

 

Type token ratio between both data sources is 

observed to be 0.27, which means that there are 

many words that are repeated between them.  

 

Zipf’s law 

 

Zipf’s other law states that the number of meanings 

(m) of a word is the square root of its 

frequency.(Powers, 1998) 

𝐺𝑖𝑣𝑒𝑛 𝑓𝑖𝑟𝑠𝑡 𝑙𝑎𝑤, 𝑚 ∝
1

√m
, 

𝑚 ∝  √f 
This means that the second most repeated word 

will have a frequency that is half of the first word 

and the third most repeated word will have a 

frequency that is half of the second most repeated 

word.  

As seen below, our corpus does follow Zipf’s 

distribution. 

 
Figure 8. Zipf’s distribution 

 

I. Appendix I 
 

The project can majorly be divided into these parts- 

Entity extraction, Aspect identification/extraction, 

sentiment analysis. Several parameters are used to 

check the level of righteousness of the project.  

A point to be pondered about is as to which of the 

performance metrics should be accounted, to better 

judge the model. The most common idea, 

“accuracy” works best when the false positives and 

false negatives have similar cost. However, the 
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airline reviews contained an unequal number of 

positive and negative opinions for different 

aspects- because opinions are a subjective matter 

and could differ for any two people. Therefore, the 

performance metrics used were F1, precision and 

recall. (“The relationship between Precision-

Recall and ROC curves | Proceedings of the 23rd 

international conference on Machine learning,” 

n.d.) These are defined below:  

Precision: The measure of the correctly identified 

positive cases from collectively all the predicted 

positive cases. It is beneficial when the costs of 

False Positives is high. (“The relationship between 

Precision-Recall and ROC curves | Proceedings of 

the 23rd international conference on Machine 

learning,” n.d.) 

Recall: The measure of the correctly identified 

positive cases from collectively all the actual 

positive cases. (“The relationship between 

Precision-Recall and ROC curves | Proceedings of 

the 23rd international conference on Machine 

learning,” n.d.) 

It is significant when the cost of False Negatives is 

high. Mutually, F1 score is the weighted average of 

Precision, Recall, and takes both false positives 

and false negatives into account. Therefore, it 

proved to be the best choice.  

Performance metrics for “Food” entity based on 

different approaches, simultaneously applying.  

 

In following figures, the scores for best 

identification model for each algorithm can be 

found. 

 

1. Conditional Random Field 

 

 
Figure 9. CRF ROC-AUC Curve 

 

 
Figure 10. CRF Precision-Recall Curve 

 
Figure 11. CRF Classification Report, F1 and Average 

absolute error scores 

 

2. Support Vector Machines 

 

 
Figure 12. SVM ROC-AUC Curve 

 

 
Figure 13.  SVM Classification Report, F1 and Average 

absolute error scores 
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3. Decision Tree 

 

 
Figure 14. Decision Tree ROC-AUC Curve 

 
Figure 15. Decision Tree Classification Report, F1 and 

Average absolute error scores 

 

4. Random Forest 

 

 
Figure 16. Random Forest ROC-AUC Curve 

 

Figure 17. Random Forest Classification Report, F1 

and Average absolute error scores 

 

5. Voting Classifier 

 
Figure 18. Voting Classifier ROC-AUC Curve 

 

 
Figure 19. Voting Classifier Classification Report, F1 

and Average absolute error scores 

 

6. XG BOOST 

 
Figure 20. XG BOOST ROC-AUC Curve 
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Figure 21. XG-BOOST Classification Report, F1 and 

Average absolute error scores 
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