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Supplementary Information

Appendix A Scoring functions

In this section we first introduce some notation, then describe several scoring functions
for Tournament sampling.

A.1 g-value notation and masking

Our proposed scoring functions for Tournament sampling are computed from the g-
values of the text, which provide the watermarking evidence. Specifically, recall that
for multi-layer Tournament sampling (Methods Algorithm 2), we compute the g-values
91(xe,78), - oy gm (@, 1) for each of the m layers. For conciseness we will write g; ¢ :=
ge(x, 1) to refer to these g-values.

In practice, our scoring functions do not use all the g-values {g1¢:1 <t <T,1<
¢ < m}. To reflect the masking applied during generation (Methods Section 5.6), we
make two modifications: (a) we discard the g, ¢ for ¢ = 1,..., H due to the incom-
plete context window, and (b) we discard the g¢;, for steps t where the context
Ti_H,...,Ti_1 appears previously in the sequence. This means that in practice, the
collection of g-values used for scoring is {gr¢ : t € T, 1 < ¢ < m} for some subset
T C {1,...,T}. For notational simplicity, we will write the following scoring functions
assuming we use all the g-values; to obtain the masked version simply replace sums
over t = 1,...,T with sums over ¢t € T" and replace T with |T|.

A.2 Mean

Tournament sampling works by returning tokens that are more likely to have high g-
values. Thus, the simplest scoring function is simply to take the mean g-value across
all tokens in the text and all layers:

T m
MeanScore(x =7 Z Z Gt 1- (A1)

t=1 (=1

For the Bernoulli(0.5) or Uniform[0,1] g-value distributions used in our experiments,
the MeanScore of a text is between 0 and 1, with an expected score of 0.5 for
unwatermarked text and a larger score expected for watermarked text.

A.2.1 Weighted Mean

In Supplementary Appendix H.4 we show that the amount of watermarking evidence
contributed by each layer decreases as more layers are added. This motivates the
Weighted Mean variant, which applies weights oy > -+ > «,, > 0, where Z;nzl oy =
m, to the sum of the g-values:

T m
WeightedMeanScore(x, «) ZZ QG g (A2)
t=1 ¢=1
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We find that for a simple linearly decreasing choice of a, WeightedMeanScore gen-

erally outperforms MeanScore. Specifically, we use oy = k, az = kK — =4, ag =
K—p

m—17"

K—2 .oy = pwith £ = 10, = 1, then renormalised so Y ;" | ay = m.

A.3 Frequentist

In some cases it may be desirable to perform a hypothesis test against the null hypoth-
esis that the text is unwatermarked; this has the advantage of providing a p-value
which allows us to exactly control the false positive rate. Under the null hypothesis,
each g;, follows the g-value distribution f, (Methods Definition 3); furthermore if
we apply repeated context masking (Supplementary Appendix A.1) then the g, are
independent. This allows us to compute! the p-value for the sum Zthl e G

T m
p-value = 1 — CDFBinomial(mT,0.5) ([Z th,e] - 1) if fg = Ber(0.5)  (A3)
t=1 ¢=1

T m
p-value = 1 — CDFyyin.Hall (m) (Z Z gt)g> if f, = Unif[0,1]. (A4)

t=1 (=1

We define FrequentistScore(z) to be the negative p-value and classify texts as
watermarked if the score exceeds a threshold.

When scoring a corpus of texts that are all exactly the same length, the Fre-
quentistScore is equivalent to the MeanScore (i.e., they should produce the same
detectability metrics); the WeightedFrequentistScore that follows is similarly equiva-
lent to the WeightedMeanScore. For simplicity therefore, in our experiments we use
the Mean versions instead of the Frequentist versions of the scores.

A.3.1 Weighted Frequentist

Similarly to the Weighted Mean score, we can weight the evidence of the earlier lay-
ers more strongly than later layers by applying weights oy > ..., > «;, > 0 where
Zznzl ay = m. For this hypothesis test we use a Z-test. First, we compute the mean
u and variance o2 of the weighted sum on a single step, 27:1 oy gi.¢, under the null
hypothesis; for example:

m 1 .
o= o o2 = 1 Zag if fy =Ber(0.5)
=1
m 1 «— . .
n= o2 = 5 Zag if f, =Unif(0,1).

11f the Binomial or Irwin-Hall CDFs are not easily computable, we can instead use the CDF of the normal
approximation; this is equivalent to the method in Supplementary Appendix A.3.1 using all weights equal
to 1.
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It follows that the mean of these weighted sums across all steps, % Zthl 2211 o G,

is approximated by the Normal(pu, "72) distribution. Thus we can compute a p-value:

1 m
p-value =1 — CDFNormal(#,%) <T Z Z o7} gt,e> . (A5)

t=1 (=1

A.4 Bayesian

In this section we present a two-sided approach that (unlike the one-sided Frequentist
approach which only assumes the unwatermarked g-value distribution) also uses knowl-
edge of the watermarked g-value distribution, which is learned from data. Assuming we
have access to a representative set of labeled watermarked and unwatermarked sam-
ples for training, this approach is able to offer more information than the Frequentist
approach, by considering how g-values are distributed for both hypotheses.

Formally, we have two hypotheses: watermarked (w) or unwatermarked (—w).
We treat the watermarking hypothesis as a latent variable and the g-values
{9t,e}1<t<1,1<0<m as the observed evidence. The prior P(w) is the probability a pri-
ori that a piece of text is watermarked; it can be learned empirically or set to reflect a
belief about the watermarked base rate. The posterior P(w|g) is the probability that
the text is watermarked, given its g-values. The likelihoods P(g|-~w) and P(g|w) are
the probabilities of observing these g-values, in unwatermarked text or in watermarked
text respectively. Bringing these together, we can compute the log posterior odds:

LogPosteriorOdds(z) =log ( ((w|g)))
—\w g

g (LEIPD) )
P(g|-w)P(~w)
=log P(g|w) — log P(g|~w) + log P(w) — log (1 — P(w)).
We define the BayesianScore as the the watermarked posterior P(w|g), i.e., the prob-

ability that the text = is watermarked, given its g-values. This can be computed from
the log posterior odds like so:

BayesianScore(z) := P(w|g)
= o [LogPosteriorOdds(z)]
= o [log P(g|w) —log P(g|~w) +log P(w) —log (1 — P(w))] (A6)

where o(+) is the sigmoid function. To use the BayesianScore for Tournament sampling,
we just need to determine the likelihoods P(g|—w) and P(g|w):
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Theorem 6 (Bayesian likelihoods for multi-layer Tournament sampling). For multi-
layer Tournament sampling, the likelihoods can be factorized as:

11 #ooee) (A7)

||
=

P(g|—w)

o~
Il
_
o~
I
-

I
=
s
] =

P(g|w) P(gie|tbee = )Py 0 = clgi,<e) (A8)

o~
Il
_
o~
I
-
o
Il
el

where Py o is a random variable representing the number of unique tokens in a tour-
nament match on layer £, on timestep t. Furthermore, P(gs ¢|thr.e = ¢) can be written
in terms of the g-value distribution f, and F, (Methods Definition 3):

cFy(ge.0) " fy(g.0) if [y is continuous
Plgueline =)= 000 0 e (A9)
Fo(ge.0)" = [Fg(ge.0) = fo(ge.0]”  if fq is discrete.
Proof. See Supplementary Appendix K.1. O

The factorization in Theorem 6 is based on two intuitions. First, the distribution
of a watermarked g-value g¢, can be determined exactly if we know the number of
unique candidates ¢ (it is given in Equation (A9)). Second, the number of unique
samples ¢ ; is dependent on the amount of entropy in the distribution on layer ¢;
and this can be predicted as a function of the lower-level g-values g; <, because on
a high-entropy timestep ¢, the g-values g; o are likely to be larger. Accordingly, we
model the probabilities P(¢:¢ = ¢|gt,<¢) as learned functions of g; 4. Specifically,
for experiments with N = 2 samples, we use a logistic regression model to learn

P(wt,é = 2|gt,<e):

-1
P(re =2|gi<t) =0 <ﬁe + Z5é,j9t,j> ; (A10)

j=1

where o(+) is the sigmoid function, 8, € R is the bias parameter for layer ¢, and the
weight d; ; € R refers to the effect of g; ; on the probability that ¢, = 2. As N = 2,

we can then set P(y ¢ = 1|gt,<¢) =1 — P10 = 2|91, <r)-
For the non-distortionary configurations used in this work, BayesianScore has a
simple form, which follows directly from Theorem 6:

Theorem 7 (BayesianScore for N = 2, Bernoulli(0.5) g-value distribution). If N =2
and fy = Bernoulli(0.5), then:

BayesianScore(x) = o ( Z Z (Vre = 1gt,<e) + (9e,e + 0.5)P(hy ¢ = 2|g¢,<0)]

t=1 (=1
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+ log P(w) — log (1 — P(w)) > .

Proof. Follows from substituting f,(z) = 0.5 and Fy(z) = 0.5 + 0.5z into Theorem 6
and Equation (A6).

Theorem 8 (BayesianScore for N = 2, Uniform g-value distribution). If N = 2 and
fq = Uniform|0, 1], then:
BayesianScore(z) = o(Z Z [P(¥re = 1|gt.<t) + 2910 P(re = 2|9t <0)]
=

t=1 1

+ log P(w) — log (1 — P(w)) )

Proof. Follows from substituting f;(2) = 1 and F,(2) = z into Theorem 6 and
Equation (A6).

Appendix B Related work: Generative
watermarking

In this section we discuss other generative watermarks; we divide our discussion into
sampling algorithms, random seed generators, scoring functions, and other techniques.

B.1 Sampling algorithms

In this section we describe existing sampling algorithms (Methods Definition 5) which
are alternatives to Tournament sampling. Our two baselines are Gumbel sampling and
Soft Red List, which we choose both for their prevalence in the literature and their
high performance relative to other methods [21, 37]. We give detailed descriptions of
our baselines, then discuss some other sampling algorithms.

B.1.1 Baseline: Gumbel (aka Exponential minimum) sampling

In general, the Gumbel trick [38] is a method to take a sample x* from any categorical
probability distribution p(z1),...,p(zv) by adding i.i.d. samples Gy, ..., Gy from the
Gumbel(0,1) distribution to the log probabilities:

x* = argmax [log p(z;) + G;] .
1<i<V

It can be shown that P(z* = z;) = p(z;) for all 4. It is also true that the Gum-

bel(0,1) distribution is equivalent to —log(—log(U)) if U ~ Uniform[0, 1]. Therefore,
an equivalent formulation is to take i.i.d. samples Uy, ...,Uy from the Uniform|0,1]
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distribution, then choose x* as follows, which can be written in several equivalent ways:

*

x* := arg max [log p(z;) — log(—log(U;))]

1<i<V
i)

B [ < e
= argmax |log | —
g(

1<i<V lo
£

= arg min (Kuditipudi et al. [24] formulation)
1<i<V p(z
(B11)
= arg max [Uil/ p (Ii)} . (Aaronson and Kirchner [22] formulation)
1<i<V
(B12)

Aaronson and Kirchner [22] and Kuditipudi et al. [24] propose this method as a sam-
pling algorithm, using p := prm(-|z<¢) in the equations above; Kuditipudi et al. [24]
call the method exponential minimum sampling. In the terminology of this paper, the
Gumbel sampling algorithm for watermarking can be implemented by taking the ran-
dom seed r; and setting each U; to be a pseudorandom uniform g-value U; := g(x;, r¢)
by setting the g-value distribution f;, = Uniform[0,1], as described in Methods
Section 5.4.

Gumbel sampling is a non-distortionary (Definition 16) deterministic sampling
algorithm that produces tokens with higher g(-,r:) values. As it is deterministic, it
provides no entropy to resample from; this is a disadvantage compared to probabilistic
sampling algorithms like Tournament sampling.

To detect the Gumbel watermark, we take a text z1,...,zr and compute its
g-values g(x1,71),-..,g(xr,r7) which we denote g1, ..., gr for short; these are inde-
pendently Uniform|0,1] distributed if « is unwatermarked and likely to be higher if x
is watermarked. Aaronson and Kirchner [22] propose the following scoring function:

T
LogScore(z) 1= — Zlog (1—g). (B13)

t=1
Another possible scoring function is MeanScore(z) = %ZtT:l gt, similar to

Equation (A1) for Tournament sampling. To provide a fair comparison to the Bayesian
scoring function for Tournament sampling (Supplementary Appendix A.4), we also
develop a learned Bayesian scoring function for the Gumbel watermark. Here, we use
the BayesianScore defined in Equation (A6), and approximate P(g|w) with a simple
multi-layer perceptron (MLP). Specifically, P(g|lw) = Hthl P(g¢|w) where P(g:|w) is
computed by the MLP, which takes just a single number g; as input.

B.1.2 Baseline: Soft Red List sampling

We use the recommended Soft Red List sampling algorithm from Kirchenbauer et al.
[23], in which a proportion 7 € (0,1) of the vocabulary is green, the rest are red, and
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a constant § > 0 is added to all logits on the green list. Described in the terminology
of Methdos Section 5.4, this can be implemented by taking the random seed r; and
computing a g-value g(xy,7;) for each token x; € V using the g-value distribution
fq = Bernoulli(y), then sampling an output token x* as follows:

logit(z:) := log pm (ze|z<t) + 0g(xt, 1) forall z;, € V
exp(logit(zy))
v exp(logit(z]))

*
T ~ Pwm-

forall z; € V

pwm(xt) = Z

This is a distortionary (Definition 16) probabilistic sampling algorithm that produces
tokens with higher g(-,7;) values. As a distortionary sampling algorithm, it has been
shown to affect text quality (in particular increasing perplexity), especially when ¢ is
large or v is small [23, 24].

To detect the Soft Red List watermark, we take a text x1,...,x7 and compute its
g-values g(z1,71),...,g(xr,r7) which we denote g1, ..., gr for short; these are inde-
pendently Bernoulli(~y) distributed if « is unwatermarked and likely to be higher if x is
watermarked. We can apply MeanScore(z) = Zle g+, similarly to Equation (A1).
Alternatively, we can apply a Frequentist scoring function, similar to the method used

by Kirchenbauer et al. [23]:

T
p-value = 1 — CDF inomial(7,+) (lz gt] — 1> . (B14)
t=1

When all texts in the corpus are the same length, MeanScore is equivalent to Fre-
quentistScore (see Supplementary Appendix A.3) and so in our experiments we use
MeanScore to match our methodology for Tournament sampling.

B.1.3 Other sampling algorithms
Here we mention a few more sampling algorithms, that we do not include as baselines:

¢ Inverse Transform Sampling (ITS) is a simple deterministic non-distortionary water-
marking sampling algorithm, however it has been shown to have lower detectability
than Gumbel sampling [24, 25], so we do not include it in our experimental baselines.

e Zhao et al. [39] propose a probabilistic distortionary sampling algorithm GIN-
SEW, which involves applying a sinusoidal perturbation to the LLM probability
distribution. For the distortionary category, we focus our comparison on the more
widely-known Soft Red List sampling algorithm; to our knowledge GINSEW has not
been empirically compared to Soft Red List so its relative performance is unknown.

e Hopper et al. [40] propose a watermarking sampling algorithm that is equivalent
to the special case of Tournament sampling with m = 1 layer, N = 2 samples,
and a Bernoulli(0.5) g-value distribution; however, in its generality the Tournament
sampling algorithm presented in this work is novel.

37



107

108

109

111

112

114

115

117

118

120

121

123

124

126

127

129

130

132

133

135

136

138

139

140

141

143

144

146

147

149

B.2 Random seed generators

In this work we use the sliding window random seed generator (Methods Section 5.3).
As noted in the literature [24, 25], the sliding window method can introduce sequence-
level distortion (e.g., repetitive loops in text) when the same context (and thus the
same random seed) is used repeatedly. We avoid this problem by applying repeated
context masking (Methods Section 5.6); however, there are other ways to designing a
random seed generator while reducing the likelihood of repeatedly applying the same
random seed.

Kuditipudi et al. [24] propose using a cycling sequence of random seeds — when
paired with a distortion-free sampling algorithm, this method is single-sequence non-
distortionary (Definition 20) if and only if the seed sequence is longer than the text
length. However, meeting this criterion can be tricky in practice, as the maximum text
length may be quite long, and increasing the seed sequence length reduces the overall
watermark detectability as it requires searching for the correct alignment of the text
and the seed sequence during detection. For this reason we do not use the cycling
sequence method even though it is compatible with Tournament sampling; instead
we choose a method (repeated context masking) that can give precise single-sequence
non-distortion guarantees (Theorem 21) regardless of text length.

Another approach is proposed by Christ et al. [25]: like the sliding window method,
they use recent text context to generate random seeds; however the algorithm adapts
to the entropy in the text to guarantee that the likelihood of repeated seeds is low.
While this approach (when paired with a non-distortionary sampling algorithm) meets
a strong notion of cryptographic indistinguishability, it is also less robust to edits, more
computationally expensive to detect, and has lower watermarking strength. However,
if this type of indistinguishability is desired, the Tournament sampling algorithm can
be combined with this entropy-adaptive method.

While the work discussed above focuses on avoiding random seed re-use in order
to minimize distortion, Zhao et al. [41] take an opposite approach, using the same
random seed on every step. They pair this random seed generator with the Soft Red
List sampling algorithm and show that this ‘Unigram’ approach is more robust to
edits than a sliding window approach. However, this robustness comes at the cost of
decreased text quality and watermark security.

B.3 Scoring functions

In this work we focus on designing and evaluating scoring functions (Supplementary
Appendix A) that score a whole text x, optimizing performance for the case that
x is either completely unwatermarked, or = is the full unaltered text generated by
the watermarked LLM. However, it can be useful to consider other cases, such as
when x contains a mix of watermarked and unwatermarked text, or when x is a
watermarked text that has been edited. Our scoring functions still work in these
scenarios, but their performance reduces as the amount of original watermarked text
decreases (Supplementary Appendix C.6).

Existing work has proposed alternative scoring functions that perform better under
these circumstances. Kuditipudi et al. [24] propose a block-based scoring function that,
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for some specified block size k, searches through the text for the length-k block of text
with strongest watermarking evidence. Such a scoring function could be used with
Tournament sampling; the scoring functions presented in Supplementary Appendix A
could be modified to operate over blocks of text. Kuditipudi et al. [24] also propose a
scoring function that is designed to be robust to edits; this scoring function searches
for the minimum-cost alignment between the text and the watermark, accounting for
edits with a Levenshtein cost. While both these scoring functions have the advantage
of performing better when the text contains watermarked sub-passages, or when the
text has been edited, their overall statistical power decreases in the case that the entire
text is watermarked and unedited.

B.4 Additional techniques

Giboulot and Teddy [37] propose a generative watermarking approach that does not
fit into the framework presented thus far — one samples multiple texts from the origi-
nal unwatermarked LLM, then chooses the text that scores most highly according to
a scoring function. While Giboulot and Teddy [37] show that this approach provides
a good detectability-robustness-quality tradeoff, it substantially increases the compu-
tational cost of text generation. As computational cost is one of the most important
priorities in a production system, we do not experiment with this method.

In the category of distortionary sampling algorithms, Wouters [42] propose a
method to reduce the distortion by applying the watermark only on steps when the
expected perplexity increase is sufficiently low. This method could be applied to any
distortionary sampling algorithm such as Soft Red List or distortionary Tournament
sampling; however it is important to note that even if the perplexity is equal or lower
than the unwatermarked LLM, the method is still distortionary.

Appendix C Non-Distortionary watermarking
experiments

In this section we present further experiments with non-distortionary SYNTHID-TEXT
and the Gumbel sampling baseline.

C.1 Tournament depth and scoring functions

In this section we present our experiments comparing the performance of the differ-
ent scoring functions for (non-distortionary) Tournament sampling (Supplementary
Appendix A), and their interaction with Tournament depth (i.e., number of layers).

Bayesian learning procedure

To learn the Bayesian scoring function (Supplementary Appendix A.4), the parame-
ters are optimized by minimizing the cross-entropy loss between the predictions and
the labels (watermarked or unwatermarked) using gradient descent. We use 30% of the
10,000 watermarked and 10,000 unwatermarked training samples for cross-validation,
and the rest for learning the parameters. During cross-validation, we choose the param-
eters maximizing TPRAQFPR=1% for texts of length 200 tokens on the validation set.
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We use a learning rate of 1 x 1073, a mini-batch size of 64, and 50 epochs. Empirically
we find that truncating the watermarked sequences to 200 tokens during training to
synthetically increase the difficulty of the classification task improves the generaliza-
tion performance. During testing, the full length of the text available to use is utilized
without any truncation.

Weighted Mean learning procedure

For the WeightedMean scoring function (Supplementary Appendix A.2.1), we find that
the performance on the training/validation set is not sensitive to the choice of weights
and we simply use a set of weights decaying linearly from 10.0 to 1.0 across the layers.

Results

In Figure C1 we see that the Mean and WeightedMean scoring functions peak at
certain depths, with detectability degrading as the depth is further increased. This is
due to the fact that earlier layers contain more watermarking information than later
layers (see Supplementary Appendix H.5). By contrast the Bayesian scoring function
provides better performance than Mean and WeightedMean across all temperatures
and depths. In particular, the Bayesian performance plateaus but does not decrease
as we add more layers; this is because the Bayesian scoring function is able to learn
to reduce the contributions from the later layers (see Supplementary Appendix A.4).
The Bayesian scoring function also benefits from being able to model the expected g-
values for the later layers based on the g-values from the earlier layers. The g-values
are used by the scoring function to adjust p (g|w) for the later layers, leading to further
improved detection performance. The WeightedMean and the Mean scoring functions
are not able to adapt in a similar manner, resulting in their weaker performance. As
we typically see diminishing returns beyond 30 tournament layers, for all experiments
with non-distortionary SYNTHID-TEXT (including speculative sampling) we use 30
tournament layers.

C.2 Gumbel sampling: scoring functions

For Gumbel sampling, we compare the LogScore log(1 — g) scoring function and the
learned Bayesian scoring function described in Supplementary Appendix B.1.1.

Bayestian learning procedure

As described in Supplementary Appendix B.1.1, we train a MLP-based Bayesian
scoring function for Gumbel sampling. Similar to the training procedure for the Tour-
nament Bayesian scoring function, we use 30% of the 10,000 watermarked and 10,000
unwatermarked training samples for cross-validation, and the rest for learning the
parameters. During cross-validation, as before, we choose the parameters maximizing
TPRQFPR=1% for texts of length 200 tokens on the validation set. We use a learn-
ing rate of 1 x 1073, a mini-batch size of 64, and 50 epochs. We run a hyperparameter
search where we vary the the number of hidden layers in the MLP over the set {1, 2},
the number of hidden neurons per layer is varied over the set {3,5, 7,10, 20, 50,100},
the learning rate is varied over logspace(-3, -1, num=4), i.e., we try four equidistant
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Fig. C1: Effect of number of tournament layers, and choice of scoring function on
the detectability of text generated with non-distortionary SYNTHID-TEXT (all texts
are 200 tokens). Texts are generated from Gemma 7B-IT with three different model
temperatures. Detectability is measured by true positive rate at a false positive rate of
1% (TPR@QFPR~=1%). Dashed lines correspond to a bootstrap estimate of the mean
TPRQFPR=1%, and shaded regions correspond to the 90% confidence interval on the
mean estimate.

values for the learning rate on the log-scale, ranging between 1073 to 10~!. We vary the
length for truncating the watermarked responses over 100, 200, 300, and 400 tokens.
We train MLPs across all of these parameter settings, and select the one perform-
ing the best on the cross-validation set based on TPRAQFPR=1% for texts of length
200 tokens. These parameters are then evaluated on the held-out test set without any
truncation.

Results

We see in Figure C2 that the two scoring functions have very similar performance, with
the LogScore log(1 — g) performing slightly better in average, with the improvement
in most settings not being statistically significant. Unlike for Tournament sampling,
the learned scoring function does not improve performance; we conjecture this may be
because the function being learned P (g|w), a mixture of beta distributions [43], is more
complex for Gumbel sampling than that for Tournament sampling, where P (g|w) for
each layer is a Bernoulli distribution. Additionally, the scoring function for Gumbel
sampling is not able to benefit from information provided in earlier layers. Given the
comparable performance of the two detection strategies, we use the log(1 — g) scoring
function as the baseline throughout the paper.

C.3 Diversity effects

We also measure the diversity effects of the two watermarks. As discussed in Sup-
plementary Appendix G.3, our two non-distortionary baselines are single-sequence
non-distortionary, meaning they do not affect the diversity within a single text (e.g.,
they do not cause repeating loops in text). However, they do reduce the diversity
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Fig. C2: Effect of choice of scoring function on the detectability of text generated
with Gumbel sampling. Texts are generated from Gemma 7B-IT with three different
model temperatures. Detectability is measured by true positive rate at a false positive
rate of 1% (TPRQFPR=1%). Dashed lines correspond to a bootstrap estimate of the
mean TPRQFPR=1%, and shaded regions correspond to the 90% confidence interval
on the mean estimate.

across multiple responses; in particular, if we sample multiple responses to the same
prompt, they are more likely to be similar to each other if they are watermarked, than
if they are from the unwatermarked model. We measure this inter-response diversity
empirically by measuring the Self-BLEU similarity [44] between pairs of responses to
the same prompt.

To mitigate the inter-response diversity problem, Aaronson [45] suggest turning
off the watermark on a fraction of all timesteps, thus increasing the chance that the
texts diverge; however this reduces watermark detectability. We can achieve a similar
diversity /detectability trade-off with SYNTHID-TEXT simply by varying the number
of tournament layers; more layers provides stronger detectability and lower diver-
sity, while fewer layers provides weaker detectability and higher diversity. Extended
Data Figure 4 shows that the diversity/detectability trade-off is more favourable for
SYNTHID-TEXT than for Gumbel sampling. For this experiment we generated two
responses to each prompt using Gemma 7B-IT, and measured the pairwise Self-BLEU
between each pair of responses to the same prompt. We varied the number of Tour-
nament layers from 1 to 30, and the Gumbel watermark probability from 0.1 to
1.0.

C.4 Human preference test

In this section we provide details of the human preference test comparing non-
distortionary SYNTHID-TEXT to unwatermarked responses. For this experiment we
sample both a watermarked and an unwatermarked response to 3,000 ELI5 [30] ques-
tions from a Gemma 7B-IT model with a temperature of 0.7. We present the two
responses side-by-side, randomly labelled A and B, alongside the ELI5 question, to
human raters on the Prolific platform. Raters are presented with five questions:
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Relevance) Which response is more relevant to the question?

Correctness) To the extent you can tell, which response is more correct?
Helpfulness) Which response do you find more helpful overall?

Grammaticality /coherence) Which response is better in terms of grammatical
correctness, comprehensibility and coherence?

(Overall quality) Taking into account the overall answer relevance, correctness, help-
fulness, as well as grammatical correctness, which of the two responses is of higher
quality?
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For each of these five questions, raters choose one of the following options: Response
A, Response B, Both are low quality, or Both are high quality.

To measure the rater agreement, we ran a pilot study over 100 examples, annotated
fourfold, and measured the pairwise rater agreement over all paired non-tie ratings.
We find agreements of 73.4% (relevance), 73.6% (correctness), 67.8% (helpfulness),
75.9% (grammaticality / coherence), and 63.7% (overall quality); broadly in line with
previous work [46].

Extended Data Table 1 shows the results. For our analyses we consider the null
hypothesis to be that there is no difference in the response quality between water-
marked vs. unwatermarked responses. In our first analysis, we only consider the non-tie
cases (i.e. where the rater expressed a preference for one of the two responses), and
calculate the fraction of cases preferring the watermarked response vs. the cases pre-
ferring the unwatermarked response. We calculate symmetric 95% confidence intervals
using bootstrap resampling of the 3,000 collected responses. For all of the five ques-
tions, 50% (the value expected under the null hypothesis) is within this confidence
interval. In our second analysis, we include the neutral ratings by grouping the Both
are low quality and Both are high quality ratings into a tie label. Similarly here, none
of the p-values under a trinomial test reaches statistical significance. We conclude that
for all five ratings, the data collected does not provide sufficient evidence to reject the
null hypothesis of no difference between watermarked and unwatermarked responses.

C.5 Automatic quality evaluations

We provide results of several automatic quality evaluations to demonstrate that non-
distortionary SYNTHID-TEXT is quality-neutral:

® Table C1 shows that non-distortionary SYNTHID-TEXT and the Gumbel baseline
both have no effect on perplexity, for a variety of models and temperatures.

e Table C2 shows that non-distortionary SYNTHID-TEXT performs equally well as the
equivalent unwatermarked model on a collection of automatic benchmarks assessing
coding ability [47, 48], language modeling [49], mathematics [50, 51|, and general
abilities of foundation models [52, 53], for Gemma 2B-PT and 7B-PT. Note that
these experiments use 20 tournament layers, rather than 30. We find no prefer-
ence between responses watermarked with non-distortionary SYNTHID-TEXT, and
unwatermarked responses.

43



Model Temp. ‘ Unwatermarked Non-distort. SyNTHID-TEXT Gumbel

2B-1T 1.0 1.720 1.726 1.715
Gemma [1.709, 1.729] [1.716, 1.740] [1.699, 1.732]
0.7 1.509 1.500 1.487
[1.499, 1.515] [1.496, 1.506] [1.472, 1.499]
0.5 1.401 1.411 1.395
[1.395, 1.407] [ 1.407, 1.416] [1.387, 1.407)
7B-1T 1.0 1.464 1.451 1.449
Gemma [1.447, 1.479] [1.444, 1.459] [1.441, 1.454]
0.7 1.307 1.306 1.301
[1.304, 1.311] [1.303, 1.310] [1.292, 1.313]
0.5 1.246 1.241 1.247
[1.242, 1.250] [1.236, 1.249] [1.241, 1.253]
7B-1T 1.0 1.408 1.402 1.399
Mistral [1.399, 1.418] [1.393, 1.413] [1.393, 1.405]
0.7 1.269 1.266 1.268
[1.263, 1.276] [1.262, 1.270] [ 1.261, 1.273]
0.5 1.218 1.205 1.203
[1.211, 1.222] [1,200, 1.209] [1.196, 1.210]

Table C1: Mean LLM perplexity [54] for different models and temperatures,
for unwatermarked text and text watermarked with non-distortionary SYNTHID-
TEXT and with Gumbel sampling. Each result is given with a 90% confidence
interval based on bootstrapping. For these non-distortionary watermarks, there is
no change to perplexity. The perplexity of the generated texts with and without
watermarking is measured with respect to the probabilities provided by the under-
lying LLM.

C.6 Detectability under perturbation

We evaluate the detectability of (non-distortionary) SYNTHID-TEXT after the water-
marked text has been perturbed via (a) random word deletion and (b) LLM
paraphrasing. First, we generate watermarked texts using the Gemma 2B-IT and 7B-IT
models prompted with 3,000 prompts from the ELI5 dataset [30]. For random word
deletion, we randomly delete either 20% or 50% of words (defined by space separation).
For LLM paraphrasing, we prompt Gemini Ultra with ‘Paraphrase the following arti-
cle, while retaining the same semantic meaning, without losing any details. Please
paraphrase sentence by sentence. Don’t summarize only. \n Original: {query}\n’ and
enforce the output sample to start with “Paraphrase:”. Some paraphrasing examples
are shown in Table C3 (bottom).

Figure C3 shows the results. Like other generative watermarks, SYNTHID-TEXT
provides some robustness to edits — i.e., editing the text weakens detectability, but the
watermark can still be detected with high accuracy if the text is sufficiently long. The
paraphrasing attack is quite strong, especially if we use a strong paraphrasing model
like Gemini Ultra and obtain a thoroughly paraphrased text that changes most of
the phrasing of the text.
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Benchmark Metric 1 Unwatermarked Non-distort. SYyYNTHID-TEXT
(type) 2B-PT 7B-PT 2B-PT 7B-PT
MMLU (lang. [49]  5-shot, 32.42 57.73 32.9 58.25
modeling) top-1 [31.73%, 33.03%|  [57.05%, 58.38%]  [32.22%, 33.55%) [57.6%, 58.97%]
HumanEval [47]  pass@l 14.02 26.22 11.59 25.61
(coding) [9.76%, 18.9%] [20.73%, 31.71%]  [7.32%, 15.24%] [20.12%, 31.1%]
MBPP [48]  3-shot 19.4 34.4 20.6 37.2
(coding) [16.6%, 22.4%] [30.8%, 37.8%] [17.8%, 23.8%] [33.6%, 41.0%]
GSM8K [50] accuracy 9.17 38.26 9.49 39.14
(maths) (all samples) [8.72%, 9.61%] [37.48%, 39.01%] [9.0%, 9.96%] [38.38%, 39.89%]
MATH [51]  4-shot 7.28 15.72 7.2 15.64
(maths) [6.72%, 7.84%] [14.82%, 16.56%] [6.64%, 7.8%] [14.82%, 16.46%]
AGIEval 52] - 24.02 42.44 24.1 42.44
(general) [22.39%, 25.43%]  [40.64%, 44.19%]  [22.69%, 25.43%] [40.85%, 44.06%)]
BBH 53] - 31.92 53.34 31.45 53.6
(general) [30.98%, 32.81%]  [52.39%, 54.35%]  [30.5%, 32.35%] [52.59%, 54.68%)]

Table C2: Comparing the performance of unwatermarked and non-distortionary
SYNTHID-TEXT responses from Gemma 2B-PT and 7B-PT, across a range of automated
LLM performance benchmarks. Each metric is given with a 90% confidence interval.
Non-distortionary SYNTHID-TEXT does not affect performance on these benchmarks.
The unwatermarked Gemma metrics differ to those reported in Team et al. [28] due to
different sampling configurations.

‘Watermarked text

LLM-paraphrased version

The actual cause of death in hypothermia is respi-
ratory failure. When the body temperature drops
below 95 degrees Fahrenheit, the respiratory cen-
ter in the brain starts to fail, which leads to
shallow breathing and slow heart rate. If the body
temperature drops to below 90 degrees Fahren-
heit, the heart and kidneys begin to fail, which
eventually leads to death.

Hypothermia ultimately results in death due to
the cessation of breathing. \n\nAs the body’s
temperature falls below 95 degrees Fahrenheit,
the brain’s respiratory control center malfunc-
tions, causing shallower breaths and a reduced
heart rate. \n\nFurther cooling to below 90
degrees Fahrenheit triggers the failure of the heart
and kidneys, leading to the inevitable outcome of
death."

A rock does not stay at 0 mph for a single moment
during its motion. It has a velocity of 0 mph at
the instant it is thrown up, but it gains accel-
eration due to gravity as it rises and reaches a
maximum velocity at the highest point of its tra-
jectory. After that, it decelerates and approaches
0 velocity as it falls back to the ground.

During its entire journey, a rock never maintains
a velocity of 0 mph. When initially propelled
upwards, it momentarily possesses a velocity of
0 mph; however, the force of gravity causes it
to accelerate during its ascent, culminating in its
maximum velocity at the peak of its path. Sub-
sequently, the rock decelerates as it descends, its
velocity approaching 0 mph upon its return to the
ground.

Table C3: Examples of watermarked text after paraphrasing with Gemini Ultra.

C.7 Comparison to post-hoc methods

As discussed in Section 1, post-hoc methods are a family of Al text detection methods
that use machine learning or other statistical signals [14-16]. However, these methods
can have inconsistent performance, for example on out-of-domain data [16, 17]. In
this section we demonstrate that (non-distortionary) SYNTHID-TEXT performs more
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Fig. C3: Detectability of SYNTHID-TEXT-watermarked text after applying pertur-
bations to the watermarked text. Detectability is weakened by edits, particularly
paraphrasing with a strong LLM (Gemini Ultra); however, the watermark is still
detectable if the text is long enough.

consistently across different data sources than the most capable openly available post-
hoc detector BINOCULARS [15]. BINOCULARS works by computing the cross-perplexity
of the text with respect to two LLMs (the intuition being that text from two different
LLMs is more similar than text from an LLM and text from a human). Hans et al. [15]
report that BINOCULARS performs best using the Falcon 7B and Falcon 7B-instruct
models [55]; we use these for our comparison.

To test detection performance across multiple languages, we evaluate both BINOC-
ULARS and SYNTHID-TEXT across 8 languages, using the XLSum dataset [56]. To
produce Al-generated text, for each language we use Gemma 7B-IT with SYNTHID-
TEXT to generate 256 watermarked news articles from XLSum summaries, using one
of the following two prompts: ‘Read the following sentence carefully and then expand
it to a news article:’ and ‘Write a news article based on the following summary:’. We
performed no further filtering of generated text. We then evaluate detection perfor-
mance, using an equal proportion of XLSum news articles as human-written data. Hans
et al. [15] report that BINOCULARS performs more poorly on non-English and lower-
resource languages, due to the fact that the Falcon models have limited capabilities
in these languages. Indeed, in Figure C4 we see that BINOCULARS performs poorly on
Hindi, Arabic and Russian; in contrast SYNTHID-TEXT detects all languages well.

Our results serve as a demonstration that like other generative watermarks,
SYNTHID-TEXT is data-agnostic — its performance depending only on the length and
entropy of the generated text; this is a significant advantage of generative water-
marking compared to post-hoc methods. Other relative advantages of generative
watermarking include the option to provide an interpretable decision (e.g. a p-value)
that can be used to control the false positive rate; and not requiring the additional
cost of running LLMs during detection. While our results indicate that generative
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Fig. C4: Comparison of detection rates for Gemma 7B-IT-generated text in different
languages: SYNTHID-TEXT watermarking vs. the post-hoc BINOCULARS detector [15].
We assess texts in 8 languages, prompted with XLSum [56]. BINOCULARS, which relies
on cross-perplexity statistics drawn from underlying LLMs, performs poorly on some
languages such as Hindi, Arabic and Russian. By contrast SYNTHID-TEXT performs
well in all languages considered.

watermarking is a superior choice when one has control over the generation proce-
dure, post-hoc methods remain a useful and complementary tool when that control is
unavailable.

C.8 Selective Prediction

In some applications it may be critical to maintain a low false positive rate and a low
false negative rate. In such scenarios, particularly if the texts are short or the LLM
distribution has low entropy (e.g. due to low temperature or instruction tuning), the
detection performance may be lower than desired. In this case we may use a selective
prediction mechanism that abstains when it is uncertain about the presence or absence
of the watermark in a piece of text. This allows us to achieve the desired error rates
on the non-abstained texts.

The mechanism operates based on the principles of standard hypothesis testing
[57]. For each length of text, we compute a threshold Thegative On the watermarking
scores that corresponds to the desired false negative rate (computed empirically based
on a set of watermarked texts). Similarly, we compute a threshold T,esitive correspond-
ing to a desired false positive rate, based on a set of unwatermarked texts. A given
piece of text is classified as watermarked if its score is over the Tpositive threshold for its
length, unwatermarked if its score is under Thegative, and no prediction is made (absten-
tion) if the score is between Tegative and Tpositive- NOte that when Tpositive < Tnegatives
the scoring function’s performance at that length already satisfies the desired error
rates without need for abstention.
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For example, suppose we require a false positive rate of 1% and a false negative
rate of 5%. Extended Data Figure 3 shows the necessary abstention rates in order
to achieve these error rates on the non-abstained texts, for Gemma 7B-IT at various
temperatures and text lengths.

Appendix D Distortionary watermarking
experiments

In this section we present our experiments comparing distortionary SYNTHID-TEXT
to the Soft Red List watermark. We use the Gemma 7B-IT model, and a test
set of 1500 prompts from the ELI5 dataset. Extended Data Figure 2 shows the
detectability /quality results for a variety of temperatures and text lengths.

Distortionary Tournament sampling settings

We evaluate Tournament sampling with the number of leaves per node (V) set to 2,
3,4,5,7, 10, 15, 50 and 1000, and the number of layers (m) set to 2, 3, 4, 6, 8 and
10. For simplicity,we only plot the Pareto front of the tournament configurations in
Extended Data Figure 2, showing the best detection performance given an allowance
for quality (i.e. perplexity) degradation. To compute this, we consider various thresh-
olds for perplexity (x-axis), and plot the best-performing tournament configuration
with a perplexity less than this threshold.

Soft Red List settings

Following the methodology of Kirchenbauer et al. [23]|, we sweep over 6 = 1,2,5,10
where ¢ is the scaling factor of the perturbation added to the logits, and v =
0.1,0.25,0.5,0.75,0.9 where v is the size of the green list as fraction of the LLM
vocabulary. We also evaluate stronger watermarking with § = 15,20. Similarly to
Tournament sampling, we plot the Pareto front in Extended Data Figure 2.

Appendix E Vectorized Tournament sampling

In this section we derive vectorized formulations of Tournament sampling, providing
an alternative but equivalent implementation to Methods Algorithm 2. First we define
some notation:

Definition 9 (Watermarked distribution). Given a probability distribution p over V,
a random seed r € R, a number of samples N > 2, a g-value distribution f,, and
a number of layers m > 1, the watermarked distribution pym(:|p, 7, fg, N, m) is the
probability distribution of the winner of Methods Algorithm 2:

pwm(xt |p7 T, fga Nv ’ITL) = ]P) [Alg'?(pv T, .fga Na m) returns xt] .
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Definition 10 . Given a probability distribution p over V, random seed r € R, and
g-values {g¢(x,7)}sev as defined in Methods Definition 4, we define the notation:

p(V=orenn) = > p()

z€Vige(z,m)=ge(we,7)

p(v<gl{(l’t,’r‘)) — Z p(aj)

z€V:ige(z,r)<ge(ze,r)

p(VS9e@n)y = Z p(x).

z€V:g(z,r)<ge(ae,r)

E.1 Single-layer Tournament sampling

Theorem 11 (Vectorized form, single-layer Tournament sampling). Given a probabil-
ity distribution p over V, random seed v € R, g-value distribution f,, and number of
samples N > 2, the watermarked distribution pym(-|p,r, fg, N,m) for m =1 is given
by:

p(VEa @ )N 7 <gi(@e,r))N _
0
pontaiire v = 70 p(V=orte) Il #
0 if p(xy) = 0.
(E15)
Proof. See Supplementary Appendix K.2. O

E.1.1 Simplified formulations for special cases

In practice, Equation (E15) has simpler formulations for certain choices of the number
of samples IV or the g-value distribution f;. All of our experiments use one the forms
provided in this subsection.

Corollary 12 (Vectorized form, single-layer Tournament sampling, two samples). If
in Theorem 11 the number of samples N equals 2, then:

pwm(xt |p7 r, fg7 N7 1) — p(g;t) [p(vzgl(wtﬂ-)) + 2p(V<gl(l't,7’)) . (E]_G)

Corollary 13 (Vectorized form, single-layer Tournament sampling, continuous
g-values). If in Theorem 11 the g-value distribution f, is continuous (i.e. the
probability that two g-values are the same is zero) then:

N
Pum(@ilp,, f3:N,1) = (plae) +p(V <0 E00)) - —p(v<oleem)N o (EL7)

In particular if N = 2, then:

Pum (24D, 7, fg,2,1) = p(x4) {p(ﬂ?t) + QP(VQH(“))} . (E18)
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Corollary 14 (Vectorized form, single-layer Tournament sampling, binary g-values).
If in Theorem 11 the g-value distribution fy is binary (i.e. all g-values are 0 or 1) then:

p(a)p(VO=0)N =t if g1(xe,7) =0
wm 37 fgy N, 1) = 1 — p(V9r=0)N ) E19)
Pum(e|p, T, f, ) ) (p(Vp;l_l)N_)l) if gu(aer) = 1 (

where the notation p(V9=") means > eevig (xr)=0 P(2) and similarly for p(Vor=1).,
In particular, if N = 2, then:

pum(@e|p, 7, f4,2,1) = p(x¢) [1+ g1(ze,v) — p(VI=H)]. (E20)

E.2 Multi-layer Tournament sampling

Now we show that we can simply repeatedly apply Equation (E15) (or one of the
special cases in Supplementary Appendix E.1.1) to obtain the vectorized form of a
multi-layer tournament:

Theorem 15 (Vectorized form, multi-layer Tournament sampling). Given a proba-
bility distribution p € AV, a number of samples N > 2, and a set of real values
{9(2)}sev, define the transformation W which gives a distribution W (p,g(-),N) €
AV :

(VSN sy
W(p,g(-), N)(z¢) = o t)( p(V=9(1) ) f p(zi) # 0
0 if p(ay) = 0.

(B21)

Now, given a random seed v € R, g-value distribution f,, number of samples N > 2,
and number of layers m > 1, consider the following sequence of distributions, defined
through repeated application of W :

Gn () == W(p, g1(-7), N)

g’r)n() = W(pgjgng('a ), N)
- (EQZ)
Sﬂ?() = W(pgﬂ%il)a gm(" T)a N)

It follows that pm() is equal to the m-layer Tournament watermarked distribution
Pum(-|p, 7, fg, N, m) (Definition 9).

Proof. Proof by induction on m. The base case m = 1 is given by Theorem 11.

For the induction case, suppose Theorem 15 is true for m — 1. Now consider
an m-layer tournament; it is equivalent to running N-many (m — 1)-layer tourna-
ments and then putting the winners into a single-layer tournament using g, (-, 7).

By the induction assumption, the N winners are drawn from pﬁv’?;”() as defined in
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LLM probabilities and random watermarking functions

Random seed random seed
generator
vocabulary Piu random watermarking functions

watermarking key i .
‘/ mango  0.50 1 10 1
.. my favourite tropical fruitis ~ vchee  0.30 0 P 1 o
recent context ‘ papaya 0.15 0 1 0 1
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| DS 1
9, 9, 9;

Vectorized implementation: iterative watermark-based reshaping of LLM distribution

vocabulary Pyy P P2 P&

mango 0.50 0.725 0.627 0.824 output token
0135 ~---o--d ", 0.252 0.079

g;g:;a 8,:]350 0068 :_92W§tfr_m_al:lf’)o'058 g, watermark 0.077 sample mango
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Fig. E5: Illustration of the vectorized implementation of SYNTHID-TEXT watermark-
ing for the same example as Figure 2 in the main paper. Each ‘watermark’ arrow
corresponds to a tournament layer, and represents an application of Equation (E20),
which modifies the LLM distribution based on a random watermarking function gy.
The output token is sampled from the final distribution after all layers (here, 3) have
been applied.

Equation (E22), and by Theorem 11 the winner of the single-layer tournament is given
by W (pkin s gm (-, 7), N). O

E.3 Implementation

Theorem 15 provides an alternative implementation to Algorithm 2 for a multi-layer
tournament: instead of sampling and running a tournament, we can simply compute
Equations E22 to obtain the watermarked distribution pym (:|p, 7, fg, N, m), then sam-
ple directly from it. Figure E5 shows how this works for the three-layer (m = 3)
two-sample (N = 2) tournament with binary g-values previously presented in Figure 2
in the main paper.

One advantage of the vectorized implementation is that it provides the entire
watermarked distribution (which can be useful for downstream purposes), whereas
the tournament implementation provides just one sample from the watermarked dis-
tribution. The two implementations have different computational advantages; see
Supplementary Appendix F. In practice we use the vectorized formulation for our
experiments.
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Method Samples g-value Other

computations operations
Tournament (Alg 2) N™ min(m|V|, N+1)  N™ -1
Vectorised tournament, general (Thm 15) 1 m|V| O(m|V]log |V])
Vectorised tournament, binary g-values (Cor 14) 1 m|V| o(m|V])
Gumbel sampling 0 V| o(|V])
Soft Red List 1 \4 oVl

Table F4: Computational complexity of the Tournament, Gumbel, and Soft Red List
sampling algorithms. |V is the size of the support of the LLM distribution as defined
in Methods Definition 1. For Tournament sampling, m is number of layers and N is
the number of samples per node. Proofs are given in Supplementary Appendix K.3.

Appendix F Computational complexity

In Table F4 we summarise the theoretical computational complexity of the Tourna-
ment, Gumbel, and Soft Red List sampling algorithms. Tournament sampling generally
has higher computational complexity than Gumbel or Soft Red List sampling; however
if |V| is large compared to N™*! then Tournament sampling (the tournament-based
Methods Algorithm 2 implementation) may have lower complexity. Nonetheless, in the
context of the computational complexity of generating text from a large LLM, these
differences are in practice negligible (see Section 3 in main paper).

When implementing Tournament sampling, there is the option to use the vectorised
version presented in Supplementary Appendix E, instead of the tournament-style
implementation presented in Methods Algorithm 2. Furthermore, the complexity of
the vectorised version depends on our choice of g-value distribution; if we are using
binary g-values (e.g. Bernoulli g-value distribution) the complexity is lower than if
we are using continuous g-values (e.g. Uniform g-value distribution). In our experi-
ments, we find that the vectorised implementation is faster than the tournament-style
implementation — in general this is true especially if N™ is large compared to |V].
However, if |V is comparatively large, then the tournament-style implementation may
be faster. Note that |V| is the size of the support of the LLM distribution pry(-|z<t)
as defined in Methods Definition 1; if top-p or top-k truncation is applied, this can be
considerably smaller than the size of the LLM’s full vocabulary.

Appendix G Non-distortion

Ideally, a watermark should not distort the LLM’s output distribution, as we would
like watermarked text to have the same quality as text from the unwatermarked LLM.
In this section we show that Tournament sampling with N = 2 samples is non-
distortionary at the token level, and when paired with repeated context masking, is
non-distortionary at the (multi-)sequence level too. We then discuss these different
levels of non-distortion and their trade-offs.
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G.1 Non-distortion at the token level

A sampling algorithm (Methods Definition 5) is non-distortionary as defined by
Kuditipudi et al. [24]? if in expectation over the random seed r, the watermarked dis-
tribution is equal to the original LLM distribution. We call this property single-token
non-distortion:

Definition 16 (Single-token non-distortionary sampling algorithm). A sampling algo-
rithm S : AV X R — V s (single-token) non-distortionary if for any probability
distribution p € AV and token x € V:

E,~ Unif(R) []P (S(pa T) - 1’)] = p(:E)
If S is not non-distortionary, we call it distortionary.

Definition 16 is an important property of a sampling algorithm, providing a guar-
antee at the single token level; specifically, that S is a valid pseudorandom sampler
with respect to the seed r. However, it makes no guarantee at the sequence level;
for this reason we refer to Definition 16 as single-token non-distortion, to differenti-
ate it from sequence-level non-distortion (discussed in the next subsection). Of our
baseline sampling algorithms, Gumbel sampling (Supplementary Appendix B.1.1) is
non-distortionary and Soft Red List (Supplementary Appendix B.1.2) is distortionary.

We now show in the next three theorems that two-sample (N = 2) Tournament
sampling is a non-distortionary sampling algorithm (single-layer and multi-layer); how-
ever, Tournament sampling with N > 2 samples is distortionary. These theorems refer
to the watermarked distribution py,, from Definition 9.

Theorem 17 (Single-layer two-sample Tournament sampling is non-distortionary).
For any probability distribution p over V, g-value distribution fy, and token x, € V':

Erthnif(R) [pwm(xt|pa Tty fg7 2, 1)] = p(xt)
Proof. See Supplementary Appendix K.4. O

Theorem 18 (Multi-layer two-sample Tournament sampling is non-distortionary).
For any probability distribution p over V, g-value distribution fy, number of layers
m > 1, and token x, € V:

ErtNUnif('R) [pwm(xt|pa T, fga 2, m)] = p(xt) (G23)
Proof. See Supplementary Appendix K.5. O

Theorem 19 (Tournament sampling is distortionary for N > 2 samples). Given any
g-value distribution fy (that is not one-hot) and any integer N > 2, then single-layer
Tournament sampling using f, and N is distortionary.

2Kuditipudi et al. [24] call this property distortion-free.
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Proof. See Supplementary Appendix K.6. O

G.2 Non-distortion at the (multi-)sequence level

We now move to a notion of non-distortion at the level of one or more sequences. We
define a watermarking scheme to be K -sequence non-distortionary if the probability
of the watermarked model generating a particular sequence of K > 1 responses to a
particular sequence of K prompts supplied consecutively is, in expectation over the
watermarking key, the same as generating them from the original model. Our definition
is similar to the K -shot undetectable property defined by Hu et al. [27], though we
generalize it to the case where the K prompts may be different.

To give the formal definition, we first define some notation. Given a sequence
of K prompts x!,....,x¥ € V* (where V* is the set of all finite sequences
in V) and given a sequence of K responses y',...,y% € V* we write
Pwm (yi|xi, k;(xtyh),..., (xi_l,yi_l)) to denote the probability of the watermark-
ing scheme using watermarking key k generating response y* in response to prompt
x?, given that the last i — 1 prompt /response pairs to be supplied to/generated by the
watermarked model are (x!,y!),..., (x*"1,y*~1). Then:

Definition 20 (K -sequence non-distortionary watermarking scheme). A watermark-
ing scheme Py, is K-sequence non-distortionary for some K > 1 if, for any sequence
of K prompts x*,...,x% € V* and sequence of K responses y',...,y% € V*:

K K
EkNUnif(’R) prm (yi|xi7 k; (X17 y1)7 SERE) (Xi_17 yi_l)) = HpLM(yZ|X’L)
=1

=1

This definition extends the notion of non-distortion from a single token (Definition 16)
to one or more consecutively-generated sequences. In particular, while Definition 16 is
a property of the sampling algorithm alone (such as Gumbel or Tournament sampling),
Definition 20 is a property of the whole watermarking scheme (which includes the
sampling algorithm, the random seed generator, and any other details of how the
watermarked LLM is operated across multiple queries).

We now show that by applying K-sequence repeated context masking (Methods
Section 5.6) with a non-distortionary sampling algorithm, we can construct a K-
sequence non-distortionary watermarking scheme:

Theorem 21 (K-sequence repeated context masking + non-distortionary sampling
algorithm — K-sequence non-distortionary watermarking scheme). Let S be a non-
distortionary sampling algorithm (Def 16). For any K > 1, let Py, denote the
watermarking scheme that applies S with sliding window random seed generation and
K -sequence repeated context masking (Methods Algorithm 3). Then Py, is K -sequence
non-distortionary.

Proof. See Supplementary Appendix K.7. O

In particular, Theorem 21 with Theorem 18 tells us that two-sample (N = 2) Tourna-
ment sampling is K-sequence non-distortionary if applied with K-sequence repeated
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context masking. The same is true for other non-distortionary sampling algorithms
such as Gumbel sampling (Supplementary Appendix B.1.1).

G.3 Discussion

In this section we have defined several levels of non-distortion that a watermarking
scheme may satisfy; from weakest to strongest they are:

Single-token non-distortion (Definition 16)

Single-sequence non-distortion (Definition 20 for K = 1)

K-sequence non-distortion (Definition 20 for a particular integer K > 1)
Infinite-sequence non-distortion (Definition 20 for K = co)

Single-token non-distortion can be achieved by using any non-distortionary sampling
algorithm such as Gumbel sampling or Tournament sampling with N = 2; however, in
circumstances where high detectability is more important than quality preservation,
one might choose to use a distortionary sampling algorithm such as Soft Red List or
Tournament sampling with N > 2.

Single-sequence non-distortion is an important property as it guarantees that the
quality of a watermarked response is on average the same as an unwatermarked
response. In particular, a single-sequence non-distortionary watermarking scheme will
not cause repeating loops or lower diversity within a response — a phenomenon which
has been observed in schemes that lack single-sequence non-distortion (e.g., using a
sliding window random seed generator without repeated context masking) [24, 25].
A single-sequence non-distortionary watermarking scheme should match the unwater-
marked model on any evaluation comprising measurements on individual responses,
such as perplexity (Table C1), pairwise quality assessment (Extended Data Table 1),
and other automatic benchmarks (Table C2). In our experiments with Gumbel and
N = 2 Tournament sampling we use 1-sequence repeated context masking and so
achieve single-sequence non-distortion.

While single-sequence non-distortion guarantees the quality of each individual
response, it does not necessarily preserve diversity across multiple responses. This
can be observed in Extended Data Figure 4, which shows that when sampling sev-
eral responses to the same prompt, the similarity between the responses is greater for
the watermarked responses than the unwatermarked responses. This could be prob-
lematic in scenarios where inter-response diversity is important, or could lower the
overall quality of a system which generates many responses then selects the best one.
It could also be problematic from a security perspective, as an adversary might steal
the watermark by detecting the repeated biases that appear across multiple responses
[32].

If these concerns are particularly important, one can choose a watermarking scheme
achieving K-sequence non-distortion for a larger K > 1; however there are some
trade-offs. The primary trade-off is detectability: if we apply K-sequence repeated
context masking with larger K then the watermark will be masked more often, reduc-
ing its detectability. Another trade-off is the computational complexity and storage
requirements of maintaining the context history, particularly for large K. Ultimately,
complete theoretical non-distortion (infinite-sequence non-distortion) can be achieved
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by implementing infinite repeated context masking, but this is impractical from a
computational and detectability point of view.

Appendix H Analysis of watermarking strength

The intuition of Tournament sampling is that it returns a token that is likely to
have larger g-values; these high g-values are what is later measured when detecting
the watermark. The watermarking strength is related to how much higher these g-
values are for watermarked text compared to unwatermarked text. In this section we
quantify this bias, and first show that it is greater when we use more samples N in the
tournament. Second, we show the bias is greater when the LLM has high entropy (in
particular, collision entropy), but that each layer of watermarking reduces the entropy
of the distribution.

H.1 Notation

Definition 22 (Collision probability). Given a probability distribution p, the collision
probability C}, of p is the probability that two samples drawn i.i.d. from p are the same.

If p= (p;), is discrete, the collision probability equals Ef\ilp?

Collision probability is related to collision entropy, sometimes called Rényi entropy,
N
Hs(p) = —log 30,2, p}.

Definition 23 (Higher-order collision probabilities). Given a probability distribution
p and integers N,j > 1, let C’év’j denote the probability that N samples drawn i.i.d.
from p have exactly j unique values. Note that Cg’l is the collision probability of p. In
general, we refer to CIJJV J as the higher-order collision probabilities of p.

Definition 24 (Watermarked g-value distribution). Given a probability distribution p,
a g-value distribution fy, and number of samples N > 2, let Fy,, denote the cumulative
density function of the g-value of a token sampled from the single-layer watermarked
distribution puwm(-|p, 7, fg, N, 1) (Definition 9), in expectation over the random seed r:

Fgw(z) = Prw Unif(R),&~pwm(-|p,r,fq,N,1) [gl ((E, 'I’) S Z] .

Let fg. denote the probability density/mass function corresponding to Fy,,. We refer
to fqw as the watermarked g-value distribution.

The watermarking strength of a single layer of Tournament sampling can therefore
be described as the distributional difference between the watermarked g-value dis-
tribution fg,, (which describes the expected g-value distribution of the watermarked
token) and the ‘unwatermarked’ g-value distribution f, (which describes the expected
g-value distribution of the unwatermarked token).
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H.2 Watermarked g-value distribution

The following theorem describes the watermarked g-value distribution fg,, in terms
of the unwatermarked g-value distribution f, and the higher-order LLM collision
probabilities C’ﬁ 1\34 .

Theorem 25 (Watermarked g-value distribution for single-layer tournament). Given
a probability distribution prar, a g-value distribution fq, and number of samples N > 2,
the c.d.f. of the watermarked g-value distribution Fy,, is given by:

Fyu( Z CNJ Fy(z (H24)

If fq is continuous, the p.d.f. of the watermarked g-value distribution fg., is given by:

fow(z) = Z CNI G, (2) 72 (H25)

If fq is discrete, the p.m.f. of the watermarked g-value distribution fg, is given by:

Fouw(2) = Zcﬁ’i (Z 1)’“_1(i)Fg(z)j"“fg(z)’H). (H26)

k=1

Proof. See Supplementary Appendix K.8. [

Theorem 25 shows that the watermarked g-value distribution depends on how
much collision entropy there is in the LLM distribution. In particular, Equation (H24)
says that the watermarked c.d.f. F,, is a linear combination of powers of the unwa-
terr;llarked c.d.f. F,, with Cﬁhﬂ as the coefficients. If ppy is high-entropy, then

J

Cod }7=1--N"is more heavily weighted towards the larger values of j, and so Fou

is more weighted towards the higher powers of Fj; this biases the distribution of the
watermarked g-value to be larger.

H.2.1 Simplified formulations for special cases

For certain special cases (e.g., choices of N or fg), Theorem 25 has simplified forms,
which we provide here.

Corollary 26 (Watermarked g-value distribution for single-layer tournament, two
samples). If in Theorem 25 the number of samples N is equal to 2, then the c.d.f. Fy,
is given by:

Fgw( ) CPLMF( ) (I_CPLM)FQ(Z)2' (H27)
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If g is continuous, the p.d.f. fqw s given by:
fgw(Z) = fg(z) [CPLM + 2(1 - CPLM)FQ(Z)] . (H28>

If g is discrete, the p.m.f. fqw 15 given by:

fgw(z) = fg(z) [OPLM +(1 - CpLM) (2Fg(z) - fg(zm . (H29)

Proof. Follows from Theorem 25 and C%! = C and C?2 =1-C

PLM pLM pPLM PLM *

O

Corollary 27 (Watermarked g-value distribution for single-layer tournament, two
samples, Bernoulli g-value distribution). If in Theorem 25 the number of samples N
is equal to 2 and the g-value distribution fq is Bernoulli(q) for some 0 < ¢ < 1, then
the watermarked g-value distribution is given by the p.m.f.:

fgw(l) =q+q(l—-q)(1—- CPLM)' (H30)

In particular, if ¢ = 0.5 then:

(1 - OPLM)'

-

1
fow(1) = 5 +

Proof. This follows from Equation (H29) in Corollary 26. O

Equation (H30) shows that for a Bernoulli g-value distribution, the expected
watermarked g-value fg,,(1) is greater than the expected unwatermarked g-value
(which is q); furthermore, it increases linearly with the LLM’s non-collision probability

(1 - CPLM)'

Corollary 28 (Watermarked g-value distribution for single-layer tournament, two
samples, Uniform g-value distribution). If in Theorem 25 the number of samples N
is equal to 2 and the g-value distribution fy is Uniform[0,1], then the watermarked
g-value distribution is given by the p.d.f.:

fgw(z) :CPLM+2(1_CPLM)Z Vio<z<l1

Furthermore the expected watermarked g-value is:

—_

1
]ET"’ Unif(R),CDf\/pwm(-‘p,r,fg,Q,l) [gl (x7r)] = 5 + 7(1 - CPLM)' (H31)

(=2}

Proof. The p.d.f. follows from Equation (H28) in Corollary 26. The expected value
follows from integrating:

1 1
/ 2 fquw(2)dz = / Cpmz +2(1 = CI)LM)Z2dZ
0 0

o8



618

619

620

632

637

638

CPLM + 2(1 — CPLM)
2 3
1 1
= 5 + 6(1 - CPLM)'

O

Equation (H31) shows that for a Uniform g-value distribution, the expected water-
marked g-value is greater than the expected unwatermarked g-value (which is %)7 and
it increases linearly with the LLM’s non-collision probability (1 — Cyp,,,)-

H.3 Stronger watermarking with larger NV

Theorem 25 shows that watermarking strength depends on the number of samples V
used in the tournament. In this section we provide two results about how watermarking
strength changes as IV increases: First, Theorem 29 shows that, provided there is some
entropy in the LLM distribution, a single layer of Tournament sampling using N + 1
samples provides greater watermarking strength than one using N samples. Then,
Corollary 30 shows that, provided the LLM distribution has sufficiently large support,
we can achieve arbitrarily high watermarking strength by increasing the number of
samples N.

Theorem 29 (g-value bias increases with N, single-layer tournament). Given a
probability distribution pry and g-value distribution fq, let FgJYU be the c.d.f. of the
watermarked g-value distribution for a single-layer tournament with N samples. Let
FgJYUH be the same for a single-layer tournament with N + 1 samples. Then for all z:

FgJYfl(z) < ngyu(z)
When 0 < F;XU(Z) < 1, equality holds iff pra is one-hot.

Proof. See Supplementary Appendix K.9. O

Corollary 30 (Watermarked g-value distribution for single-layer tournament as
N — 00). Given a probability distribution pray and g-value distribution fy: for all z,
the c.d.f. of the watermarked g-value distribution Fy,(z) — Fy(2)V as N — oo, where
V' is the size of the support of pry.

Proof. Equation (H24) gives us:

Z HANC
For N >V, Cﬁ’gl =0 for all j > V. Furthermore as N — oo, CI])\LIX — land Cgfd =0
for all j <V — 1. It follows that Fy,,(2) = F,(2)". O

59



639

640

641

643

644

646

647

649

650

658

659

H.4 Entropy analysis for N = 2

Corollary 26 shows that for N = 2 samples, the watermarking strength of a single layer
of Tournament sampling depends on the collision probability of the input distribution.
For a multi-layer tournament, this means that the watermarking strength of each layer
depends on the collision probability of the previous layer. In this section we show
that the expected collision probability increases (and so the expected watermarking
strength of each layer decreases) with each added layer.

First, in Theorem 31 we derive the expected collision probability of the single-
layer watermarked distribution; then in Theorem 32 we show this is greater than the
collision probability of the input distribution.

Theorem 31 (Expected collision probability for single-layer tournament, two sam-
ples). Given a probability distribution pry, random seed r € R and g-value
distribution fq, let C’;’Ulm denote the collision probability of the watermarked distribu-
tion Pum(-|pLum, 7, fg,2,1) for a N = 2 sample single-layer tournament. In expectation
over the random seed r, the collision probability is:

41 2 1
Ervmin®) [Cpinn] = { - 30;;1} Crina T { +305 - C;;I} ()

Puwm 3 pLMm 3 pPLMm
2 2 31 31 12 31 2,1 4,1
- {3 -3¢, } Coin = |3135C, —Ch | Copnr - (H32)

where CZ],\Q’I@ and Cév’j are the higher order collision probabilities (Def 23), respectively,
of pLm and fg.

Proof. See Supplementary Appendix K.10. [

Theorem 32 (Single-layer tournament increases the expected collision probabil-
ity, two samples). The expected collision probability of a single-layer tournament
with N = 2 samples is greater than or equal to the LLM collision probability:
Ky Unif(r) [Cz%lu{n] > Cz%Llw with equality iff pry is one-hot.

Proof. See Supplementary Appendix K.11. [

In the case of a multi-layer tournament, Theorem 32 says that the sequence of m
watermarked distributions (see Definition 9):

pwtn('|pLMaTafga2a1)7 pwm('|pLM;r7f97272)a LI} pw111('|pLM;T;fg;2,m)

have (in expectation over r) increasing collision probability (i.e., decreasing collision
entropy). Thus the amount of watermarking strength contributed by each new layer
decreases. For the tournament as a whole, this implies that increasing the number of
layers m may give diminishing returns in terms of overall watermarking strength.

60



661

662

663

665

666

669

H.4.1 Effect of g-value distribution f,

Now turning to the particular choice of f,, the following result shows that a Uni-
form[0,1] layer raises the collision probability of the next layer (and so reduces its
watermarking strength) more than a Bernoulli(0.5) layer does. This suggests a natu-
ral trade-off: while a single Uniform layer provides more watermarking strength than
a single Bernoulli layer, it also more greatly reduces the amount of entropy available
to be used by subsequent layers.

Corollary 33 (Expected collision probability for single-layer tournament, two sam-
ples, Bernoulli(0.5) or Uniform(0,1) g-value distribution). If f, = Bernoulli(0.5) then
Fquation (H32) equals:

]Er~ Unif(R) [02 1 ] 702 1 (CQ 1 ) _ 703 1 (H33)

Puwm 4 pLM pLMm 2 PLMm”

If fg = Uniform|0, 1] then Equation (H32) equals:

ETN Unif(R) [02 ] 702 1 % (02 1 ) _ 703 1 704 1 (H34)

Puwm 3 pLM pLmMm 3 pPLMm 3 pPLMm”

Furthermore, for any distribution pry, Epwunifr) [Cg;ﬂl] is greater for f, =
Uniform|0,1] than for fy; = Bernoulli(0.5).

Proof. For Equation (H33), substitute CJ%: =1 and C;g’l = 1 into Equation (H32).
For Equation (H34), substitute Ci;l = ijg’l = 0. Now the difference:

2,1 2,1
]ET‘NUnif(R) |:Opwm,Unifi| - IEr~Unif(72) [prm,Ber}

1 2,1 2,1 \2 3,1 L un
= 120pLM + 19 (CPLM) - ECPLM - ngLM
2,1 2,1 2,1 2,1 2,1
—EOPLM + 19 (OPLM) T e <2CPLM (1 + OpLM)> T q (C;DLM) (Lemma‘ 44)
=0. (simplify)

H.5 Discussion

As shown in Supplementary Appendix H.4, the amount of watermarking evidence con-
tributed by each layer decreases as more layers are added. Consequently, if we keep
adding layers to a multi-layer tournament, at some point the noise outweighs the signal,
and the detectability of the watermark begins to degrade. However, the optimal num-
ber of layers depends on the particular collision probabilities of the LLM distribution,
which itself varies step-to-step and also depends on the prompt distribution. For our
experiments, we determine the optimal number of layers empirically (Supplementary
Appendix C.1).
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The choice of the g-value distribution f; used in Tournament sampling (Meth-
ods Definition 3) also plays a key role in the detectability of the watermark. In
Supplementary Appendix H.4 we showed theoretically that while a single layer with
fg = Uniform[0, 1] provides more watermarking evidence than a single layer with
fg = Bernoulli(0.5), on the other hand the Uniform layer more greatly reduces the
amount of entropy available in the output distribution, meaning that subsequent layers
have lower watermarking strength. Intuitively, this means that with Uniform, Tour-
nament sampling can apply a few layers of strong watermarking, and with Bernoulli,
Tournament sampling can apply many layers of weak watermarking. This corresponds
with our empirical observations that for shallow tournaments (small number of layers),
Uniform generally outperforms Bernoulli in terms of overall watermark detectability,
while for deeper tournaments, Bernoulli outperforms Uniform. If we are free to choose
any number of layers, we find that overall the best watermark detectability is usually
achieved with many layers of weak Bernoulli watermarking, rather than fewer layers
of strong Uniform watermarking.

Appendix I Generative watermarking with
speculative sampling

Speculative sampling [5] is an algorithm designed to speed up sampling text from
a large target LLM ¢, by using a smaller draft LLM p. As speculative sampling is
commonly used in production, we wish to combine speculative sampling with gener-
ative watermarking. In this section we introduce speculative sampling, then discuss
the desired properties of a combined solution; finally we present two algorithms
for combining a generative watermark (such as SYNTHID-TEXT) with speculative
sampling.

I.1 Speculative sampling

The algorithm for speculative sampling is presented in Algorithm 4.3
Algorithm 4 uses the (-); operator on Line 13, which is defined as:

Definition 34 ((-)+ operator).

(f(2)4 =

max(0, f(x))
o max(0, f (7))’

In Algorithm 4, the draft LLM’s suggestions are either accepted or rejected by the
target LLM. This is the acceptance rate:

3 Algorithm 4 is the same as the algorithm in [5], though we fix some minor notational confusion in the
original incrementing both n and ¢. It also overloads t as both the prompt length and the iterator from 1
to K; but we keep this to be consistent with the original.
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ALGORITHM 4 Speculative sampling [5]

1: Given lookahead K, minimum target sequence length 7', target model ¢(+|-), draft
model p(-|-), initial prompt sequence x1, ..., z;.

2: Initialize n < t.
3: while n < T do
4: fort=1:K do
5: Sample draft auto-regressively &; ~ p(*|Z1.n, T1.4-1)
6: end for
7. In parallel, compute K + 1 sets of logits from drafts Z,...,Tx :
Q("‘len% Q('|$1:n7 j1)7 sy Q('|x1:n7 j1:K)
g fort=1:K do
9: Sample r ~ UJ0, 1] from a uniform distribution.
10: if r < min (1, ¢(Z¢|x1.0)/p (T4|21.:0)) then
11: Set py1 Ty and n +—n + 1.
12: else
13: Sample z,,41 ~ (q(-|z1:0n) — p(-[71.n)) | and set n < n+1 and exit for loop.
14: end if
15:  end for
16:  If all tokens Z1,...,Zk are accepted, sample extra token ,4+1 ~ ¢(-|x1.,) and

setn <+ n+1.
17: end while

Definition 35 (acceptance rate). Given text so far xi.,, the acceptance rate of
Algorithm 4 is the probability of accepting the draft model’s token x,11 on line 11:

acceptance rate = Z p(Tpy1|T10 ) min <1’ q(l’n-&-ﬂzln)) .
Tpi1€V p($n+1|x1m)

Intuitively, the closer p is to ¢, the higher the acceptance rate is likely to be. A high
acceptance rate is desirable as it speeds up the sampling process.

Lastly, we highlight a core property of speculative sampling, which is that it is
equivalent to sampling from the target distribution:

Theorem 36 (Speculative sampling is equivalent to target distribution). The output
probability distribution of Algorithm J given the prompt x1, ..., xs is equal to the target
distribution q(-|x1, ..., 24 k).

Proof. See Chen et al. [5]. O

1.2 Desiderata

We would like to design a generative watermarking with speculative sampling algorithm
to generate text while applying both speculative sampling and a generative water-
marking scheme. Ideally, such an algorithm should satisfy the following desiderata:
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1. Non-distortionary The generative watermarking with speculative sampling algo-
rithm should have the same non-distortion properties as the underlying generative
watermarking scheme (see Supplementary Appendix G).

2. Preserve acceptance rate The acceptance rate (the rate at which tokens from
the draft LLM are accepted) should be the same for speculative sampling with
watermarking and speculative sampling without watermarking.

3. Preserve watermark detectability The watermark detection performance
should be the same for watermarking with speculative sampling, and watermarking
the target LLM without speculative sampling.

In the following sections we provide two generative watermarking with speculative sam-
pling algorithms, both of which are non-distortionary. First, we provide a method
which preserves watermark detectability, but it may reduce the acceptance rate; we
call this algorithm high-detectability watermarked speculative sampling. For
latency-critical applications where high acceptance rate is important, we provide
an alternative method which preserves acceptance rate, but may reduce watermark
detectability; we call it fast watermarked speculative sampling.

I.3 Compatibility with generative watermarking schemes

Our two algorithms can generally be used with most generative watermarking schemes,
with two important caveats:

1. For the ‘preserve acceptance rate’ property to hold in the fast watermarked
speculative sampling algorithm, the watermarking scheme’s sampling algorithm
S must be single-token non-distortionary (Definition 16) — e.g., Gumbel sampling
or two-sample Tournament sampling.

2. The high-detectability watermarked speculative sampling algorithm
requires that the sampling algorithm S is vectorisable; i.e., given any probability
distribution p and random seed r, it is possible to directly compute the watermarked
probability distribution P [S(p,r) = -]. For Tournament sampling, this means that
we need to use the vectorised implementation (Supplementary Appendix E).

I.4 High-detectability watermarked speculative sampling

This algorithm uses the straightforward approach of taking Algorithm 4 and replacing
the draft distribution and the target distribution with their watermarked versions.
The watermark detection method is then the same as for the underlying generative
watermarking scheme. We first define some notation, then present the method in
Algorithm 5.

Definition 37 . Given a watermarking sampling algorithm S : AV x R — V (see
Methods Definition 5), a watermarking key k € R, and a random seed generator f,
(see Methods Section 5.3), we use the following notation to refer to the watermarked
versions of the target distribution q and the draft distribution p:

Pum(Te|r<t; k) == P[S(P(|r<t), fr(T<t, k) = 74
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Gum(zt|T<ts k) =P [S(Q("x<t)7 fr(x<e, k) = xt] .

Note that Algorithm 5 requires directly computing the probabilities/logits from

the watermarked distributions pym, and gy, rather than just sampling from them; this
is the reason why & must be vectorisable (Supplementary Appendix 1.3).

ALGORITHM 5 High-detectability watermarked speculative sampling

1:

© ®»

10:
11:
12:
13:

14:
15:
16:

N TR W

Given lookahead K, minimum target sequence length 7', watermarked target
model gwm(|;; k), watermarked draft model pym(-|-; k), initial prompt sequence
Llyeeoy Tt

Initialize n < t.

while n < T do

fort=1: K do
Sample draft auto-regressively &y ~ Dym (*|T1:n, T1.4—1; k)

end for
In parallel, compute K + 1 sets of logits from drafts Z1,...,%Zx :
QWm('|x1:n; k), QWm('|$1:na Z1; k)7 ceey QWm('lzl:na T1:K; k)

fort=1: K do
Sample r ~ UJ0, 1] from a uniform distribution.
if r < min (1, gwm (Zt|T1.0; k) /Pwm (Te|T1.05 k)) then
Set py1 Ty and n +—n + 1.
else
Sample Tn41 ~~ (qwm("zl:n;k) *pwm('|x1:n;k))+ and set n < n + 1 and
exit for loop.
end if
end for
If all tokens Z4,..., Tk are accepted, sample extra token 11 ~ Gwm(‘|T1.n; k)
and set n < n + 1.

17: end while

1.4.1 Properties

In this section we show that Algorithm 5 preserves watermark detectability and is non-
distortionary but decreases acceptance rate. First we establish the following theorem,
which says that generating text from Algorithm 5 is equivalent to generating text from
the watermarked target LLM without speculative sampling.

Theorem 38 (Algorithm 5 is equivalent to watermarked target distribution). The

output probability distribution of Algorithm 5 given the prompt x1,...,xs is equal to
the watermarked target distribution qum(-|21, ..., 24 k).
Proof. Follows from Theorem 36. O
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It follows trivially from Theorem 38 that as Algorithm 5 is equivalent to generating
text directly from the target LLM ¢ watermarked with & and f,, the watermark
detection performance is also identical (for any detection method).

It also follows that Algorithm 5 inherits all non-distortion properties of the gener-
ative watermarking scheme; in particular, if S is single-token non-distortionary, then
so is Algorithm 5. Furthermore if the generative watermarking scheme is K-sequence
non-distortionary (Definition 20), for example by applying repeated context masking,
then so is Algorithm 5 (assuming the repeated context masking is applied in the same

way).

Theorem 39 (Algorithm 5 has expected acceptance rate < speculative sam-
pling without watermarking). Assume the sampling algorithm S is single-token
non-distortionary (Definition 16). Given x1.,, the acceptance rate of Algorithm &5
(speculative sampling with watermarking) on step n + 1 is, in expectation over the
watermarking key k, less than or equal to the acceptance rate for speculative sampling
without watermarking (Definition 35).

Proof. See Supplementary Appendix K.12. O

I.5 Fast watermarked speculative sampling

For this method, we use two watermarking keys: one key kP for sampling from the
draft model and one key k” for sampling from the target model (and for sampling when
the draft tokens are rejected). We show this allows us to preserve acceptance rate, but
it weakens watermark detection performance because during detection we must use
a scoring function that checks all tokens against both keys (the scoring functions are
described in Supplementary Appendix 1.5.2). We now introduce some notation then
present the algorithm in Algorithm 6.

Definition 40 . Given a watermarking sampling algorithm S : AV x R — V (see
Methods Definition 5), watermarking keys kP and k™, and a random seed generator
fr (see Methods Section 5.3), we use the following notation:

pwm(xt|x<t; kD)
qwm(xt|x<t; k )

T
(q _p)im($t|x<t§ kT)

(S (p(-z<t), fr(w<t, kD)) = 2]
[S (a(-e<t), frlw<e, k7)) = 2]
[S (la(le<e) = p(lz<o)ly frl@ae, k1)) = 4]

P
P
P

where (+)4 1is the operator defined in Definition 34.

Note that Algorithm 6 does not require direct computation of the watermarked
probabilities pym, ¢wm or (¢ —p)}™; it only requires sampling from them. This is why
Algorithm 6 does not require S to be vectorisable (Supplementary Appendix 1.3).

1.5.1 Properties

We now show that Algorithm 6 is non-distortionary and preserves acceptance rate.

66



ALGORITHM 6 Fast watermarked speculative sampling

1: Given lookahead K, minimum target sequence length T', auto-regressive target
model ¢(.].), auto-regressive draft model p(.|.), initial prompt sequence z1, ..., zy,
watermarked models pym (-] k2), quwm(:|; k1), (¢ — p)¥™ (-5 k7).

2: Initialize n + t.
3: while n < T do
4: fort=1:K do
5: Sample draft auto-regressively ; ~ pom (:|¥1.n, T1.4—1; k7)
6: end for
7:  In parallel, compute K + 1 sets of logits from drafts Z1,...,Zx :
q("xlzn)y Q('|$1:n7 571)7 ceey Q('|x1:n7 jl:K)
g fort=1:K do
9: Sample r ~ UJ0, 1] from a uniform distribution.
10: if » < min (1, ¢(&¢|z1.n)/p (£¢]|21.)) then
11: Set 41 + T and n «—n + 1.
12: else
13: Sample z, 41 ~ (¢ —p)} ™" (‘|z1:n; kT), and set n < n+ 1 and exit for loop.
14: end if
15:  end for
16:  If all tokens Z1, ..., 2k are accepted, sample extra token @, 11 ~ Gwm (-|Z1.n; kT)

and set n < n + 1.
17: end while

Theorem 41 (Algorithm 6 is single-token non-distortionary?). Assume the sam-
pling algorithm S is single-token non-distortionary (Definition 16). Given x1.,, let
¢ (-|71.0; kP, kT denote the probability distribution of the next token x,.1 generated
by Algorithm 6 on step n+ 1. For all x,41 € V:

B0 Unif(R) 67~ Unif(R) [@ (@ng1| @1 K7 ET)] = q(@nga]21m).

Proof. See Supplementary Appendix K.13. O

If the watermarking scheme has a stronger level of non-distortion (e.g. K-sequence
non-distortion, Definition 20), for example via repeated context masking, then we can
correspondingly extend Theorem 41 to show the same level of non-distortion, in a
similar way to Theorem 21.

Theorem 42 (Algorithm 6 preserves acceptance rate). Assume the sampling algo-
rithm S is single-token non-distortionary (Definition 16). Given x1.,, the acceptance
rate of Algorithm 6 (fast speculative sampling with watermarking) is, in expectation
over the keys kP, kT, equal to the acceptance rate of speculative sampling without
watermarking (Definition 35).

4For notational convenience we prove single-token non-distortion in expectation over the watermarking
keys kP, kT, but we could also prove non-distortion over the corresponding random seeds, which more
closely matches Definition 16.
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Proof. See Supplementary Appendix K.14. O

1.5.2 Scoring functions

In Algorithm 6, each generated token z; is watermarked with either the draft key k%
or the target key k7, but when it comes time to detect the watermark in a piece of text,
we do not know which key was used for each token. This necessitates checking each
token against both keys, but half of all these checks will follow an ‘unwatermarked’
distribution; this is the reason why Algorithm 6 has a lower detection performance
than watermarking without speculative sampling.

Nevertheless, in this section we provide adaptations of our scoring functions for
SYNTHID-TEXT presented in Supplementary Appendix A. Similarly to Supplementary
Appendix A.1, let g = {gtj?g}lgth,l <¢m denote the g-values computed with the draft

key kP and similarly g7 denote the g-values computed with the target key k7.

(Weighted) Mean
For the (Weighted) Mean Score (Equation (A2)) we simply sum over g and g7:

T m
1
WeightedMeanScore(x, @) := oy E E E ar gl
~=D,T t=1 ¢=1

(Weighted) Frequentist
Similarly for the (Weighted) Frequentist Score (Equation (A5)), we consider the sum
o= dy=D.T Zle S 94> which follows the Normal(y, %) distribution under

the null hypothesis, where p and o are defined as previously in Supplementary
Appendix A.3.1. Thus:

T m
1
— Y
p—value =1- CDFNormal(u,%) 2T Z Z Z Yt

Bayesian

For the Bayesian approach in Supplementary Appendix A.4, we can replace the pos-
teriors P(w|g) and P(—wl|g) with P(w|g?,¢T) and P(-w|g”, gT) and similarly the
likelihoods P(g|lw) and P(g|-w) with P(g”,¢"|w) and P(g”,g¢"|-w). To compute
the BayesianScore (Equation (A6)), we need to derive the likelihoods P(g/, 9t |~w)

and P(gtl? zagg: s|w). For the unwatermarked likelihoods, we have independence of the
g-values for the two keys, so:

P(gt[,)b gg:l

—w) = P(gf,’elﬂw)P(gfelﬂw) = fg(gtl,)e)fg(gtT,e)~

For the watermarked likelihoods, we marginalize over the key k; used on step t:

P9l glilw) = > P9l glylke = k") P(ky = k7)
y€D, T
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Spec. sampling, Fast watermarked speculative sampling No spec. sampling +

Temp. unwatermarked -+ non-distortionary SyNTHID-TEXT non-dist. SyNTHID-TEXT
Acceptance Acceptance  Scoring TPRQFPR=1% 1 TPRQFPR=1% 1

rate T rate 1 function 200 tokens 400 tokens 200 tokens 400 tokens

Weighted-Mean 14.33 34.15

-

0.7 1.486 1.495 [14.19, 14.47]  [33.80, 34.49]
Bayesian 54.66 60.35 69.64 86.64
[54.42, 54.90]  [59.93, 60.77]  [69.48, 69.81] [86.42, 86.85]

e ‘Weighted-Mean 31.62 61.89

1.0 1513 1514 [31.42, 31.83]  [61.61, 62.17]
Bayesian 59.10 65.24 87.39 97.52
[58.95, 59.23]  [65.02, 65.47]  [87.29, 87.48] [97.47, 97.57]

Table I5: Results for our novel fast watermarked speculative sampling algorithm
which combines speculative sampling with non-distortionary SYNTHID-TEXT. The
addition of the watermark does not affect speculative sampling’s efficiency (reflected
in the acceptance rate). However, the addition of speculative sampling does reduce
the detectability of the watermark (measured using true positive rate for fixed false
positive rate of 1%). Results are provided with 90% confidence intervals.

= P(!JEAI% = kD)fg(gt]:é)P(kt =kP) + P(gtj:€|kt = kT)fg(gt[,)e) [1 — P(k

Note that the prior probability P(k; = k) is equal to the fraction of tokens that come
from the draft. This can be learned as a latent parameter of the Bayesian scorer, or set
based on the empirical acceptance rate of the LLMs. We then factorize P(g;’, Jw, by =
k7) similarly to Theorem 6.

1.5.3 Experimental results

We evaluate our fast watermarked speculative sampling algorithm with non-
distortionary SYNTHID-TEXT, using Gemma 7B-IT as the target model and Gemma
2B-IT as the smaller draft model which proposes three ‘lookahead’ tokens at a time.

Table I5 demonstrates the two key features of fast watermarked speculative sam-
pling. First, that it preserves acceptance rate: we see that the speculative sampling
acceptance rate (and thus overall latency) is very similar with and without watermark-
ing. While we ran our experiment with non-distortionary SYNTHID-TEXT, we expect
this result would hold for any non-distortionary generative watermark (Theorem 42).
Second, that it does not preserve detectability: the watermark detectability is less
with fast watermarked speculative sampling, than if we apply the same watermark to
Gemma 7B-IT without speculative sampling.

Lastly, Table I5 also shows that of the adapted scoring functions for fast water-
marked speculative sampling presented in Supplementary Appendix I.5.2, the Bayesian
scoring function performs substantially better than WeightedMean.
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Appendix J Lemmas

Lemma 43 . For any integer j > 1, and real numbers a and b:
> (j) A CR
i1 \/J

Proof. First note that:

(j)a B z‘!(jj! >'a i (]b_!(;)! i <]_ 11>

Then using the binomial formula for the last equality:

J

N - 'y j—1 .
I\ ipj—i J=1N\ i J=1N i1 j—1
Z(i)jabj aE(i_l)a b’ a;( ; )abj =ala+b) 7",

i=1

O

Lemma 44 (Upper bound for sum of cubed probabilities). For any probability
distribution (p;),:

with equality iff (p;)Y., is one-hot.
Proof. Note that for all 1 <7 < N:

N
1+Zp? > 1+pf = (1—pi)* +2pi > 2p;,
j=1

with equality iff p; = 1. Therefore

with equality iff p; = 0 or p; = 1 for all 4. O

Lemma 45 (Lower bound for sum of cubed probabilities). For any probability
distribution (p;)¥_,:

N w
DN | =

N n
DS DN
=1 i=1
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Proof. By induction on N. For the base case N =1, LHS = 1 and RHS = % — % =1
Now suppose the statement is true for N — 1. Then

N—1 2
3 pi 3 . . :
> (1—-pn)? l Z < ) + PN (induction assumption)
25 \1-pn 2
3 -, 1
= 5(1 —PN) P} — 5(1 —pn)® + 0% (rearrange)
=1
N-1 N—
3 3 1 3 3 3
=3 p?—i Z ?_§+2pN_ 2PN+ 2pN (rearrange)
i=1 i=1
N N
3 1 3 3
=5 ZP? T35 T 5PN ZP? + 5PN — 3p% +3p%.  (rearrange)
i=1 i=1

Note that Zfilpf <pi+ (1 —pn)?=1-2py+2p%, so:

al 3 1 3 3
Z? 52 _5_§pN(1_2pN+2p?V)+§pN_3p?V+3p?V
=1 i=1
N
3L, 1
iyl
i=1
845 D

=« Appendix K Proofs
«» K.1 Proof of Theorem 6

Proof. For the unwatermarked case P(g|-w), the g-values {g; ¢}1<t<7,1<0<m are inde-
pendent across timesteps ¢ and across layers {. Furthermore, each g;, follows the
(unwatermarked) g-value distribution with p.d.f/p.m.f. f,, thus:

m

P(gl~w) = HHP 9t,e|~w)

t=1/¢4=1

Zt[[l;[ 9(gt,0)-
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For the watermarked case P(g|w), we assume the g-values are independent across
timesteps ¢ but not across layers /£:

T m
P(glw) = HHP(Qt,Z|w79t,<£)~
t=1¢=1

To compute P(g; ¢|w, g+ <¢), we introduce and marginalize over a latent variable ¢, , €
{1,..., N} which represents the number of unique candidate tokens in a tournament
‘match’ at layer ¢, on timestep ¢:

N
P(geelw, gr.<e) = > Plgeeltre = ¢)P(re = clgr.<o).
c=1

Next, the distribution P(g; ¢t = ¢) is equal to the distribution of the maximum of
c i.i.d. samples from f,, which can be shown to equal:

cFy(9e.0) " folgre) if f, is continuous

P(geeltre =c) = {Fg(gt,e)c — [Fy(gte) — f4(ge0)]® if fy is discrete.

K.2 Proof of Theorem 11

Proof. In this proof we refer to Methods Algorithm 1 for single layer Tournament
sampling. First note that if p(z;) = 0 then P(Alg 1 returns x;) = 0; the rest of this
proof assumes p(z;) # 0.

P(Alg 1 returns )

J
ZIP’ |Y*| = j, x; appears i times in Y*, Alg 1 returns z;)

1=

J . .
. _ it
S < ) (V<or(@er))N=j (Z)p(xt)lp(vgl(wm) \ ) ;

1i=1

7 N
<N> (V<£71($t77') Z( ) (V g1(ze,m) \CUt) —i, (rearrange)

1\ i=1

I
-

I
Mz

.
I

I
] =

.
I

Now note that, by application of Lemma 43:

i() () p(V=9E0m) \ 2 = p(ay) [p(a2) + p(v =) \xt)}jil (Lemma 143

=1
= p(a;) p(V=orer))i—t, (simplify)
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Substituting this back in:

P(Alg 1 returns x;)

Z( ) V<91(rt r))N Jp(xt)p(vzgl(xt,r))jfl

N
V 1 (2, r) Z( ) (V= lren)N=ip(y=oi(zer))i (rearrange)

le

= V P <[p V<‘71(””"T)) +p(V= ‘71(”””))} p(V<gl(’“’T))N) (binomial formula)

V 91($r,7) (p V<91(act T) p(V<91(act,r))N> . (simplify)

K.3 Proof of computational complexities

Tournament sampling

The tournament-based implementation of multi-layer Tournament sampling presented
in Methods Algorithm 2 requires N™ samples to be taken from prm(-|x<;) and N™—1
comparison operations to decide the winners of the matches. The number of g-values
to be computed is at most N™ + N™~1 ... + N = N™+!l _ N (if you compute the
g-values for all candidates in the tournament) or m|V| (if you compute g-values for
all tokens in the vocabulary for every layer).

Vectorised tournament, general

The general vectorised implementation of Tournament sampling presented in
Theorem 15 requires m applications of Equation (E21). Equation (E21) requires the
computation of p(V<9(1)) and p(V=9(1)) for each x; € V; this can be computed in
O(|V]log |V|) operations by first sorting the g-values. The number of g-values to be
computed is m|V|, and only one sample needs to be taken at the end of the process.

Vectorised tournament, binary g-values

In the special case of binary g-values (which we use in most of our experiments, with a

Bernoulli g-value distribution), each layer only requires the computation of p(V91=0)

and p(V91=1) (see Corollary 14), thus no sort is required and the number of operations
O(]V]) per layer.

Gumbel sampling

Gumbel sampling (Supplementary Appendix B.1.1) requires us to compute |V| g-
(i)

W for every x; € 14

values —i.e., U; in Equation (B12). We then need to compute —
then take the argmin, which requires O(|V|) operations.
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Soft Red List sampling

Soft Red List sampling (Supplementary Appendix B.1.2) requires us to compute |V|
(binary) g-values. Adding a constant to all logits on the green list and taking softmax
requires O(|V]) operations, then finally we take a single sample from pyp,.

K.4 Proof of Theorem 17

Proof. Equation (E16) gives an expression for pym(z:|p,7, fg,2,1) which we can
rewrite:

Pun (@1lp, 7, £,2,1) = pla) (p(V7000)) 4 2p(v <o) (Eqn E16)

<Zp Ly, (@)= (we,r) + 2L (o, r)<g1(wmﬂ> (rearrange)
zeV

Next observe that for any z,z; € V (here for conciseness we write E, to mean
Eernif('R)):

E, [ (xﬂ“)=91(wt,r)] + 2E, []191(x,7')<g1(wt,7')]
[

=B, [Lg, e.r)=g1(wer) | + Br [Lgy@r) <01 (eem)] + Er [Tgy @501 (@] (by Methods Def 4)
=B | Loy @.r)=gi (@e.r) T Lor(@.r)<gi(@er) + ]lgl(afm)>g1(xm“)]

=E,[1]
=1,

Substituting back:

E. [pwm(@elp, 7, fg,2,1)] (ZP )

zeV
= p(w1).

K.5 Proof of Theorem 18

Proof. Proof by induction. The m = 1 base case is given by Theorem 17. For the
induction case, suppose Equation (G23) is true for m — 1. From Theorem 15, we know

1 m—1
Pun (1P 7o, fg:2m) = W(pGi ", g (-, 74), 2) where pii ) = pusa (lp, 7e, £y, 2.m = 1)
is the watermarked distribution for m — 1 layers. So:

Emenif(R) [pwm(mt|pv Tt, fgv 27 m)}
:E’rtNUnif(R) [W<pwm(|p7 Tty fga 2) m — 1)7 gm(; Tt), 2)] .
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Now consider that pwm(:|p, ¢, fg,2,m — 1) depends on r; only via the g(-, ;) values
for / =1,...,m — 1. Because of our definition of g-values using a pseudorandom hash
function (Methods Definition 4), we can separate the expectation for different layers:

:ErtNUnif(R) [ETQNUnif(R) [W(pwm('|pa T't, fga 2,m— 1)7 gm(': Tzlf)a 2)”
:ErtNUnif('R) [pwm('|p7 Tty f97 2,m— 1)] (Thm ].7)
=p(z¢). (induction assumption)

O

K.6 Proof of Theorem 19

Proof. Consider the family of probability distributions over a two-word vocabulary
V ={a, b} with py,m(a) = p and prv(b) = 1—p for some p € [0, 1]. Then by considering
the cases where a appears 7 times in the N samples, we can write:

Er [pwm(a|pLMa T, fga N’ 1)]

NN i
P 3 () [l + ]lgl(a”“)—gl(bm)N”
=1
N-1
N . .
N 7 N—1
= 1—
N+ ; <i>p( p) [

where Cy, is the collision probability of f,. Expression K35 is a polynomial in p
of degree < N. If the sampling algorithm is non-distortionary, then this polynomial
equals pra(a) = p for all p € [0, 1], so the polynomial coefficients must be zero for all
powers other than p'. However, consider the coefficient of p?:

.22: (JX) (Z_il)(—l)“' [1 _2Cfg + cfgﬂ

:ET

¥ )
—L + C¢, — K35
2 + fg N:| ? ( )

=1
1—Cfg 1 N(N -1) I—Cfg 2
——N(N—].) |:2+qu1\]:|+ 2 2 +Cfgﬁ
N(N -1)
= 4 [Cfg B 1]
This is non-zero as N > 2 and Cy, # 1. Proof by contradiction. O

K.7 Proof of Theorem 21

Proof. In Methods Algorithm 3, each response y* is in fact a continuation of its cor-

responding prompt ' Therefore we write y; = X;i T ,X% where n; is the length
of prompt x* = xj,...,x;, .
Now, each Pym (yi\xi7 ky (xtyh), ..o, (xL i_l)) can be written as a prod-

uct HtT;m_H Pum (xi[xL,, ks (xb yh), ..., (x*1,y"™1)). Let W; denote the set of all

(0]
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timesteps ¢ = n;+1, ..., T; for which the context window x! ., | := (x!_p,...,xi_)
is already in the context history C; UCyU---UC; (see line 6 in Methods Algorithm 3).
Thus:

Pwm (Xilxit’ k7 (X17 yl)a ceey (Xi_17 yi_l))
[ pua(xglxty) if t € W;
P [S (pom(-[x%y), M(Xi_py—1,k)) = x}| otherwise.

Thus:

,’:]w

Ep~unit(r)

Pum (X", k; (x* 1),...,(Xi1,yi1))]

T;

-
Il
_

::h

:E’“NU“WR) m (X% b (x 17y1),-..7(xi‘17yi‘1))]

ZEk~Unif(7z)

u ::‘]x 'u

H pLMm Xt|x<t H IP pLM(-|Xi<t)7h(xifH:tfl,k:)) = Xft]
cew;

tgW;

Note that this product depends on k only through h(x}_,.,_;,k), where all x}_ ., ,
terms are different. By pseudorandom definition of h (Methods Section 5.3), tak-
ing expectation Ei unigr) over the whole product is equivalent to taking separate
expectations over the random seed produced by h:

K
=11 I1 pemxiixiy) T] Eenvaitr) (B[S (paa(IxLy,), r) = xi])
i=1teW; tEW;

:H H pLM(xi|xi<t) H pLM(xi|xi<t) (S non-distortionary)
i=1teW; tgW;

K T ..
=11 I pem(xilxi,)

i=1t=n;+1

K
=[[peu(y'Ix").
=1

K.8 Proof of Theorem 25

Proof. We can divide Fy,,(z) by how many unique samples there are in the N samples
drawn from pry in Methods Algorithm 1:

Fou(2) = PraUnif(R) z~pum (- pyrs fa.N,1) [91(2,7) < 2] (Definition 24)
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Cﬁ7hiPTNUnif(R) [f unique y1,...,y; all have g1 (y;, 1) < 7]

<
Il
-

I I
M= I[]=

<.
Il
—

Next, if f, is continuous, then:

d
fow() = - Fou(2)

(
N .
Z ONI GF, (2)I 7t (chain rule)

gw
= fg (Z) I)LM
Jj=

Lastly, if f, is is discrete with support z; < 2 < --- < 2z, then for each z;:

fgw(zi) = Fgw(zi) - Fgw(zi 1) (let Fgw(ZO) =0.)
ZCﬁ’l\jAF z;)? ZC’Z])\L’RJ{F Zi—1) (shown above)
= ZCA’I\JA (Fg(zi)] — [Fy(z) — fg(zi)]]) (rearrange)
=1
jN J .
= Z Cﬁ’g{ (Z(—l)k_l (‘;) Fg(zi)j_kfg(zi)k> (binomial formula)
j=1 k=1
N J .
= e 0 (;ﬂ(—nH(‘;)Equnf‘-’“fg(zi)k-l) .
890 D

21 K.9 Proof of Theorem 29
Proof. From Equation (H24),

N+1
FpHz) =) Cp T Fy ().
j=1

Note that Cﬁf/ll’j can be written as:

N+1,7 _ ~N,jpN,j N,j—1mpN,j—1
CPLM CPLI% ]P)PLM (Same) CPLM IEDpLI\zI (new)

se2  where IPIJ)VL’I{;I (same) is the probability that an additional sample from pr, is already in
sz a collection Y of N samples sampled i.i.d. from pr, given that Y contains j unique

7

Cﬁ’i F,(2). (Methods Definition 3)



894

895

897

898

900

elements. Similarly IP’N 77 !(new) is the probability that an additional sample from
pLM is not already in the collection Y of N samples sampled from pr, given that Y
contains 7 — 1 unique elements.

Now, we can substitute this in:

=z
+

1
FNFL(2) = [CNI PN (same) + CNI 1PN (new) | Fy(2)?

PLM™ PLM pLMm pLMm

N
= CNI [P (same) Fy(2)) + B (new)Fy(2)"!]  (reindex)

PLM PLM PLM
j=1
N .
= Z Cgfd [Pgﬁgd (same) + Ppﬁlju (new)Fy(z)] Fy(2)’ (rearrange)
j=1
N . .
=3 CNI 1= (1= Fy(2))P) 7 (new)]| Fy(z)’ (P(new) + P(same) = 1)
j=1
=FN(2) - Z]ij;g{ new)CJ Fy(z)) (Eqn H24)
N
> F(2)
When 0 < ng\[u(z) < 1, the equality holds iff IP’IJ,VL’I{I (new)C';,\é’liI =0foral j=1,...,N;
equivalently iff the support of prm(-|z<¢) has 7 or fewer elements for all j =1,..., N.

This is true iff pym(+|z<¢) is one-hot. O

K.10 Proof of Theorem 31

Proof. For conciseness, we will write g(x) to mean g;(x,r). From Equation (E16):

Pwm(z|pLM, 7, fg,2,1) = pLm() [pLM(V:g(m)) + 2PLM(V@(‘T))}

=pum(z) |pLm(z) + Z pLm(z’) (lg(a:/)=g(w) + 219(x’)<9(z))
z'eV,x'#x

So the collision probability Cgv’vlm =2 sev Pwm(Z[pLM, 75 fy 2, 1)? equals:
G = > pem(@)? |paa(@) + Y0 prm(@’) (Lg)=g(e) + 2Lg(ar)<g(a))
zeV z'eV,x'#x

Expanding this out, it can be written as C»! = A+ B 4+ C + D where:

A= Z prm(z)*

zeV
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B=2) pn(@)® Y pral@) (Lyen=ge) + 2Lge <o)

zeV z'eV,x'#x
2
C=> pm()? Y pm(@)? (Ly=g(e) + 2Lg)<g(x))
zeV ' eV,x'#x
D=3 puu(e)’ > pum(@)pim(®2) (Lg(e)=g(a) + 2Lg(e1) <o) (Lg(aa)=g(2) T 2Lg(an)<g(z))
zeV z1,22€V,

T1AT,T2F£T,T1#T2

Tackling these individually, first we have A = Cgﬁw Now B: for 2’ # x:

E; [Lg@n=g(x) + 2Lg(z)<g(x)] = Er [Lg(a)=g(x) + Lo@)<g(@) + Lo(e)>g(x)] =1

SO:
Bl =2 Z pm () Z pum(z') =2 Z prm(@)?(1 = pru(2)) = 203& - 203;1\4'
eV ' eV,x'#x zeV
Next C:
2
E, [ (Lyw=g(e) + 2Lya<o) | = Er [Lon=g(e) + 4Ly <o)
21
2,1 fq
=0+ 47
o 2,1
=2-Cp.
and so:

Cl= ZpLM(:E)Z Z prum(z’)? (2 - C?;l)

z€EV ' €V, £
( ) ZPLM :,%LL —pLM( )2)
zeV
= (2- ) (caL - (2- ety ol

Lastly for D, note that for x1 # z, 2 # x, T1 # x2:

Er [(Tg@n)=g(x) + 2Lg(an)<g(@)) (Lg(ra)=g(z) T 2Lg(as)<g(x))]
=E; [Lg(o1)=g(w2)=g(x) + 2Lg(z1)<g(@2)=g(x) + 2Lg(z2)<g(a)=g(x) + +Lg(a1)<g(x),g(x2)<g(x)]

3,2 3,2 3,2 3,3
_C3l+2cf" Lot +4<C +Cfg>

3 X2 3 x 2 3 X2 3
4 4
_ 3,1 3,2 3,3
=Cy, +305, +3¢5,

41 g,
3 3
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where the last equality is because because C;’;l + C}o’f + C’]?Z;S = 1. Also note that:

> pual@pia(es) = Y pu(en) (1= pra(@) — pra(e))

z1,22€V, 1 EV:
T1F£T,T2F£T,T1F£T2 T1#T

= (1 = prm(2))” = O, + prmi(@)?
=1- C2’1 — QpLM(J:) + QPLM(@")Z-

pLMm

And so:

4 1
E,[D] = pum()® (1= Oy, — 2piu() + 2pra()?) (3 - 30?;1)
zeV

4 1
- (5395 |- Ch) T -2 T +2 e
zeV zeV zeV
4 1 34 4
- (3 ~3% ) [Coiha = (Coia)” = 2G50, + 26,0, -

Summing all four together and rearranging:

B, tmitry [C2L ] =CH1 o031 _gcdl | (2 - cj%;l) (C21 )2 (2 - cﬁj) ok

Pwm LM pLMm pLMm pLMm pLmMm

+ (4 - ;cj:;l> [C2 —(CRl )2 =203 +20; ]

3 pLMm pPLMm pLMm pLMm

4 1 3,1 2,1 2 1 3,1 2,1 2,1 \2
- |:3 B §Cfg :| CYZDLM + g + gcfg - Cfg (CpLM)

3 pPLM 3 pPLM”

_ {2 _ ;C;q1:| o3l [1 " %C;;I _ C?;l] ol

2 K.11 Proof of Theorem 32

Proof. From Theorem 31 we have:

Ermcn (G2 = |3 - 505 2t + |3+ 505t - &3] (an?

Pwm 3 3 pLm 3 PLM

3 pLm 3 LM’

~[B-enfan - [+ -

80



9203

905

PLM — 27 PLM PLM

Noting that [7 - 703 1] > 0, and from Lemma 44, we have C>! < 1021 (14 C21)
(with equality iff pry is one-hot), and so:

ErtnitR) [Coim] = [4 - 703 1} cz! {2 + 10;;1 — Cj%ﬂ (C21)?

Pwm 3 pPLM pLM

2 3,1 21 12 3, 21| 4,1 .
_ [3 - 70 } SCELO+C2L) — |5+ 503 =P O, (substitute)
02 1 - 703,1 _ 02,1 C2 1 _ 04 1
PLM 3 + 3 fq fq ( PLM) pLM | ° (rearrange)
Note that (C2 1 )2 C4 1 . From Lemma 45 we have %Cg”l > Cg2’1 — é It follows
that E, <umir) [, ] > Cﬁiw O

K.12 Proof of Theorem 39
Proof. For Algorithm 5, the acceptance rate is:

(1 qwm(anrl |x1:n; k))

Z Pwm (Tnt1|T1:0; k) min

$n+1€V pw111($n+1|x1:n; k)

= Z min(pwm(xn+1|$1:n;k)aqwm($n+1|x1:n§k))-
Tnt1€EV

Note that min(a,b) is concave in (a,b). Thus for two random variables a,b, we have
E[min{a, b}] < min (E[a], E[b]) by Jensen’s inequality. So taking expectation over k:
Ej~unit(r) [acceptance rate]

Z IEk:wUnif(’R) [I'Illn (pwm(-rn-l-l |$1:n; k)a Gwm (xn-i-l |x1:n; k))}
Tnt1€EV

< Z min (Ek~Unif(R) [pwrn(xn+1|x1:n; k‘)} 7Ek~Unif(R) [QWIn(xn+1|I1:n; k)]) .
Tpy1EV

Now note that:

]EkNUmf [pwm(zn-&-l ‘«Ilzn; k)]
=Eptnitr) (P[S@C|T1m), fr(T1m, k) = 2nq1])  (Definition 37)
E, vnigr) (P [S(P(|71:0),7) = Tpy1]) (property of f,, see Methods Section 5.3)

—p($n+1 |$1:n) (S non-distortionary)

and similarly for ¢g. Thus:

Er~unit(r) [acceptance rate] < Z min (p(zn41]T1:n), ¢(Tnt1|T1m))
Tp41EV
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= Z p(anrl'xl:n) min (L Q(anrl'xlm)) .

Tpi1EV P(Tni1]|T1m)

This is the acceptance rate for speculative sampling without watermarking (Defini-
tion 35). 0

K.13 Proof of Theorem 41
Proof. There are two cases. Case 1: If z,,;1 is sampled within the for loop on lines 8

to 15, we can write down the following expression for ¢/ (z,41|z1.,; k7, kT):

q(lfn-s-l\xl:n) } +
p(anrl |x1:n)

(1 — prm($|$1:n; k) min {1, MW}) (¢ — p)zm (Zn41 |1 kT) .

z€V p(x|x1n)

7 @pt1|z1:0: 62, E) = pum(Tnt1|T1 k) min {17

The first term corresponds to the probability of sampling x, 1 from the draft model

and accepting it. The second term corresponds to the probability of not accepting any

token from the draft model, then sampling x,, 41 from the rejection distribution.
Now recall that, from Definition 40:

Pam(@ilw<i; k7)== P [S (p(-2<t), fr(wes, k7)) = @]
QWm(xt|x<ta k ) =P [S (Q('|x<t)7 fT<x<t’ kT)) = I’t}
(q —p)vlm(33t|33<t; k" ) =P [5 ( [q(-|r<t) —P(‘|$<t)]+ afr(17<takT)) = JCt]

Now, taking expectation over the keys k” ~ Unif(R) and k7 ~ Unif(R) is equivalent
to taking expectation over the random seed r ~ Unif(R) (see Methods Section 5.3);
furthermore S is non-distortionary (Definition 16), so it follows that:

EkDNUnif(R) [ Wm(xt‘w<t, )] P(xt|$<t)
EkTwUnif(R) [QWm(xt‘x<t, )] Q(ﬂft|$<t)

EkTwUnif(R) [(q - p)im(xt\xq, )] [q(zt|z<i) — P(@e|T<t)] 1
It follows that:

Q(xn"rl |331:n) } +

EkDNUnif(R),kTNUnif(R) [q/(l‘n+1|$1:n; kD, kT)] = p(Tp41|T1:) min {1,
p(xn+1|m1:n)

. (Jf|$1:n) +
1- (z|%1.,) min < 1, LoNF1m) ) (¢—p)" (Xps1lTim) -
( ;/p 1 { P($|~T1:n)} q—p +1|T1

This expression is equal to the probability distribution of the next token generated by
speculative sampling, and it can be shown (see Theorem 1 proof in [5]) to be equal to
the target distribution g(x,11|z1.n)-
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Case 2: If 2,1 is sampled from qum(:|71.,; k) on line 16, then in expectation

o1s  over kT this is also q(-|z1.,)- O

917

922

K.

14 Proof of Theorem 42

Proof. For Algorithm 6,

Egp cunif(R), kT ~Unif(R)[acceptance rate]

. q($|xl:n)
=Epp cUnif(R), kT ~Unit Pum(]@10; k) min <1’)
Unif(R) Unif(R) TEZV p(l“xlzn)

. q(z|T1.00
= Z Ekp ~Unit(R) [Pwm (#]21:0; k)] min (1, (|1)>

eV p($|$1:n)
= Z|T1.p) min M
=3 sletor (1,p($|x1m)). 36

The last equality follows from S being non-distortionary (Definition 16) and the fact
that taking expectation over the key is equivalent to taking expectation over the ran-
dom seed (Methods Section 5.3). The expression in Equation (K36) is the acceptance

rate for speculative sampling without watermarking (Definition 35). O
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