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Supplementary Information1

Appendix A Scoring functions2

In this section we first introduce some notation, then describe several scoring functions3

for Tournament sampling.4

A.1 g-value notation and masking5

Our proposed scoring functions for Tournament sampling are computed from the g-6

values of the text, which provide the watermarking evidence. Specifically, recall that7

for multi-layer Tournament sampling (Methods Algorithm 2), we compute the g-values8

g1(xt, rt), . . . , gm(xt, rt) for each of the m layers. For conciseness we will write gt,` :=9

g`(xt, rt) to refer to these g-values.10

In practice, our scoring functions do not use all the g-values {gt,` : 1  t  T, 1 11

`  m}. To reflect the masking applied during generation (Methods Section 5.6), we12

make two modifications: (a) we discard the gt,` for t = 1, . . . , H due to the incom-13

plete context window, and (b) we discard the gt,` for steps t where the context14

xt�H , . . . , xt�1 appears previously in the sequence. This means that in practice, the15

collection of g-values used for scoring is {gt,` : t 2 T̂ , 1  `  m} for some subset16

T̂ ✓ {1, . . . , T}. For notational simplicity, we will write the following scoring functions17

assuming we use all the g-values; to obtain the masked version simply replace sums18

over t = 1, . . . , T with sums over t 2 T̂ and replace T with |T̂ |.19

A.2 Mean20

Tournament sampling works by returning tokens that are more likely to have high g-
values. Thus, the simplest scoring function is simply to take the mean g-value across
all tokens in the text and all layers:

MeanScore(x) :=
1

mT

TX

t=1

mX

`=1

gt,`. (A1)

For the Bernoulli(0.5) or Uniform[0,1] g-value distributions used in our experiments,21

the MeanScore of a text is between 0 and 1, with an expected score of 0.5 for22

unwatermarked text and a larger score expected for watermarked text.23

A.2.1 Weighted Mean24

In Supplementary Appendix H.4 we show that the amount of watermarking evidence
contributed by each layer decreases as more layers are added. This motivates the
Weighted Mean variant, which applies weights ↵1 � · · · � ↵m � 0, where

P
m

`=1 ↵` =
m, to the sum of the g-values:

WeightedMeanScore(x,↵) :=
1

mT

TX

t=1

mX

`=1

↵` gt,`. (A2)
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We find that for a simple linearly decreasing choice of ↵, WeightedMeanScore gen-25

erally outperforms MeanScore. Specifically, we use ↵1 = , ↵2 =  � �µ

m�1 , ↵3 =26

� 2 �µ

m�1 , . . . ,↵m = µ with  = 10, µ = 1, then renormalised so
P

m

`=1 ↵` = m.27

A.3 Frequentist28

In some cases it may be desirable to perform a hypothesis test against the null hypoth-
esis that the text is unwatermarked; this has the advantage of providing a p-value
which allows us to exactly control the false positive rate. Under the null hypothesis,
each gt,` follows the g-value distribution fg (Methods Definition 3); furthermore if
we apply repeated context masking (Supplementary Appendix A.1) then the gt,` are
independent. This allows us to compute1 the p-value for the sum

P
T

t=1

P
m

`=1 gt,`:

p-value = 1� CDFBinomial(mT,0.5)

 "
TX

t=1

mX

`=1

gt,`

#
� 1

!
if fg = Ber(0.5) (A3)

p-value = 1� CDFIrwin-Hall(mT )

 
TX

t=1

mX

`=1

gt,`

!
if fg = Unif[0, 1]. (A4)

We define FrequentistScore(x) to be the negative p-value and classify texts as29

watermarked if the score exceeds a threshold.30

When scoring a corpus of texts that are all exactly the same length, the Fre-31

quentistScore is equivalent to the MeanScore (i.e., they should produce the same32

detectability metrics); the WeightedFrequentistScore that follows is similarly equiva-33

lent to the WeightedMeanScore. For simplicity therefore, in our experiments we use34

the Mean versions instead of the Frequentist versions of the scores.35

A.3.1 Weighted Frequentist36

Similarly to the Weighted Mean score, we can weight the evidence of the earlier lay-
ers more strongly than later layers by applying weights ↵1 � . . . ,� ↵m � 0 whereP

m

`=1 ↵` = m. For this hypothesis test we use a Z-test. First, we compute the mean
µ and variance �2 of the weighted sum on a single step,

P
m

`=1 ↵` gt,`, under the null
hypothesis; for example:

µ =
m

2
, �2 =

1

4

mX

`=1

↵2
`

if fg =Ber(0.5)

µ =
m

2
, �2 =

1

12

mX

`=1

↵2
`

if fg =Unif(0,1).

1
If the Binomial or Irwin-Hall CDFs are not easily computable, we can instead use the CDF of the normal

approximation; this is equivalent to the method in Supplementary Appendix A.3.1 using all weights equal

to 1.

32



It follows that the mean of these weighted sums across all steps, 1
T

P
T

t=1

P
m

`=1 ↵` gt,`,
is approximated by the Normal(µ, �

2

T
) distribution. Thus we can compute a p-value:

p-value = 1� CDF
Normal(µ,�

2
T )

 
1

T

TX

t=1

mX

`=1

↵` gt,`

!
. (A5)

A.4 Bayesian37

In this section we present a two-sided approach that (unlike the one-sided Frequentist38

approach which only assumes the unwatermarked g-value distribution) also uses knowl-39

edge of the watermarked g-value distribution, which is learned from data. Assuming we40

have access to a representative set of labeled watermarked and unwatermarked sam-41

ples for training, this approach is able to offer more information than the Frequentist42

approach, by considering how g-values are distributed for both hypotheses.43

Formally, we have two hypotheses: watermarked (w) or unwatermarked (¬w).
We treat the watermarking hypothesis as a latent variable and the g-values
{gt,`}1tT,1`m as the observed evidence. The prior P (w) is the probability a pri-

ori that a piece of text is watermarked; it can be learned empirically or set to reflect a
belief about the watermarked base rate. The posterior P (w|g) is the probability that
the text is watermarked, given its g-values. The likelihoods P (g|¬w) and P (g|w) are
the probabilities of observing these g-values, in unwatermarked text or in watermarked
text respectively. Bringing these together, we can compute the log posterior odds:

LogPosteriorOdds(x) = log

✓
P (w|g)
P (¬w|g)

◆

= log

✓
P (g|w)P (w)

P (g|¬w)P (¬w)

◆

= logP (g|w)� logP (g|¬w) + logP (w)� log (1� P (w)) .

We define the BayesianScore as the the watermarked posterior P (w|g), i.e., the prob-
ability that the text x is watermarked, given its g-values. This can be computed from
the log posterior odds like so:

BayesianScore(x) := P (w|g)
= � [LogPosteriorOdds(x)]
= � [logP (g|w)� logP (g|¬w) + logP (w)� log (1� P (w))] (A6)

where �(·) is the sigmoid function. To use the BayesianScore for Tournament sampling,44

we just need to determine the likelihoods P (g|¬w) and P (g|w):45
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Theorem 6 (Bayesian likelihoods for multi-layer Tournament sampling). For multi-

layer Tournament sampling, the likelihoods can be factorized as:

P (g|¬w) =
TY

t=1

mY

`=1

fg(gt,`) (A7)

P (g|w) =
TY

t=1

mY

`=1

NX

c=1

P (gt,`| t,` = c)P ( t,` = c|gt,<`) (A8)

where  t,` is a random variable representing the number of unique tokens in a tour-

nament match on layer `, on timestep t. Furthermore, P (gt,`| t,` = c) can be written

in terms of the g-value distribution fg and Fg (Methods Definition 3):

P (gt,`| t,` = c) =

(
cFg(gt,`)

c�1fg(gt,`) if fg is continuous

Fg(gt,`)
c � [Fg(gt,`)� fg(gt,`)]

c
if fg is discrete.

(A9)

Proof. See Supplementary Appendix K.1.46

The factorization in Theorem 6 is based on two intuitions. First, the distribution
of a watermarked g-value gt,` can be determined exactly if we know the number of
unique candidates  t,` (it is given in Equation (A9)). Second, the number of unique
samples  t,` is dependent on the amount of entropy in the distribution on layer `;
and this can be predicted as a function of the lower-level g-values gt,<` because on
a high-entropy timestep t, the g-values gt,<` are likely to be larger. Accordingly, we
model the probabilities P ( t,` = c|gt,<`) as learned functions of gt,<`. Specifically,
for experiments with N = 2 samples, we use a logistic regression model to learn
P ( t,` = 2|gt,<`):

P ( t,` = 2|gt,<`) = �

 
�` +

`�1X

j=1

�`,jgt,j

!
, (A10)

where �(·) is the sigmoid function, �` 2 is the bias parameter for layer `, and the47

weight �`,j 2 refers to the effect of gt,j on the probability that  t,` = 2. As N = 2,48

we can then set P ( t,` = 1|gt,<`) = 1� P ( t,` = 2|gt,<`).49

For the non-distortionary configurations used in this work, BayesianScore has a50

simple form, which follows directly from Theorem 6:51

Theorem 7 (BayesianScore for N = 2, Bernoulli(0.5) g-value distribution). If N = 2
and fg = Bernoulli(0.5), then:

BayesianScore(x) = �

 
TX

t=1

mX

`=1

[P ( t,` = 1|gt,<`) + (gt,` + 0.5)P ( t,` = 2|gt,<`)]
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+ logP (w)� log (1� P (w))

!
.

Proof. Follows from substituting fg(z) = 0.5 and Fg(z) = 0.5 + 0.5z into Theorem 652

and Equation (A6).53

Theorem 8 (BayesianScore for N = 2, Uniform g-value distribution). If N = 2 and

fg = Uniform[0, 1], then:

BayesianScore(x) = �

 
TX

t=1

mX

`=1

[P ( t,` = 1|gt,<`) + 2 gt,` P ( t,` = 2|gt,<`)]

+ logP (w)� log (1� P (w))

!
.

Proof. Follows from substituting fg(z) = 1 and Fg(z) = z into Theorem 6 and54

Equation (A6).55

Appendix B Related work: Generative56

watermarking57

In this section we discuss other generative watermarks; we divide our discussion into58

sampling algorithms, random seed generators, scoring functions, and other techniques.59

B.1 Sampling algorithms60

In this section we describe existing sampling algorithms (Methods Definition 5) which61

are alternatives to Tournament sampling. Our two baselines are Gumbel sampling and62

Soft Red List, which we choose both for their prevalence in the literature and their63

high performance relative to other methods [21, 37]. We give detailed descriptions of64

our baselines, then discuss some other sampling algorithms.65

B.1.1 Baseline: Gumbel (aka Exponential minimum) sampling66

In general, the Gumbel trick [38] is a method to take a sample x⇤ from any categorical
probability distribution p(x1), . . . , p(xV ) by adding i.i.d. samples G1, . . . , GV from the
Gumbel(0,1) distribution to the log probabilities:

x⇤ := argmax
1iV

[log p(xi) +Gi] .

It can be shown that P(x⇤ = xi) = p(xi) for all i. It is also true that the Gum-
bel(0,1) distribution is equivalent to � log(� log(U)) if U ⇠ Uniform[0, 1]. Therefore,
an equivalent formulation is to take i.i.d. samples U1, . . . , UV from the Uniform[0,1]
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distribution, then choose x⇤ as follows, which can be written in several equivalent ways:

x⇤ := argmax
1iV

[log p(xi)� log(� log(Ui))]

= argmax
1iV


log

✓
� p(xi)

log(Ui)

◆�

= argmin
1iV


� log(Ui)

p(xi)

�
. (Kuditipudi et al. [24] formulation)

(B11)

= argmax
1iV

h
U1/p(xi)
i

i
. (Aaronson and Kirchner [22] formulation)

(B12)

Aaronson and Kirchner [22] and Kuditipudi et al. [24] propose this method as a sam-67

pling algorithm, using p := pLM(·|x<t) in the equations above; Kuditipudi et al. [24]68

call the method exponential minimum sampling. In the terminology of this paper, the69

Gumbel sampling algorithm for watermarking can be implemented by taking the ran-70

dom seed rt and setting each Ui to be a pseudorandom uniform g-value Ui := g(xi, rt)71

by setting the g-value distribution fg = Uniform[0, 1], as described in Methods72

Section 5.4.73

Gumbel sampling is a non-distortionary (Definition 16) deterministic sampling74

algorithm that produces tokens with higher g(·, rt) values. As it is deterministic, it75

provides no entropy to resample from; this is a disadvantage compared to probabilistic76

sampling algorithms like Tournament sampling.77

To detect the Gumbel watermark, we take a text x1, . . . , xT and compute its
g-values g(x1, r1), . . . , g(xT , rT ) which we denote g1, . . . , gT for short; these are inde-
pendently Uniform[0,1] distributed if x is unwatermarked and likely to be higher if x
is watermarked. Aaronson and Kirchner [22] propose the following scoring function:

LogScore(x) := �
TX

t=1

log (1� gt) . (B13)

Another possible scoring function is MeanScore(x) = 1
T

P
T

t=1 gt, similar to78

Equation (A1) for Tournament sampling. To provide a fair comparison to the Bayesian79

scoring function for Tournament sampling (Supplementary Appendix A.4), we also80

develop a learned Bayesian scoring function for the Gumbel watermark. Here, we use81

the BayesianScore defined in Equation (A6), and approximate P (g|w) with a simple82

multi-layer perceptron (MLP). Specifically, P (g|w) =
Q

T

t=1 P (gt|w) where P (gt|w) is83

computed by the MLP, which takes just a single number gt as input.84

B.1.2 Baseline: Soft Red List sampling85

We use the recommended Soft Red List sampling algorithm from Kirchenbauer et al.
[23], in which a proportion � 2 (0, 1) of the vocabulary is green, the rest are red, and
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a constant � > 0 is added to all logits on the green list. Described in the terminology
of Methdos Section 5.4, this can be implemented by taking the random seed rt and
computing a g-value g(xt, rt) for each token xt 2 V using the g-value distribution
fg = Bernoulli(�), then sampling an output token x⇤ as follows:

logit(xt) := log pLM(xt|x<t) + �g(xt, rt) for all xt 2 V

pwm(xt) :=
exp(logit(xt))P

x
0
t2V

exp(logit(x0
t
))

for all xt 2 V

x⇤ ⇠ pwm.

This is a distortionary (Definition 16) probabilistic sampling algorithm that produces86

tokens with higher g(·, rt) values. As a distortionary sampling algorithm, it has been87

shown to affect text quality (in particular increasing perplexity), especially when � is88

large or � is small [23, 24].89

To detect the Soft Red List watermark, we take a text x1, . . . , xT and compute its
g-values g(x1, r1), . . . , g(xT , rT ) which we denote g1, . . . , gT for short; these are inde-
pendently Bernoulli(�) distributed if x is unwatermarked and likely to be higher if x is
watermarked. We can apply MeanScore(x) = 1

T

P
T

t=1 gt, similarly to Equation (A1).
Alternatively, we can apply a Frequentist scoring function, similar to the method used
by Kirchenbauer et al. [23]:

p-value = 1� CDFBinomial(T,�)

 "
TX

t=1

gt

#
� 1

!
. (B14)

When all texts in the corpus are the same length, MeanScore is equivalent to Fre-90

quentistScore (see Supplementary Appendix A.3) and so in our experiments we use91

MeanScore to match our methodology for Tournament sampling.92

B.1.3 Other sampling algorithms93

Here we mention a few more sampling algorithms, that we do not include as baselines:94

• Inverse Transform Sampling (ITS) is a simple deterministic non-distortionary water-95

marking sampling algorithm, however it has been shown to have lower detectability96

than Gumbel sampling [24, 25], so we do not include it in our experimental baselines.97

• Zhao et al. [39] propose a probabilistic distortionary sampling algorithm GIN-98

SEW, which involves applying a sinusoidal perturbation to the LLM probability99

distribution. For the distortionary category, we focus our comparison on the more100

widely-known Soft Red List sampling algorithm; to our knowledge GINSEW has not101

been empirically compared to Soft Red List so its relative performance is unknown.102

• Hopper et al. [40] propose a watermarking sampling algorithm that is equivalent103

to the special case of Tournament sampling with m = 1 layer, N = 2 samples,104

and a Bernoulli(0.5) g-value distribution; however, in its generality the Tournament105

sampling algorithm presented in this work is novel.106
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B.2 Random seed generators107

In this work we use the sliding window random seed generator (Methods Section 5.3).108

As noted in the literature [24, 25], the sliding window method can introduce sequence-109

level distortion (e.g., repetitive loops in text) when the same context (and thus the110

same random seed) is used repeatedly. We avoid this problem by applying repeated111

context masking (Methods Section 5.6); however, there are other ways to designing a112

random seed generator while reducing the likelihood of repeatedly applying the same113

random seed.114

Kuditipudi et al. [24] propose using a cycling sequence of random seeds – when115

paired with a distortion-free sampling algorithm, this method is single-sequence non-116

distortionary (Definition 20) if and only if the seed sequence is longer than the text117

length. However, meeting this criterion can be tricky in practice, as the maximum text118

length may be quite long, and increasing the seed sequence length reduces the overall119

watermark detectability as it requires searching for the correct alignment of the text120

and the seed sequence during detection. For this reason we do not use the cycling121

sequence method even though it is compatible with Tournament sampling; instead122

we choose a method (repeated context masking) that can give precise single-sequence123

non-distortion guarantees (Theorem 21) regardless of text length.124

Another approach is proposed by Christ et al. [25]: like the sliding window method,125

they use recent text context to generate random seeds; however the algorithm adapts126

to the entropy in the text to guarantee that the likelihood of repeated seeds is low.127

While this approach (when paired with a non-distortionary sampling algorithm) meets128

a strong notion of cryptographic indistinguishability, it is also less robust to edits, more129

computationally expensive to detect, and has lower watermarking strength. However,130

if this type of indistinguishability is desired, the Tournament sampling algorithm can131

be combined with this entropy-adaptive method.132

While the work discussed above focuses on avoiding random seed re-use in order133

to minimize distortion, Zhao et al. [41] take an opposite approach, using the same134

random seed on every step. They pair this random seed generator with the Soft Red135

List sampling algorithm and show that this ‘Unigram’ approach is more robust to136

edits than a sliding window approach. However, this robustness comes at the cost of137

decreased text quality and watermark security.138

B.3 Scoring functions139

In this work we focus on designing and evaluating scoring functions (Supplementary140

Appendix A) that score a whole text x, optimizing performance for the case that141

x is either completely unwatermarked, or x is the full unaltered text generated by142

the watermarked LLM. However, it can be useful to consider other cases, such as143

when x contains a mix of watermarked and unwatermarked text, or when x is a144

watermarked text that has been edited. Our scoring functions still work in these145

scenarios, but their performance reduces as the amount of original watermarked text146

decreases (Supplementary Appendix C.6).147

Existing work has proposed alternative scoring functions that perform better under148

these circumstances. Kuditipudi et al. [24] propose a block-based scoring function that,149
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for some specified block size k, searches through the text for the length-k block of text150

with strongest watermarking evidence. Such a scoring function could be used with151

Tournament sampling; the scoring functions presented in Supplementary Appendix A152

could be modified to operate over blocks of text. Kuditipudi et al. [24] also propose a153

scoring function that is designed to be robust to edits; this scoring function searches154

for the minimum-cost alignment between the text and the watermark, accounting for155

edits with a Levenshtein cost. While both these scoring functions have the advantage156

of performing better when the text contains watermarked sub-passages, or when the157

text has been edited, their overall statistical power decreases in the case that the entire158

text is watermarked and unedited.159

B.4 Additional techniques160

Giboulot and Teddy [37] propose a generative watermarking approach that does not161

fit into the framework presented thus far – one samples multiple texts from the origi-162

nal unwatermarked LLM, then chooses the text that scores most highly according to163

a scoring function. While Giboulot and Teddy [37] show that this approach provides164

a good detectability-robustness-quality tradeoff, it substantially increases the compu-165

tational cost of text generation. As computational cost is one of the most important166

priorities in a production system, we do not experiment with this method.167

In the category of distortionary sampling algorithms, Wouters [42] propose a168

method to reduce the distortion by applying the watermark only on steps when the169

expected perplexity increase is sufficiently low. This method could be applied to any170

distortionary sampling algorithm such as Soft Red List or distortionary Tournament171

sampling; however it is important to note that even if the perplexity is equal or lower172

than the unwatermarked LLM, the method is still distortionary.173

Appendix C Non-Distortionary watermarking174

experiments175

In this section we present further experiments with non-distortionary SynthID-Text176

and the Gumbel sampling baseline.177

C.1 Tournament depth and scoring functions178

In this section we present our experiments comparing the performance of the differ-179

ent scoring functions for (non-distortionary) Tournament sampling (Supplementary180

Appendix A), and their interaction with Tournament depth (i.e., number of layers).181

Bayesian learning procedure182

To learn the Bayesian scoring function (Supplementary Appendix A.4), the parame-183

ters are optimized by minimizing the cross-entropy loss between the predictions and184

the labels (watermarked or unwatermarked) using gradient descent. We use 30% of the185

10,000 watermarked and 10,000 unwatermarked training samples for cross-validation,186

and the rest for learning the parameters. During cross-validation, we choose the param-187

eters maximizing TPR@FPR=1% for texts of length 200 tokens on the validation set.188
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We use a learning rate of 1⇥10�3, a mini-batch size of 64, and 50 epochs. Empirically189

we find that truncating the watermarked sequences to 200 tokens during training to190

synthetically increase the difficulty of the classification task improves the generaliza-191

tion performance. During testing, the full length of the text available to use is utilized192

without any truncation.193

Weighted Mean learning procedure194

For the WeightedMean scoring function (Supplementary Appendix A.2.1), we find that195

the performance on the training/validation set is not sensitive to the choice of weights196

and we simply use a set of weights decaying linearly from 10.0 to 1.0 across the layers.197

Results198

In Figure C1 we see that the Mean and WeightedMean scoring functions peak at199

certain depths, with detectability degrading as the depth is further increased. This is200

due to the fact that earlier layers contain more watermarking information than later201

layers (see Supplementary Appendix H.5). By contrast the Bayesian scoring function202

provides better performance than Mean and WeightedMean across all temperatures203

and depths. In particular, the Bayesian performance plateaus but does not decrease204

as we add more layers; this is because the Bayesian scoring function is able to learn205

to reduce the contributions from the later layers (see Supplementary Appendix A.4).206

The Bayesian scoring function also benefits from being able to model the expected g-207

values for the later layers based on the g-values from the earlier layers. The g-values208

are used by the scoring function to adjust p (g|w) for the later layers, leading to further209

improved detection performance. The WeightedMean and the Mean scoring functions210

are not able to adapt in a similar manner, resulting in their weaker performance. As211

we typically see diminishing returns beyond 30 tournament layers, for all experiments212

with non-distortionary SynthID-Text (including speculative sampling) we use 30213

tournament layers.214

C.2 Gumbel sampling: scoring functions215

For Gumbel sampling, we compare the LogScore log(1 � g) scoring function and the216

learned Bayesian scoring function described in Supplementary Appendix B.1.1.217

Bayesian learning procedure218

As described in Supplementary Appendix B.1.1, we train a MLP-based Bayesian219

scoring function for Gumbel sampling. Similar to the training procedure for the Tour-220

nament Bayesian scoring function, we use 30% of the 10,000 watermarked and 10,000221

unwatermarked training samples for cross-validation, and the rest for learning the222

parameters. During cross-validation, as before, we choose the parameters maximizing223

TPR@FPR=1% for texts of length 200 tokens on the validation set. We use a learn-224

ing rate of 1⇥10�3, a mini-batch size of 64, and 50 epochs. We run a hyperparameter225

search where we vary the the number of hidden layers in the MLP over the set {1, 2},226

the number of hidden neurons per layer is varied over the set {3, 5, 7, 10, 20, 50, 100},227

the learning rate is varied over logspace(-3, -1, num=4), i.e., we try four equidistant228
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(b) Temperature=0.7
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(c) Temperature=1.0

Fig. C1: Effect of number of tournament layers, and choice of scoring function on
the detectability of text generated with non-distortionary SynthID-Text (all texts
are 200 tokens). Texts are generated from Gemma 7B-IT with three different model
temperatures. Detectability is measured by true positive rate at a false positive rate of
1% (TPR@FPR=1%). Dashed lines correspond to a bootstrap estimate of the mean
TPR@FPR=1%, and shaded regions correspond to the 90% confidence interval on the
mean estimate.

values for the learning rate on the log-scale, ranging between 10�3 to 10�1. We vary the229

length for truncating the watermarked responses over 100, 200, 300, and 400 tokens.230

We train MLPs across all of these parameter settings, and select the one perform-231

ing the best on the cross-validation set based on TPR@FPR=1% for texts of length232

200 tokens. These parameters are then evaluated on the held-out test set without any233

truncation.234

Results235

We see in Figure C2 that the two scoring functions have very similar performance, with236

the LogScore log(1 � g) performing slightly better in average, with the improvement237

in most settings not being statistically significant. Unlike for Tournament sampling,238

the learned scoring function does not improve performance; we conjecture this may be239

because the function being learned P (g|w), a mixture of beta distributions [43], is more240

complex for Gumbel sampling than that for Tournament sampling, where P (g|w) for241

each layer is a Bernoulli distribution. Additionally, the scoring function for Gumbel242

sampling is not able to benefit from information provided in earlier layers. Given the243

comparable performance of the two detection strategies, we use the log(1� g) scoring244

function as the baseline throughout the paper.245

C.3 Diversity effects246

We also measure the diversity effects of the two watermarks. As discussed in Sup-247

plementary Appendix G.3, our two non-distortionary baselines are single-sequence248

non-distortionary, meaning they do not affect the diversity within a single text (e.g.,249

they do not cause repeating loops in text). However, they do reduce the diversity250
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Fig. C2: Effect of choice of scoring function on the detectability of text generated
with Gumbel sampling. Texts are generated from Gemma 7B-IT with three different
model temperatures. Detectability is measured by true positive rate at a false positive
rate of 1% (TPR@FPR=1%). Dashed lines correspond to a bootstrap estimate of the
mean TPR@FPR=1%, and shaded regions correspond to the 90% confidence interval
on the mean estimate.

across multiple responses; in particular, if we sample multiple responses to the same251

prompt, they are more likely to be similar to each other if they are watermarked, than252

if they are from the unwatermarked model. We measure this inter-response diversity253

empirically by measuring the Self-BLEU similarity [44] between pairs of responses to254

the same prompt.255

To mitigate the inter-response diversity problem, Aaronson [45] suggest turning256

off the watermark on a fraction of all timesteps, thus increasing the chance that the257

texts diverge; however this reduces watermark detectability. We can achieve a similar258

diversity/detectability trade-off with SynthID-Text simply by varying the number259

of tournament layers; more layers provides stronger detectability and lower diver-260

sity, while fewer layers provides weaker detectability and higher diversity. Extended261

Data Figure 4 shows that the diversity/detectability trade-off is more favourable for262

SynthID-Text than for Gumbel sampling. For this experiment we generated two263

responses to each prompt using Gemma 7B-IT, and measured the pairwise Self-BLEU264

between each pair of responses to the same prompt. We varied the number of Tour-265

nament layers from 1 to 30, and the Gumbel watermark probability from 0.1 to266

1.0.267

C.4 Human preference test268

In this section we provide details of the human preference test comparing non-269

distortionary SynthID-Text to unwatermarked responses. For this experiment we270

sample both a watermarked and an unwatermarked response to 3,000 ELI5 [30] ques-271

tions from a Gemma 7B-IT model with a temperature of 0.7. We present the two272

responses side-by-side, randomly labelled A and B, alongside the ELI5 question, to273

human raters on the Prolific platform. Raters are presented with five questions:274
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• (Relevance) Which response is more relevant to the question?275

• (Correctness) To the extent you can tell, which response is more correct?276

• (Helpfulness) Which response do you find more helpful overall?277

• (Grammaticality/coherence) Which response is better in terms of grammatical278

correctness, comprehensibility and coherence?279

• (Overall quality) Taking into account the overall answer relevance, correctness, help-280

fulness, as well as grammatical correctness, which of the two responses is of higher281

quality?282

For each of these five questions, raters choose one of the following options: Response283

A, Response B, Both are low quality, or Both are high quality.284

To measure the rater agreement, we ran a pilot study over 100 examples, annotated285

fourfold, and measured the pairwise rater agreement over all paired non-tie ratings.286

We find agreements of 73.4% (relevance), 73.6% (correctness), 67.8% (helpfulness),287

75.9% (grammaticality / coherence), and 63.7% (overall quality); broadly in line with288

previous work [46].289

Extended Data Table 1 shows the results. For our analyses we consider the null290

hypothesis to be that there is no difference in the response quality between water-291

marked vs. unwatermarked responses. In our first analysis, we only consider the non-tie292

cases (i.e. where the rater expressed a preference for one of the two responses), and293

calculate the fraction of cases preferring the watermarked response vs. the cases pre-294

ferring the unwatermarked response. We calculate symmetric 95% confidence intervals295

using bootstrap resampling of the 3,000 collected responses. For all of the five ques-296

tions, 50% (the value expected under the null hypothesis) is within this confidence297

interval. In our second analysis, we include the neutral ratings by grouping the Both298

are low quality and Both are high quality ratings into a tie label. Similarly here, none299

of the p-values under a trinomial test reaches statistical significance. We conclude that300

for all five ratings, the data collected does not provide sufficient evidence to reject the301

null hypothesis of no difference between watermarked and unwatermarked responses.302

C.5 Automatic quality evaluations303

We provide results of several automatic quality evaluations to demonstrate that non-304

distortionary SynthID-Text is quality-neutral:305

• Table C1 shows that non-distortionary SynthID-Text and the Gumbel baseline306

both have no effect on perplexity, for a variety of models and temperatures.307

• Table C2 shows that non-distortionary SynthID-Text performs equally well as the308

equivalent unwatermarked model on a collection of automatic benchmarks assessing309

coding ability [47, 48], language modeling [49], mathematics [50, 51], and general310

abilities of foundation models [52, 53], for Gemma 2B-PT and 7B-PT. Note that311

these experiments use 20 tournament layers, rather than 30. We find no prefer-312

ence between responses watermarked with non-distortionary SynthID-Text, and313

unwatermarked responses.314
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Model Temp. Unwatermarked Non-distort. SynthID-Text Gumbel

2B-IT 1.0 1.720 1.726 1.715

Gemma [1.709, 1.729] [1.716, 1.740] [1.699, 1.732]

0.7 1.509 1.500 1.487

[1.499, 1.515] [1.496, 1.506] [1.472, 1.499]

0.5 1.401 1.411 1.395

[1.395, 1.407] [ 1.407, 1.416] [1.387, 1.407]

7B-IT 1.0 1.464 1.451 1.449

Gemma [1.447, 1.479] [1.444, 1.459] [1.441, 1.454]

0.7 1.307 1.306 1.301

[1.304, 1.311] [1.303, 1.310] [1.292, 1.313]

0.5 1.246 1.241 1.247

[1.242, 1.250] [1.236, 1.249] [1.241, 1.253]

7B-IT 1.0 1.408 1.402 1.399

Mistral [1.399, 1.418] [1.393, 1.413] [1.393, 1.405]

0.7 1.269 1.266 1.268

[1.263, 1.276] [1.262, 1.270] [ 1.261, 1.273]

0.5 1.218 1.205 1.203

[1.211, 1.222] [1.200, 1.209] [1.196, 1.210]

Table C1: Mean LLM perplexity [54] for different models and temperatures,
for unwatermarked text and text watermarked with non-distortionary SynthID-
Text and with Gumbel sampling. Each result is given with a 90% confidence
interval based on bootstrapping. For these non-distortionary watermarks, there is
no change to perplexity. The perplexity of the generated texts with and without
watermarking is measured with respect to the probabilities provided by the under-
lying LLM.

C.6 Detectability under perturbation315

We evaluate the detectability of (non-distortionary) SynthID-Text after the water-316

marked text has been perturbed via (a) random word deletion and (b) LLM317

paraphrasing. First, we generate watermarked texts using the Gemma 2B-IT and 7B-IT318

models prompted with 3,000 prompts from the ELI5 dataset [30]. For random word319

deletion, we randomly delete either 20% or 50% of words (defined by space separation).320

For LLM paraphrasing, we prompt Gemini Ultra with ‘Paraphrase the following arti-321

cle, while retaining the same semantic meaning, without losing any details. Please322

paraphrase sentence by sentence. Don’t summarize only.\n Original: {query}\n’ and323

enforce the output sample to start with “Paraphrase:”. Some paraphrasing examples324

are shown in Table C3 (bottom).325

Figure C3 shows the results. Like other generative watermarks, SynthID-Text326

provides some robustness to edits – i.e., editing the text weakens detectability, but the327

watermark can still be detected with high accuracy if the text is sufficiently long. The328

paraphrasing attack is quite strong, especially if we use a strong paraphrasing model329

like Gemini Ultra and obtain a thoroughly paraphrased text that changes most of330

the phrasing of the text.331
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Benchmark Metric " Unwatermarked Non-distort. SynthID-Text

(type) 2B-PT 7B-PT 2B-PT 7B-PT

MMLU (lang. [49] 5-shot, 32.42 57.73 32.9 58.25

modeling) top-1 [31.73%, 33.03%] [57.05%, 58.38%] [32.22%, 33.55%] [57.6%, 58.97%]

HumanEval [47] pass@1 14.02 26.22 11.59 25.61

(coding) [9.76%, 18.9%] [20.73%, 31.71%] [7.32%, 15.24%] [20.12%, 31.1%]

MBPP [48] 3-shot 19.4 34.4 20.6 37.2

(coding) [16.6%, 22.4%] [30.8%, 37.8%] [17.8%, 23.8%] [33.6%, 41.0%]

GSM8K [50] accuracy 9.17 38.26 9.49 39.14

(maths) (all samples) [8.72%, 9.61%] [37.48%, 39.01%] [9.0%, 9.96%] [38.38%, 39.89%]

MATH [51] 4-shot 7.28 15.72 7.2 15.64

(maths) [6.72%, 7.84%] [14.82%, 16.56%] [6.64%, 7.8%] [14.82%, 16.46%]

AGIEval [52] – 24.02 42.44 24.1 42.44

(general) [22.39%, 25.43%] [40.64%, 44.19%] [22.69%, 25.43%] [40.85%, 44.06%]

BBH [53] – 31.92 53.34 31.45 53.6

(general) [30.98%, 32.81%] [52.39%, 54.35%] [30.5%, 32.35%] [52.59%, 54.68%]

Table C2: Comparing the performance of unwatermarked and non-distortionary
SynthID-Text responses from Gemma 2B-PT and 7B-PT, across a range of automated
LLM performance benchmarks. Each metric is given with a 90% confidence interval.
Non-distortionary SynthID-Text does not affect performance on these benchmarks.
The unwatermarked Gemma metrics differ to those reported in Team et al. [28] due to
different sampling configurations.

Watermarked text LLM-paraphrased version

The actual cause of death in hypothermia is respi-

ratory failure. When the body temperature drops

below 95 degrees Fahrenheit, the respiratory cen-

ter in the brain starts to fail, which leads to

shallow breathing and slow heart rate. If the body

temperature drops to below 90 degrees Fahren-

heit, the heart and kidneys begin to fail, which

eventually leads to death.

Hypothermia ultimately results in death due to

the cessation of breathing. \n\nAs the body’s

temperature falls below 95 degrees Fahrenheit,

the brain’s respiratory control center malfunc-

tions, causing shallower breaths and a reduced

heart rate. \n\nFurther cooling to below 90

degrees Fahrenheit triggers the failure of the heart

and kidneys, leading to the inevitable outcome of

death."

A rock does not stay at 0 mph for a single moment

during its motion. It has a velocity of 0 mph at

the instant it is thrown up, but it gains accel-

eration due to gravity as it rises and reaches a

maximum velocity at the highest point of its tra-

jectory. After that, it decelerates and approaches

0 velocity as it falls back to the ground.

During its entire journey, a rock never maintains

a velocity of 0 mph. When initially propelled

upwards, it momentarily possesses a velocity of

0 mph; however, the force of gravity causes it

to accelerate during its ascent, culminating in its

maximum velocity at the peak of its path. Sub-

sequently, the rock decelerates as it descends, its

velocity approaching 0 mph upon its return to the

ground.

Table C3: Examples of watermarked text after paraphrasing with Gemini Ultra.

C.7 Comparison to post-hoc methods332

As discussed in Section 1, post-hoc methods are a family of AI text detection methods333

that use machine learning or other statistical signals [14–16]. However, these methods334

can have inconsistent performance, for example on out-of-domain data [16, 17]. In335

this section we demonstrate that (non-distortionary) SynthID-Text performs more336
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(b) Gemma 7B-IT

Fig. C3: Detectability of SynthID-Text-watermarked text after applying pertur-
bations to the watermarked text. Detectability is weakened by edits, particularly
paraphrasing with a strong LLM (Gemini Ultra); however, the watermark is still
detectable if the text is long enough.

consistently across different data sources than the most capable openly available post-337

hoc detector Binoculars [15]. Binoculars works by computing the cross-perplexity338

of the text with respect to two LLMs (the intuition being that text from two different339

LLMs is more similar than text from an LLM and text from a human). Hans et al. [15]340

report that Binoculars performs best using the Falcon 7B and Falcon 7B-instruct341

models [55]; we use these for our comparison.342

To test detection performance across multiple languages, we evaluate both Binoc-343

ulars and SynthID-Text across 8 languages, using the XLSum dataset [56]. To344

produce AI-generated text, for each language we use Gemma 7B-IT with SynthID-345

Text to generate 256 watermarked news articles from XLSum summaries, using one346

of the following two prompts: ‘Read the following sentence carefully and then expand347

it to a news article:’ and ‘Write a news article based on the following summary:’. We348

performed no further filtering of generated text. We then evaluate detection perfor-349

mance, using an equal proportion of XLSum news articles as human-written data. Hans350

et al. [15] report that Binoculars performs more poorly on non-English and lower-351

resource languages, due to the fact that the Falcon models have limited capabilities352

in these languages. Indeed, in Figure C4 we see that Binoculars performs poorly on353

Hindi, Arabic and Russian; in contrast SynthID-Text detects all languages well.354

Our results serve as a demonstration that like other generative watermarks,355

SynthID-Text is data-agnostic – its performance depending only on the length and356

entropy of the generated text; this is a significant advantage of generative water-357

marking compared to post-hoc methods. Other relative advantages of generative358

watermarking include the option to provide an interpretable decision (e.g. a p-value)359

that can be used to control the false positive rate; and not requiring the additional360

cost of running LLMs during detection. While our results indicate that generative361
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Fig. C4: Comparison of detection rates for Gemma 7B-IT-generated text in different
languages: SynthID-Text watermarking vs. the post-hoc Binoculars detector [15].
We assess texts in 8 languages, prompted with XLSum [56]. Binoculars, which relies
on cross-perplexity statistics drawn from underlying LLMs, performs poorly on some
languages such as Hindi, Arabic and Russian. By contrast SynthID-Text performs
well in all languages considered.

watermarking is a superior choice when one has control over the generation proce-362

dure, post-hoc methods remain a useful and complementary tool when that control is363

unavailable.364

C.8 Selective Prediction365

In some applications it may be critical to maintain a low false positive rate and a low366

false negative rate. In such scenarios, particularly if the texts are short or the LLM367

distribution has low entropy (e.g. due to low temperature or instruction tuning), the368

detection performance may be lower than desired. In this case we may use a selective369

prediction mechanism that abstains when it is uncertain about the presence or absence370

of the watermark in a piece of text. This allows us to achieve the desired error rates371

on the non-abstained texts.372

The mechanism operates based on the principles of standard hypothesis testing373

[57]. For each length of text, we compute a threshold ⌧negative on the watermarking374

scores that corresponds to the desired false negative rate (computed empirically based375

on a set of watermarked texts). Similarly, we compute a threshold ⌧positive correspond-376

ing to a desired false positive rate, based on a set of unwatermarked texts. A given377

piece of text is classified as watermarked if its score is over the ⌧positive threshold for its378

length, unwatermarked if its score is under ⌧negative, and no prediction is made (absten-379

tion) if the score is between ⌧negative and ⌧positive. Note that when ⌧positive < ⌧negative,380

the scoring function’s performance at that length already satisfies the desired error381

rates without need for abstention.382
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For example, suppose we require a false positive rate of 1% and a false negative383

rate of 5%. Extended Data Figure 3 shows the necessary abstention rates in order384

to achieve these error rates on the non-abstained texts, for Gemma 7B-IT at various385

temperatures and text lengths.386

Appendix D Distortionary watermarking387

experiments388

In this section we present our experiments comparing distortionary SynthID-Text389

to the Soft Red List watermark. We use the Gemma 7B-IT model, and a test390

set of 1500 prompts from the ELI5 dataset. Extended Data Figure 2 shows the391

detectability/quality results for a variety of temperatures and text lengths.392

Distortionary Tournament sampling settings393

We evaluate Tournament sampling with the number of leaves per node (N) set to 2,394

3, 4, 5, 7, 10, 15, 50 and 1000, and the number of layers (m) set to 2, 3, 4, 6, 8 and395

10. For simplicity,we only plot the Pareto front of the tournament configurations in396

Extended Data Figure 2, showing the best detection performance given an allowance397

for quality (i.e. perplexity) degradation. To compute this, we consider various thresh-398

olds for perplexity (x-axis), and plot the best-performing tournament configuration399

with a perplexity less than this threshold.400

Soft Red List settings401

Following the methodology of Kirchenbauer et al. [23], we sweep over � = 1, 2, 5, 10402

where � is the scaling factor of the perturbation added to the logits, and � =403

0.1, 0.25, 0.5, 0.75, 0.9 where � is the size of the green list as fraction of the LLM404

vocabulary. We also evaluate stronger watermarking with � = 15, 20. Similarly to405

Tournament sampling, we plot the Pareto front in Extended Data Figure 2.406

Appendix E Vectorized Tournament sampling407

In this section we derive vectorized formulations of Tournament sampling, providing408

an alternative but equivalent implementation to Methods Algorithm 2. First we define409

some notation:410

Definition 9 (Watermarked distribution). Given a probability distribution p over V ,

a random seed r 2 R, a number of samples N � 2, a g-value distribution fg, and

a number of layers m � 1, the watermarked distribution pwm(·|p, r, fg, N,m) is the

probability distribution of the winner of Methods Algorithm 2:

pwm(xt|p, r, fg, N,m) = P [Alg2(p, r, fg, N,m) returns xt] .
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Definition 10 . Given a probability distribution p over V , random seed r 2 R, and

g-values {g`(x, r)}x2V as defined in Methods Definition 4, we define the notation:

p(V =g`(xt,r)) :=
X

x2V :g`(x,r)=g`(xt,r)

p(x)

p(V <g`(xt,r)) :=
X

x2V :g`(x,r)<g`(xt,r)

p(x)

p(V g`(xt,r)) :=
X

x2V :g`(x,r)g`(xt,r)

p(x).

E.1 Single-layer Tournament sampling411

Theorem 11 (Vectorized form, single-layer Tournament sampling). Given a probabil-

ity distribution p over V , random seed r 2 R, g-value distribution fg, and number of

samples N � 2, the watermarked distribution pwm(·|p, r, fg, N,m) for m = 1 is given

by:

pwm(xt|p, r, fg, N, 1) =

8
><

>:
p(xt)

✓
p(V g1(xt,r))N � p(V <g1(xt,r))N

p(V =g1(xt,r))

◆
if p(xt) 6= 0

0 if p(xt) = 0.

(E15)

Proof. See Supplementary Appendix K.2.412

E.1.1 Simplified formulations for special cases413

In practice, Equation (E15) has simpler formulations for certain choices of the number414

of samples N or the g-value distribution fg. All of our experiments use one the forms415

provided in this subsection.416

Corollary 12 (Vectorized form, single-layer Tournament sampling, two samples). If

in Theorem 11 the number of samples N equals 2, then:

pwm(xt|p, r, fg, N, 1) = p(xt)
h
p(V =g1(xt,r)) + 2p(V <g1(xt,r))

i
. (E16)

Corollary 13 (Vectorized form, single-layer Tournament sampling, continuous
g-values). If in Theorem 11 the g-value distribution fg is continuous (i.e. the

probability that two g-values are the same is zero) then:

pwm(xt|p, r, fg, N, 1) =
⇣
p(xt) + p(V <g1(xt,r))

⌘N
� p(V <g1(xt,r))N . (E17)

In particular if N = 2, then:

pwm(xt|p, r, fg, 2, 1) = p(xt)
h
p(xt) + 2p(V <g1(xt))

i
. (E18)
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Corollary 14 (Vectorized form, single-layer Tournament sampling, binary g-values).
If in Theorem 11 the g-value distribution fg is binary (i.e. all g-values are 0 or 1) then:

pwm(xt|p, r, fg, N, 1) =

8
><

>:

p(xt)p(V
g1=0)N�1

if g1(xt, r) = 0

p(xt)

✓
1� p(V g1=0)N

p(V g1=1)N�1

◆
if g1(xt, r) = 1

(E19)

where the notation p(V g1=0) means
P

x2V :g1(x,r)=0 p(x) and similarly for p(V g1=1).
In particular, if N = 2, then:

pwm(xt|p, r, fg, 2, 1) = p(xt)
⇥
1 + g1(xt, r)� p(V g1=1)

⇤
. (E20)

E.2 Multi-layer Tournament sampling417

Now we show that we can simply repeatedly apply Equation (E15) (or one of the418

special cases in Supplementary Appendix E.1.1) to obtain the vectorized form of a419

multi-layer tournament:420

Theorem 15 (Vectorized form, multi-layer Tournament sampling). Given a proba-

bility distribution p 2 4V , a number of samples N � 2, and a set of real values

{g(x)}x2V , define the transformation W which gives a distribution W (p, g(·), N) 2
4V :

W (p, g(·), N)(xt) =

8
><

>:
p(xt)

✓
p(V g(xt))N � p(V <g(xt))N

p(V =g(xt))

◆
if p(xt) 6= 0

0 if p(xt) = 0.

(E21)

Now, given a random seed r 2 R, g-value distribution fg, number of samples N � 2,
and number of layers m � 1, consider the following sequence of distributions, defined

through repeated application of W :

p(1)wm(·) := W (p, g1(·, r), N)

p(2)wm(·) := W (p(1)wm, g2(·, r), N)

. . . (E22)

p(m)
wm (·) := W (p(m�1)

wm , gm(·, r), N).

It follows that p(m)
wm (·) is equal to the m-layer Tournament watermarked distribution421

pwm(·|p, r, fg, N,m) (Definition 9).422

Proof. Proof by induction on m. The base case m = 1 is given by Theorem 11.423

For the induction case, suppose Theorem 15 is true for m � 1. Now consider424

an m-layer tournament; it is equivalent to running N -many (m � 1)-layer tourna-425

ments and then putting the winners into a single-layer tournament using gm(·, r).426

By the induction assumption, the N winners are drawn from p(m�1)
wm (·) as defined in427
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Vectorized implementation: iterative watermark-based reshaping of LLM distribution
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Fig. E5: Illustration of the vectorized implementation of SynthID-Text watermark-
ing for the same example as Figure 2 in the main paper. Each ‘watermark’ arrow
corresponds to a tournament layer, and represents an application of Equation (E20),
which modifies the LLM distribution based on a random watermarking function g`.
The output token is sampled from the final distribution after all layers (here, 3) have
been applied.

Equation (E22), and by Theorem 11 the winner of the single-layer tournament is given428

by W (p(m�1)
wm , gm(·, r), N).429

E.3 Implementation430

Theorem 15 provides an alternative implementation to Algorithm 2 for a multi-layer431

tournament: instead of sampling and running a tournament, we can simply compute432

Equations E22 to obtain the watermarked distribution pwm(·|p, r, fg, N,m), then sam-433

ple directly from it. Figure E5 shows how this works for the three-layer (m = 3)434

two-sample (N = 2) tournament with binary g-values previously presented in Figure 2435

in the main paper.436

One advantage of the vectorized implementation is that it provides the entire437

watermarked distribution (which can be useful for downstream purposes), whereas438

the tournament implementation provides just one sample from the watermarked dis-439

tribution. The two implementations have different computational advantages; see440

Supplementary Appendix F. In practice we use the vectorized formulation for our441

experiments.442
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Method Samples g-value Other

computations operations

Tournament (Alg 2) N
m min(m|V |, Nm+1) N

m � 1
Vectorised tournament, general (Thm 15) 1 m|V | O(m|V | log |V |)
Vectorised tournament, binary g-values (Cor 14) 1 m|V | O(m|V |)
Gumbel sampling 0 |V | O(|V |)
Soft Red List 1 |V | O(|V |)

Table F4: Computational complexity of the Tournament, Gumbel, and Soft Red List
sampling algorithms. |V | is the size of the support of the LLM distribution as defined
in Methods Definition 1. For Tournament sampling, m is number of layers and N is
the number of samples per node. Proofs are given in Supplementary Appendix K.3.

Appendix F Computational complexity443

In Table F4 we summarise the theoretical computational complexity of the Tourna-444

ment, Gumbel, and Soft Red List sampling algorithms. Tournament sampling generally445

has higher computational complexity than Gumbel or Soft Red List sampling; however446

if |V | is large compared to Nm+1 then Tournament sampling (the tournament-based447

Methods Algorithm 2 implementation) may have lower complexity. Nonetheless, in the448

context of the computational complexity of generating text from a large LLM, these449

differences are in practice negligible (see Section 3 in main paper).450

When implementing Tournament sampling, there is the option to use the vectorised451

version presented in Supplementary Appendix E, instead of the tournament-style452

implementation presented in Methods Algorithm 2. Furthermore, the complexity of453

the vectorised version depends on our choice of g-value distribution; if we are using454

binary g-values (e.g. Bernoulli g-value distribution) the complexity is lower than if455

we are using continuous g-values (e.g. Uniform g-value distribution). In our experi-456

ments, we find that the vectorised implementation is faster than the tournament-style457

implementation – in general this is true especially if Nm is large compared to |V |.458

However, if |V | is comparatively large, then the tournament-style implementation may459

be faster. Note that |V | is the size of the support of the LLM distribution pLM(·|x<t)460

as defined in Methods Definition 1; if top-p or top-k truncation is applied, this can be461

considerably smaller than the size of the LLM’s full vocabulary.462

Appendix G Non-distortion463

Ideally, a watermark should not distort the LLM’s output distribution, as we would464

like watermarked text to have the same quality as text from the unwatermarked LLM.465

In this section we show that Tournament sampling with N = 2 samples is non-466

distortionary at the token level, and when paired with repeated context masking, is467

non-distortionary at the (multi-)sequence level too. We then discuss these different468

levels of non-distortion and their trade-offs.469
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G.1 Non-distortion at the token level470

A sampling algorithm (Methods Definition 5) is non-distortionary as defined by471

Kuditipudi et al. [24]2 if in expectation over the random seed r, the watermarked dis-472

tribution is equal to the original LLM distribution. We call this property single-token473

non-distortion:474

Definition 16 (Single-token non-distortionary sampling algorithm). A sampling algo-

rithm S : 4V ⇥ R ! V is (single-token) non-distortionary if for any probability

distribution p 2 4V and token x 2 V :

Er⇠Unif(R) [P (S(p, r) = x)] = p(x).

If S is not non-distortionary, we call it distortionary.475

Definition 16 is an important property of a sampling algorithm, providing a guar-476

antee at the single token level; specifically, that S is a valid pseudorandom sampler477

with respect to the seed r. However, it makes no guarantee at the sequence level;478

for this reason we refer to Definition 16 as single-token non-distortion, to differenti-479

ate it from sequence-level non-distortion (discussed in the next subsection). Of our480

baseline sampling algorithms, Gumbel sampling (Supplementary Appendix B.1.1) is481

non-distortionary and Soft Red List (Supplementary Appendix B.1.2) is distortionary.482

We now show in the next three theorems that two-sample (N = 2) Tournament483

sampling is a non-distortionary sampling algorithm (single-layer and multi-layer); how-484

ever, Tournament sampling with N > 2 samples is distortionary. These theorems refer485

to the watermarked distribution pwm from Definition 9.486

Theorem 17 (Single-layer two-sample Tournament sampling is non-distortionary).
For any probability distribution p over V , g-value distribution fg, and token xt 2 V :

Ert⇠Unif(R) [pwm(xt|p, rt, fg, 2, 1)] = p(xt).

Proof. See Supplementary Appendix K.4.487

Theorem 18 (Multi-layer two-sample Tournament sampling is non-distortionary).
For any probability distribution p over V , g-value distribution fg, number of layers

m � 1, and token xt 2 V :

Ert⇠Unif(R) [pwm(xt|p, rt, fg, 2,m)] = p(xt). (G23)

Proof. See Supplementary Appendix K.5.488

Theorem 19 (Tournament sampling is distortionary for N > 2 samples). Given any489

g-value distribution fg (that is not one-hot) and any integer N > 2, then single-layer490

Tournament sampling using fg and N is distortionary.491

2
Kuditipudi et al. [24] call this property distortion-free.

53



Proof. See Supplementary Appendix K.6.492

G.2 Non-distortion at the (multi-)sequence level493

We now move to a notion of non-distortion at the level of one or more sequences. We494

define a watermarking scheme to be K-sequence non-distortionary if the probability495

of the watermarked model generating a particular sequence of K � 1 responses to a496

particular sequence of K prompts supplied consecutively is, in expectation over the497

watermarking key, the same as generating them from the original model. Our definition498

is similar to the K-shot undetectable property defined by Hu et al. [27], though we499

generalize it to the case where the K prompts may be different.500

To give the formal definition, we first define some notation. Given a sequence501

of K prompts x1, . . . ,xK 2 V ⇤ (where V ⇤ is the set of all finite sequences502

in V ) and given a sequence of K responses y1, . . . ,yK 2 V ⇤, we write503

Pwm

�
yi|xi, k; (x1,y1), . . . , (xi�1,yi�1)

�
to denote the probability of the watermark-504

ing scheme using watermarking key k generating response yi in response to prompt505

xi, given that the last i� 1 prompt/response pairs to be supplied to/generated by the506

watermarked model are (x1,y1), . . . , (xi�1,yi�1). Then:507

Definition 20 (K-sequence non-distortionary watermarking scheme). A watermark-

ing scheme Pwm is K-sequence non-distortionary for some K � 1 if, for any sequence

of K prompts x1, . . . ,xK 2 V ⇤
and sequence of K responses y1, . . . ,yK 2 V ⇤

:

Ek⇠Unif(R)

"
KY

i=1

Pwm
�
yi|xi, k; (x1,y1), . . . , (xi�1,yi�1)

�
#
=

KY

i=1

pLM(yi|xi).

This definition extends the notion of non-distortion from a single token (Definition 16)508

to one or more consecutively-generated sequences. In particular, while Definition 16 is509

a property of the sampling algorithm alone (such as Gumbel or Tournament sampling),510

Definition 20 is a property of the whole watermarking scheme (which includes the511

sampling algorithm, the random seed generator, and any other details of how the512

watermarked LLM is operated across multiple queries).513

We now show that by applying K-sequence repeated context masking (Methods514

Section 5.6) with a non-distortionary sampling algorithm, we can construct a K-515

sequence non-distortionary watermarking scheme:516

Theorem 21 (K-sequence repeated context masking + non-distortionary sampling517

algorithm ! K-sequence non-distortionary watermarking scheme). Let S be a non-518

distortionary sampling algorithm (Def 16). For any K � 1, let Pwm denote the519

watermarking scheme that applies S with sliding window random seed generation and520

K-sequence repeated context masking (Methods Algorithm 3). Then Pwm is K-sequence521

non-distortionary.522

Proof. See Supplementary Appendix K.7.523

In particular, Theorem 21 with Theorem 18 tells us that two-sample (N = 2) Tourna-524

ment sampling is K-sequence non-distortionary if applied with K-sequence repeated525
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context masking. The same is true for other non-distortionary sampling algorithms526

such as Gumbel sampling (Supplementary Appendix B.1.1).527

G.3 Discussion528

In this section we have defined several levels of non-distortion that a watermarking529

scheme may satisfy; from weakest to strongest they are:530

• Single-token non-distortion (Definition 16)531

• Single-sequence non-distortion (Definition 20 for K = 1)532

• K-sequence non-distortion (Definition 20 for a particular integer K > 1)533

• Infinite-sequence non-distortion (Definition 20 for K =1)534

Single-token non-distortion can be achieved by using any non-distortionary sampling535

algorithm such as Gumbel sampling or Tournament sampling with N = 2; however, in536

circumstances where high detectability is more important than quality preservation,537

one might choose to use a distortionary sampling algorithm such as Soft Red List or538

Tournament sampling with N > 2.539

Single-sequence non-distortion is an important property as it guarantees that the540

quality of a watermarked response is on average the same as an unwatermarked541

response. In particular, a single-sequence non-distortionary watermarking scheme will542

not cause repeating loops or lower diversity within a response – a phenomenon which543

has been observed in schemes that lack single-sequence non-distortion (e.g., using a544

sliding window random seed generator without repeated context masking) [24, 25].545

A single-sequence non-distortionary watermarking scheme should match the unwater-546

marked model on any evaluation comprising measurements on individual responses,547

such as perplexity (Table C1), pairwise quality assessment (Extended Data Table 1),548

and other automatic benchmarks (Table C2). In our experiments with Gumbel and549

N = 2 Tournament sampling we use 1-sequence repeated context masking and so550

achieve single-sequence non-distortion.551

While single-sequence non-distortion guarantees the quality of each individual552

response, it does not necessarily preserve diversity across multiple responses. This553

can be observed in Extended Data Figure 4, which shows that when sampling sev-554

eral responses to the same prompt, the similarity between the responses is greater for555

the watermarked responses than the unwatermarked responses. This could be prob-556

lematic in scenarios where inter-response diversity is important, or could lower the557

overall quality of a system which generates many responses then selects the best one.558

It could also be problematic from a security perspective, as an adversary might steal559

the watermark by detecting the repeated biases that appear across multiple responses560

[32].561

If these concerns are particularly important, one can choose a watermarking scheme562

achieving K-sequence non-distortion for a larger K > 1; however there are some563

trade-offs. The primary trade-off is detectability: if we apply K-sequence repeated564

context masking with larger K then the watermark will be masked more often, reduc-565

ing its detectability. Another trade-off is the computational complexity and storage566

requirements of maintaining the context history, particularly for large K. Ultimately,567

complete theoretical non-distortion (infinite-sequence non-distortion) can be achieved568
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by implementing infinite repeated context masking, but this is impractical from a569

computational and detectability point of view.570

Appendix H Analysis of watermarking strength571

The intuition of Tournament sampling is that it returns a token that is likely to572

have larger g-values; these high g-values are what is later measured when detecting573

the watermark. The watermarking strength is related to how much higher these g-574

values are for watermarked text compared to unwatermarked text. In this section we575

quantify this bias, and first show that it is greater when we use more samples N in the576

tournament. Second, we show the bias is greater when the LLM has high entropy (in577

particular, collision entropy), but that each layer of watermarking reduces the entropy578

of the distribution.579

H.1 Notation580

Definition 22 (Collision probability). Given a probability distribution p, the collision581

probability Cp of p is the probability that two samples drawn i.i.d. from p are the same.582

If p = (pi)Ni=1 is discrete, the collision probability equals
P

N

i=1 p
2
i
.583

Collision probability is related to collision entropy, sometimes called Rényi entropy,584

H2(p) = � log
P

N

i=1 p
2
i
.585

Definition 23 (Higher-order collision probabilities). Given a probability distribution586

p and integers N, j � 1, let CN,j

p
denote the probability that N samples drawn i.i.d.587

from p have exactly j unique values. Note that C2,1
p

is the collision probability of p. In588

general, we refer to CN,j

p
as the higher-order collision probabilities of p.589

Definition 24 (Watermarked g-value distribution). Given a probability distribution p,
a g-value distribution fg, and number of samples N � 2, let Fgw denote the cumulative

density function of the g-value of a token sampled from the single-layer watermarked

distribution pwm(·|p, r, fg, N, 1) (Definition 9), in expectation over the random seed r:

Fgw(z) := Pr⇠Unif(R),x⇠pwm(·|p,r,fg,N,1) [g1(x, r)  z] .

Let fgw denote the probability density/mass function corresponding to Fgw. We refer590

to fgw as the watermarked g-value distribution.591

The watermarking strength of a single layer of Tournament sampling can therefore592

be described as the distributional difference between the watermarked g-value dis-593

tribution fgw (which describes the expected g-value distribution of the watermarked594

token) and the ‘unwatermarked’ g-value distribution fg (which describes the expected595

g-value distribution of the unwatermarked token).596
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H.2 Watermarked g-value distribution597

The following theorem describes the watermarked g-value distribution fgw in terms598

of the unwatermarked g-value distribution fg and the higher-order LLM collision599

probabilities CN,j

pLM
.600

Theorem 25 (Watermarked g-value distribution for single-layer tournament). Given

a probability distribution pLM, a g-value distribution fg, and number of samples N � 2,
the c.d.f. of the watermarked g-value distribution Fgw is given by:

Fgw(z) =
NX

j=1

CN,j

pLM
Fg(z)

j . (H24)

If fg is continuous, the p.d.f. of the watermarked g-value distribution fgw is given by:

fgw(z) = fg(z)
NX

j=1

CN,j

pLM
jFg(z)

j�1. (H25)

If fg is discrete, the p.m.f. of the watermarked g-value distribution fgw is given by:

fgw(z) = fg(z)
NX

j=1

CN,j

pLM

 
jX

k=1

(�1)k�1

✓
j

k

◆
Fg(z)

j�kfg(z)
k�1

!
. (H26)

Proof. See Supplementary Appendix K.8.601

Theorem 25 shows that the watermarked g-value distribution depends on how602

much collision entropy there is in the LLM distribution. In particular, Equation (H24)603

says that the watermarked c.d.f. Fgw is a linear combination of powers of the unwa-604

termarked c.d.f. Fg, with CN,j

pLM
as the coefficients. If pLM is high-entropy, then605

{CN,j

pLM
}j=1,...,N is more heavily weighted towards the larger values of j, and so Fgw606

is more weighted towards the higher powers of Fg; this biases the distribution of the607

watermarked g-value to be larger.608

H.2.1 Simplified formulations for special cases609

For certain special cases (e.g., choices of N or fg), Theorem 25 has simplified forms,610

which we provide here.611

Corollary 26 (Watermarked g-value distribution for single-layer tournament, two
samples). If in Theorem 25 the number of samples N is equal to 2, then the c.d.f. Fgw

is given by:

Fgw(z) = CpLMFg(z) + (1� CpLM)Fg(z)
2. (H27)
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If g is continuous, the p.d.f. fgw is given by:

fgw(z) = fg(z) [CpLM + 2(1� CpLM)Fg(z)] . (H28)

If g is discrete, the p.m.f. fgw is given by:

fgw(z) = fg(z) [CpLM + (1� CpLM) (2Fg(z)� fg(z))] . (H29)

Proof. Follows from Theorem 25 and C2,1
pLM

= CpLM and C2,2
pLM

= 1� CpLM .612

Corollary 27 (Watermarked g-value distribution for single-layer tournament, two
samples, Bernoulli g-value distribution). If in Theorem 25 the number of samples N
is equal to 2 and the g-value distribution fg is Bernoulli(q) for some 0 < q < 1, then

the watermarked g-value distribution is given by the p.m.f.:

fgw(1) = q + q(1� q)(1� CpLM). (H30)

In particular, if q = 0.5 then:

fgw(1) =
1

2
+

1

4
(1� CpLM).

Proof. This follows from Equation (H29) in Corollary 26.613

Equation (H30) shows that for a Bernoulli g-value distribution, the expected614

watermarked g-value fgw(1) is greater than the expected unwatermarked g-value615

(which is q); furthermore, it increases linearly with the LLM’s non-collision probability616

(1� CpLM).617

Corollary 28 (Watermarked g-value distribution for single-layer tournament, two
samples, Uniform g-value distribution). If in Theorem 25 the number of samples N
is equal to 2 and the g-value distribution fg is Uniform[0,1], then the watermarked

g-value distribution is given by the p.d.f.:

fgw(z) = CpLM + 2(1� CpLM)z 8 0  z  1.

Furthermore the expected watermarked g-value is:

Er⇠Unif(R),x⇠pwm(·|p,r,fg,2,1) [g1(x, r)] =
1

2
+

1

6
(1� CpLM). (H31)

Proof. The p.d.f. follows from Equation (H28) in Corollary 26. The expected value
follows from integrating:

Z 1

0
zfgw(z)dz =

Z 1

0
CpLMz + 2(1� CpLM)z2dz
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=
CpLM

2
+

2(1� CpLM)

3

=
1

2
+

1

6
(1� CpLM).

618

Equation (H31) shows that for a Uniform g-value distribution, the expected water-619

marked g-value is greater than the expected unwatermarked g-value (which is 1
2 ); and620

it increases linearly with the LLM’s non-collision probability (1� CpLM).621

H.3 Stronger watermarking with larger N622

Theorem 25 shows that watermarking strength depends on the number of samples N623

used in the tournament. In this section we provide two results about how watermarking624

strength changes as N increases: First, Theorem 29 shows that, provided there is some625

entropy in the LLM distribution, a single layer of Tournament sampling using N + 1626

samples provides greater watermarking strength than one using N samples. Then,627

Corollary 30 shows that, provided the LLM distribution has sufficiently large support,628

we can achieve arbitrarily high watermarking strength by increasing the number of629

samples N .630

Theorem 29 (g-value bias increases with N , single-layer tournament). Given a

probability distribution pLM and g-value distribution fg, let FN

gw
be the c.d.f. of the

watermarked g-value distribution for a single-layer tournament with N samples. Let

FN+1
gw

be the same for a single-layer tournament with N + 1 samples. Then for all z:

FN+1
gw

(z)  FN

gw
(z).

When 0 < FN

gw
(z) < 1, equality holds iff pLM is one-hot.631

Proof. See Supplementary Appendix K.9.632

Corollary 30 (Watermarked g-value distribution for single-layer tournament as633

N ! 1). Given a probability distribution pLM and g-value distribution fg: for all z,634

the c.d.f. of the watermarked g-value distribution Fgw(z)! Fg(z)V as N !1, where635

V is the size of the support of pLM.636

Proof. Equation (H24) gives us:

Fgw(z) =
NX

j=1

CN,j

pLM
Fg(z)

j .

For N > V , CN,j

pLM
= 0 for all j > V . Furthermore as N !1, CN,V

pLM
! 1 and CN,j

pLM
! 0637

for all j  V � 1. It follows that Fgw(z)! Fg(z)V .638
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H.4 Entropy analysis for N = 2639

Corollary 26 shows that for N = 2 samples, the watermarking strength of a single layer640

of Tournament sampling depends on the collision probability of the input distribution.641

For a multi-layer tournament, this means that the watermarking strength of each layer642

depends on the collision probability of the previous layer. In this section we show643

that the expected collision probability increases (and so the expected watermarking644

strength of each layer decreases) with each added layer.645

First, in Theorem 31 we derive the expected collision probability of the single-646

layer watermarked distribution; then in Theorem 32 we show this is greater than the647

collision probability of the input distribution.648

Theorem 31 (Expected collision probability for single-layer tournament, two sam-
ples). Given a probability distribution pLM, random seed r 2 R and g-value

distribution fg, let C2,1
pwm

denote the collision probability of the watermarked distribu-

tion pwm(·|pLM, r, fg, 2, 1) for a N = 2 sample single-layer tournament. In expectation

over the random seed r, the collision probability is:

Er⇠Unif(R)

⇥
C2,1

pwm

⇤
=


4

3
� 1

3
C3,1

fg

�
C2,1

pLM
+


2

3
+

1

3
C3,1

fg
� C2,1

fg

� �
C2,1

pLM

�2

�

2

3
� 2

3
C3,1

fg

�
C3,1

pLM
�

1

3
+

2

3
C3,1

fg
� C2,1

fg

�
C4,1

pLM
. (H32)

where CN,j

pLM
and CN,j

g
are the higher order collision probabilities (Def 23), respectively,649

of pLM and fg.650

Proof. See Supplementary Appendix K.10.651

Theorem 32 (Single-layer tournament increases the expected collision probabil-652

ity, two samples). The expected collision probability of a single-layer tournament653

with N = 2 samples is greater than or equal to the LLM collision probability:654

Er⇠Unif(R)

⇥
C2,1

pwm

⇤
� C2,1

pLM
, with equality iff pLM is one-hot.655

Proof. See Supplementary Appendix K.11.656

In the case of a multi-layer tournament, Theorem 32 says that the sequence of m
watermarked distributions (see Definition 9):

pwm(·|pLM, r, fg, 2, 1), pwm(·|pLM, r, fg, 2, 2), . . . , pwm(·|pLM, r, fg, 2,m)

have (in expectation over r) increasing collision probability (i.e., decreasing collision657

entropy). Thus the amount of watermarking strength contributed by each new layer658

decreases. For the tournament as a whole, this implies that increasing the number of659

layers m may give diminishing returns in terms of overall watermarking strength.660
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H.4.1 Effect of g-value distribution fg661

Now turning to the particular choice of fg, the following result shows that a Uni-662

form[0,1] layer raises the collision probability of the next layer (and so reduces its663

watermarking strength) more than a Bernoulli(0.5) layer does. This suggests a natu-664

ral trade-off: while a single Uniform layer provides more watermarking strength than665

a single Bernoulli layer, it also more greatly reduces the amount of entropy available666

to be used by subsequent layers.667

Corollary 33 (Expected collision probability for single-layer tournament, two sam-
ples, Bernoulli(0.5) or Uniform(0,1) g-value distribution). If fg = Bernoulli(0.5) then

Equation (H32) equals:

Er⇠Unif(R)

⇥
C2,1

pwm

⇤
=

5

4
C2,1

pLM
+

1

4

�
C2,1

pLM

�2 � 1

2
C3,1

pLM
. (H33)

If fg = Uniform[0, 1] then Equation (H32) equals:

Er⇠Unif(R)

⇥
C2,1

pwm

⇤
=

4

3
C2,1

pLM
+

2

3

�
C2,1

pLM

�2 � 2

3
C3,1

pLM
� 1

3
C4,1

pLM
. (H34)

Furthermore, for any distribution pLM, Er⇠Unif(R)

⇥
C2,1

pwm

⇤
is greater for fg =668

Uniform[0, 1] than for fg = Bernoulli(0.5).669

Proof. For Equation (H33), substitute C2,1
fg

= 1
2 and C3,1

fg
= 1

4 into Equation (H32).
For Equation (H34), substitute C2,1

fg
= C3,1

fg
= 0. Now the difference:
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)
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C2,1

pLM

�2 (Lemma 44)

=0. (simplify)

670

H.5 Discussion671

As shown in Supplementary Appendix H.4, the amount of watermarking evidence con-672

tributed by each layer decreases as more layers are added. Consequently, if we keep673

adding layers to a multi-layer tournament, at some point the noise outweighs the signal,674

and the detectability of the watermark begins to degrade. However, the optimal num-675

ber of layers depends on the particular collision probabilities of the LLM distribution,676

which itself varies step-to-step and also depends on the prompt distribution. For our677

experiments, we determine the optimal number of layers empirically (Supplementary678

Appendix C.1).679
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The choice of the g-value distribution fg used in Tournament sampling (Meth-680

ods Definition 3) also plays a key role in the detectability of the watermark. In681

Supplementary Appendix H.4 we showed theoretically that while a single layer with682

fg = Uniform[0, 1] provides more watermarking evidence than a single layer with683

fg = Bernoulli(0.5), on the other hand the Uniform layer more greatly reduces the684

amount of entropy available in the output distribution, meaning that subsequent layers685

have lower watermarking strength. Intuitively, this means that with Uniform, Tour-686

nament sampling can apply a few layers of strong watermarking, and with Bernoulli,687

Tournament sampling can apply many layers of weak watermarking. This corresponds688

with our empirical observations that for shallow tournaments (small number of layers),689

Uniform generally outperforms Bernoulli in terms of overall watermark detectability,690

while for deeper tournaments, Bernoulli outperforms Uniform. If we are free to choose691

any number of layers, we find that overall the best watermark detectability is usually692

achieved with many layers of weak Bernoulli watermarking, rather than fewer layers693

of strong Uniform watermarking.694

Appendix I Generative watermarking with695

speculative sampling696

Speculative sampling [5] is an algorithm designed to speed up sampling text from697

a large target LLM q, by using a smaller draft LLM p. As speculative sampling is698

commonly used in production, we wish to combine speculative sampling with gener-699

ative watermarking. In this section we introduce speculative sampling, then discuss700

the desired properties of a combined solution; finally we present two algorithms701

for combining a generative watermark (such as SynthID-Text) with speculative702

sampling.703

I.1 Speculative sampling704

The algorithm for speculative sampling is presented in Algorithm 4.3705

Algorithm 4 uses the (·)+ operator on Line 13, which is defined as:706

Definition 34 ((·)+ operator).

(f(x))+ :=
max(0, f(x))P
x0 max(0, f(x0))

.

In Algorithm 4, the draft LLM’s suggestions are either accepted or rejected by the707

target LLM. This is the acceptance rate:708

3
Algorithm 4 is the same as the algorithm in [5], though we fix some minor notational confusion in the

original incrementing both n and t. It also overloads t as both the prompt length and the iterator from 1

to K; but we keep this to be consistent with the original.
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Algorithm 4 Speculative sampling [5]
1: Given lookahead K, minimum target sequence length T , target model q(·|·), draft

model p(·|·), initial prompt sequence x1, . . . , xt.
2: Initialize n t.
3: while n < T do

4: for t = 1 : K do

5: Sample draft auto-regressively x̃t ⇠ p(·|x1:n, x̃1:t�1)
6: end for

7: In parallel, compute K + 1 sets of logits from drafts x̃1, . . . , x̃K :
q(·|x1:n), q(·|x1:n, x̃1), . . . , q(·|x1:n, x̃1:K)

8: for t = 1 : K do

9: Sample r ⇠ U [0, 1] from a uniform distribution.
10: if r < min (1, q(x̃t|x1:n)/p (x̃t|x1:n)) then

11: Set xn+1  x̃t and n n+ 1.
12: else

13: Sample xn+1 ⇠ (q(·|x1:n)� p(·|x1:n))+ and set n n+1 and exit for loop.
14: end if

15: end for

16: If all tokens x̃1, . . . , x̃K are accepted, sample extra token xn+1 ⇠ q(·|x1:n) and
set n n+ 1.

17: end while

Definition 35 (acceptance rate). Given text so far x1:n, the acceptance rate of

Algorithm 4 is the probability of accepting the draft model’s token xn+1 on line 11:

acceptance rate =
X

xn+12V

p(xn+1|x1:n)min

✓
1,

q(xn+1|x1:n)

p(xn+1|x1:n)

◆
.

Intuitively, the closer p is to q, the higher the acceptance rate is likely to be. A high709

acceptance rate is desirable as it speeds up the sampling process.710

Lastly, we highlight a core property of speculative sampling, which is that it is711

equivalent to sampling from the target distribution:712

Theorem 36 (Speculative sampling is equivalent to target distribution). The output713

probability distribution of Algorithm 4 given the prompt x1, . . . , xt is equal to the target714

distribution q(·|x1, . . . , xt; k).715

Proof. See Chen et al. [5].716

I.2 Desiderata717

We would like to design a generative watermarking with speculative sampling algorithm718

to generate text while applying both speculative sampling and a generative water-719

marking scheme. Ideally, such an algorithm should satisfy the following desiderata:720

63



1. Non-distortionary The generative watermarking with speculative sampling algo-721

rithm should have the same non-distortion properties as the underlying generative722

watermarking scheme (see Supplementary Appendix G).723

2. Preserve acceptance rate The acceptance rate (the rate at which tokens from724

the draft LLM are accepted) should be the same for speculative sampling with725

watermarking and speculative sampling without watermarking.726

3. Preserve watermark detectability The watermark detection performance727

should be the same for watermarking with speculative sampling, and watermarking728

the target LLM without speculative sampling.729

In the following sections we provide two generative watermarking with speculative sam-730

pling algorithms, both of which are non-distortionary. First, we provide a method731

which preserves watermark detectability, but it may reduce the acceptance rate; we732

call this algorithm high-detectability watermarked speculative sampling. For733

latency-critical applications where high acceptance rate is important, we provide734

an alternative method which preserves acceptance rate, but may reduce watermark735

detectability; we call it fast watermarked speculative sampling.736

I.3 Compatibility with generative watermarking schemes737

Our two algorithms can generally be used with most generative watermarking schemes,738

with two important caveats:739

1. For the ‘preserve acceptance rate’ property to hold in the fast watermarked740

speculative sampling algorithm, the watermarking scheme’s sampling algorithm741

S must be single-token non-distortionary (Definition 16) – e.g., Gumbel sampling742

or two-sample Tournament sampling.743

2. The high-detectability watermarked speculative sampling algorithm744

requires that the sampling algorithm S is vectorisable; i.e., given any probability745

distribution p and random seed r, it is possible to directly compute the watermarked746

probability distribution P [S(p, r) = ·]. For Tournament sampling, this means that747

we need to use the vectorised implementation (Supplementary Appendix E).748

I.4 High-detectability watermarked speculative sampling749

This algorithm uses the straightforward approach of taking Algorithm 4 and replacing750

the draft distribution and the target distribution with their watermarked versions.751

The watermark detection method is then the same as for the underlying generative752

watermarking scheme. We first define some notation, then present the method in753

Algorithm 5.754

Definition 37 . Given a watermarking sampling algorithm S : 4V ⇥ R ! V (see

Methods Definition 5), a watermarking key k 2 R, and a random seed generator fr
(see Methods Section 5.3), we use the following notation to refer to the watermarked

versions of the target distribution q and the draft distribution p:

pwm(xt|x<t; k) := P [S(p(·|x<t), fr(x<t, k)) = xt]
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qwm(xt|x<t; k) := P [S(q(·|x<t), fr(x<t, k)) = xt] .

Note that Algorithm 5 requires directly computing the probabilities/logits from755

the watermarked distributions pwm and qwm rather than just sampling from them; this756

is the reason why S must be vectorisable (Supplementary Appendix I.3).757

Algorithm 5 High-detectability watermarked speculative sampling
1: Given lookahead K, minimum target sequence length T , watermarked target

model qwm(·|·; k), watermarked draft model pwm(·|·; k), initial prompt sequence
x1, . . . , xt.

2: Initialize n t.
3: while n < T do

4: for t = 1 : K do

5: Sample draft auto-regressively x̃t ⇠ pwm(·|x1:n, x̃1:t�1; k)
6: end for

7: In parallel, compute K + 1 sets of logits from drafts x̃1, . . . , x̃K :
qwm(·|x1:n; k), qwm(·|x1:n, x̃1; k), . . . , qwm(·|x1:n, x̃1:K ; k)

8: for t = 1 : K do

9: Sample r ⇠ U [0, 1] from a uniform distribution.
10: if r < min (1, qwm(x̃t|x1:n; k)/pwm (x̃t|x1:n; k)) then

11: Set xn+1  x̃t and n n+ 1.
12: else

13: Sample xn+1 ⇠ (qwm(·|x1:n; k)� pwm(·|x1:n; k))+ and set n  n + 1 and
exit for loop.

14: end if

15: end for

16: If all tokens x̃1, . . . , x̃K are accepted, sample extra token xn+1 ⇠ qwm(·|x1:n; k)
and set n n+ 1.

17: end while

I.4.1 Properties758

In this section we show that Algorithm 5 preserves watermark detectability and is non-759

distortionary but decreases acceptance rate. First we establish the following theorem,760

which says that generating text from Algorithm 5 is equivalent to generating text from761

the watermarked target LLM without speculative sampling.762

Theorem 38 (Algorithm 5 is equivalent to watermarked target distribution). The763

output probability distribution of Algorithm 5 given the prompt x1, . . . , xt is equal to764

the watermarked target distribution qwm(·|x1, . . . , xt; k).765

Proof. Follows from Theorem 36.766
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It follows trivially from Theorem 38 that as Algorithm 5 is equivalent to generating767

text directly from the target LLM q watermarked with S and fr, the watermark768

detection performance is also identical (for any detection method).769

It also follows that Algorithm 5 inherits all non-distortion properties of the gener-770

ative watermarking scheme; in particular, if S is single-token non-distortionary, then771

so is Algorithm 5. Furthermore if the generative watermarking scheme is K-sequence772

non-distortionary (Definition 20), for example by applying repeated context masking,773

then so is Algorithm 5 (assuming the repeated context masking is applied in the same774

way).775

Theorem 39 (Algorithm 5 has expected acceptance rate  speculative sam-776

pling without watermarking). Assume the sampling algorithm S is single-token777

non-distortionary (Definition 16). Given x1:n, the acceptance rate of Algorithm 5778

(speculative sampling with watermarking) on step n + 1 is, in expectation over the779

watermarking key k, less than or equal to the acceptance rate for speculative sampling780

without watermarking (Definition 35).781

Proof. See Supplementary Appendix K.12.782

I.5 Fast watermarked speculative sampling783

For this method, we use two watermarking keys: one key kD for sampling from the784

draft model and one key kT for sampling from the target model (and for sampling when785

the draft tokens are rejected). We show this allows us to preserve acceptance rate, but786

it weakens watermark detection performance because during detection we must use787

a scoring function that checks all tokens against both keys (the scoring functions are788

described in Supplementary Appendix I.5.2). We now introduce some notation then789

present the algorithm in Algorithm 6.790

Definition 40 . Given a watermarking sampling algorithm S : 4V ⇥ R ! V (see

Methods Definition 5), watermarking keys kD and kT , and a random seed generator

fr (see Methods Section 5.3), we use the following notation:

pwm(xt|x<t; k
D) := P

⇥
S
�
p(·|x<t), fr(x<t, k

D)
�
= xt

⇤

qwm(xt|x<t; k
T ) := P

⇥
S
�
q(·|x<t), fr(x<t, k

T )
�
= xt

⇤

(q � p)wm
+ (xt|x<t; k

T ) := P
⇥
S
�
[q(·|x<t)� p(·|x<t)]+ , fr(x<t, k

T )
�
= xt

⇤

where (·)+ is the operator defined in Definition 34.791

Note that Algorithm 6 does not require direct computation of the watermarked792

probabilities pwm, qwm or (q� p)wm

+ ; it only requires sampling from them. This is why793

Algorithm 6 does not require S to be vectorisable (Supplementary Appendix I.3).794

I.5.1 Properties795

We now show that Algorithm 6 is non-distortionary and preserves acceptance rate.796
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Algorithm 6 Fast watermarked speculative sampling
1: Given lookahead K, minimum target sequence length T , auto-regressive target

model q(.|.), auto-regressive draft model p(.|.), initial prompt sequence x1, . . . , xt,
watermarked models pwm(·|·; kD), qwm(·|·; kT ), (q � p)wm

+ (·|·; kT ).
2: Initialize n t.
3: while n < T do

4: for t = 1 : K do

5: Sample draft auto-regressively x̃t ⇠ pwm(·|x1:n, x̃1:t�1; kD)
6: end for

7: In parallel, compute K + 1 sets of logits from drafts x̃1, . . . , x̃K :
q(·|x1:n), q(·|x1:n, x̃1), . . . , q(·|x1:n, x̃1:K)

8: for t = 1 : K do

9: Sample r ⇠ U [0, 1] from a uniform distribution.
10: if r < min (1, q(x̃t|x1:n)/p (x̃t|x1:n)) then

11: Set xn+1  x̃t and n n+ 1.
12: else

13: Sample xn+1 ⇠ (q � p)wm

+

�
·|x1:n; kT

�
, and set n n+1 and exit for loop.

14: end if

15: end for

16: If all tokens x̃1, . . . , x̃K are accepted, sample extra token xn+1 ⇠ qwm(·|x1:n; kT )
and set n n+ 1.

17: end while

Theorem 41 (Algorithm 6 is single-token non-distortionary4). Assume the sam-

pling algorithm S is single-token non-distortionary (Definition 16). Given x1:n, let

q0(·|x1:n; kD, kT ) denote the probability distribution of the next token xn+1 generated

by Algorithm 6 on step n+ 1. For all xn+1 2 V :

EkD⇠Unif(R),kT⇠Unif(R)

⇥
q0(xn+1|x1:n; k

D, kT )
⇤
= q(xn+1|x1:n).

Proof. See Supplementary Appendix K.13.797

If the watermarking scheme has a stronger level of non-distortion (e.g. K-sequence798

non-distortion, Definition 20), for example via repeated context masking, then we can799

correspondingly extend Theorem 41 to show the same level of non-distortion, in a800

similar way to Theorem 21.801

Theorem 42 (Algorithm 6 preserves acceptance rate). Assume the sampling algo-802

rithm S is single-token non-distortionary (Definition 16). Given x1:n, the acceptance803

rate of Algorithm 6 (fast speculative sampling with watermarking) is, in expectation804

over the keys kD, kT , equal to the acceptance rate of speculative sampling without805

watermarking (Definition 35).806

4
For notational convenience we prove single-token non-distortion in expectation over the watermarking

keys k
D
, k

T
, but we could also prove non-distortion over the corresponding random seeds, which more

closely matches Definition 16.
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Proof. See Supplementary Appendix K.14.807

I.5.2 Scoring functions808

In Algorithm 6, each generated token xt is watermarked with either the draft key kD809

or the target key kT , but when it comes time to detect the watermark in a piece of text,810

we do not know which key was used for each token. This necessitates checking each811

token against both keys, but half of all these checks will follow an ‘unwatermarked’812

distribution; this is the reason why Algorithm 6 has a lower detection performance813

than watermarking without speculative sampling.814

Nevertheless, in this section we provide adaptations of our scoring functions for815

SynthID-Text presented in Supplementary Appendix A. Similarly to Supplementary816

Appendix A.1, let gD = {gD
t,`
}1tT,1`m denote the g-values computed with the draft817

key kD and similarly gT denote the g-values computed with the target key kT .818

(Weighted) Mean819

For the (Weighted) Mean Score (Equation (A2)) we simply sum over gD and gT :

WeightedMeanScore(x,↵) :=
1

2mT

X

�=D,T

TX

t=1

mX

`=1

↵` g
�

t,`
.

(Weighted) Frequentist820

Similarly for the (Weighted) Frequentist Score (Equation (A5)), we consider the sum
1
2T

P
�=D,T

P
T

t=1

P
m

`=1 ↵` g
�

t,`
, which follows the Normal(µ, �

2

2T ) distribution under
the null hypothesis, where µ and � are defined as previously in Supplementary
Appendix A.3.1. Thus:

p-value = 1� CDF
Normal(µ, �

2
2T )

0

@ 1

2T

X

�=D,T

TX

t=1

mX

`=1

↵` g
�

t,`

1

A .

Bayesian821

For the Bayesian approach in Supplementary Appendix A.4, we can replace the pos-
teriors P (w|g) and P (¬w|g) with P (w|gD, gT ) and P (¬w|gD, gT ) and similarly the
likelihoods P (g|w) and P (g|¬w) with P (gD, gT |w) and P (gD, gT |¬w). To compute
the BayesianScore (Equation (A6)), we need to derive the likelihoods P (gD

t,`
, gT

t,`
|¬w)

and P (gD
t,`
, gT

t,`
|w). For the unwatermarked likelihoods, we have independence of the

g-values for the two keys, so:

P (gD
t,`
, gT

t,`
|¬w) = P (gD

t,`
|¬w)P (gT

t,`
|¬w) = fg(g

D

t,`
)fg(g

T

t,`
).

For the watermarked likelihoods, we marginalize over the key kt used on step t:

P (gD
t,`
, gT

t,`
|w) =

X

�2D,T

P (gD
t,`
, gT

t,`
|kt = k�)P (kt = k�)

68



Temp.

Spec. sampling, Fast watermarked speculative sampling No spec. sampling +

unwatermarked + non-distortionary SynthID-Text non-dist. SynthID-Text

Acceptance Acceptance Scoring TPR@FPR=1% " TPR@FPR=1% "

rate " rate " function 200 tokens 400 tokens 200 tokens 400 tokens

0.7 1.486 1.495
Weighted-Mean 14.33 34.15

[14.19, 14.47] [33.80, 34.49]

Bayesian 54.66 60.35 69.64 86.64

[54.42, 54.90] [59.93, 60.77] [69.48, 69.81] [86.42, 86.85]

1.0 1.513 1.514
Weighted-Mean 31.62 61.89

[31.42, 31.83] [61.61, 62.17]

Bayesian 59.10 65.24 87.39 97.52

[58.95, 59.23] [65.02, 65.47] [87.29, 87.48] [97.47, 97.57]

Table I5: Results for our novel fast watermarked speculative sampling algorithm
which combines speculative sampling with non-distortionary SynthID-Text. The
addition of the watermark does not affect speculative sampling’s efficiency (reflected
in the acceptance rate). However, the addition of speculative sampling does reduce
the detectability of the watermark (measured using true positive rate for fixed false
positive rate of 1%). Results are provided with 90% confidence intervals.

= P (gD
t,`
|kt = kD)fg(g

T

t,`
)P (kt = kD) + P (gT

t,`
|kt = kT )fg(g

D

t,`
)
⇥
1� P (kt = kD)

⇤
.

Note that the prior probability P (kt = kD) is equal to the fraction of tokens that come822

from the draft. This can be learned as a latent parameter of the Bayesian scorer, or set823

based on the empirical acceptance rate of the LLMs. We then factorize P (g�
t,`
|w, kt =824

k�) similarly to Theorem 6.825

I.5.3 Experimental results826

We evaluate our fast watermarked speculative sampling algorithm with non-827

distortionary SynthID-Text, using Gemma 7B-IT as the target model and Gemma828

2B-IT as the smaller draft model which proposes three ‘lookahead’ tokens at a time.829

Table I5 demonstrates the two key features of fast watermarked speculative sam-830

pling. First, that it preserves acceptance rate: we see that the speculative sampling831

acceptance rate (and thus overall latency) is very similar with and without watermark-832

ing. While we ran our experiment with non-distortionary SynthID-Text, we expect833

this result would hold for any non-distortionary generative watermark (Theorem 42).834

Second, that it does not preserve detectability: the watermark detectability is less835

with fast watermarked speculative sampling, than if we apply the same watermark to836

Gemma 7B-IT without speculative sampling.837

Lastly, Table I5 also shows that of the adapted scoring functions for fast water-838

marked speculative sampling presented in Supplementary Appendix I.5.2, the Bayesian839

scoring function performs substantially better than WeightedMean.840
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Appendix J Lemmas841

Lemma 43 . For any integer j � 1, and real numbers a and b:

jX

i=1

✓
j

i

◆
i

j
aibj�i = a(a+ b)j�1.

Proof. First note that:
✓
j

i

◆
i

j
=

j!

i!(j � i)!

i

j
=

(j � 1)!

(i� 1)!(j � i)!
=

✓
j � 1

i� 1

◆
.

Then using the binomial formula for the last equality:

jX

i=1

✓
j

i

◆
i

j
aibj�i = a

jX

i=1

✓
j � 1

i� 1

◆
ai�1bj�i = a

j�1X

i=0

✓
j � 1

i

◆
aibj�1�i = a(a+ b)j�1.

842

Lemma 44 (Upper bound for sum of cubed probabilities). For any probability

distribution (pi)Ni=1:

NX

i=1

p3
i
 1

2

 
NX

i=1

p2
i

! 
1 +

NX

i=1

p2
i

!

with equality iff (pi)Ni=1 is one-hot.843

Proof. Note that for all 1  i  N :

1 +
NX

j=1

p2
j
� 1 + p2

i
= (1� pi)

2 + 2pi � 2pi,

with equality iff pi = 1. Therefore

NX

i=1

p3
i


NX

i=1

p2
i

1

2

 
1 +

NX

j=1

p2
j

!
=

1

2

 
NX

i=1

p2
i

! 
1 +

NX

i=1

p2
i

!

with equality iff pi = 0 or pi = 1 for all i.844

Lemma 45 (Lower bound for sum of cubed probabilities). For any probability

distribution (pi)Ni=1:

NX

i=1

p3
i
� 3

2

nX

i=1

p2
i
� 1

2
.
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Proof. By induction on N . For the base case N = 1, LHS = 1 and RHS = 3
2 �

1
2 = 1.

Now suppose the statement is true for N � 1. Then

NX

i=1

p3
i
= (1� pN )3

N�1X

i=1

✓
pi

1� pN

◆3

+ p3
N

� (1� pN )3
"
3

2

N�1X
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✓
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1� pN

◆2

� 1

2

#
+ p3

N
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=
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2
(1� pN )

N�1X
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� 1

2
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N
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Note that
P

N

i=1 p
2
i
 p2

N
+ (1� pN )2 = 1� 2pN + 2p2

N
, so:

NX

i=1

p3
i
� 3

2

NX

i=1

p2
i
� 1

2
� 3

2
pN
�
1� 2pN + 2p2

N

�
+

3

2
pN � 3p2

N
+ 3p3

N

=
3

2

NX

i=1

p2
i
� 1

2
.
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Appendix K Proofs846

K.1 Proof of Theorem 6847

Proof. For the unwatermarked case P (g|¬w), the g-values {gt,`}1tT,1`m are inde-
pendent across timesteps t and across layers `. Furthermore, each gt,` follows the
(unwatermarked) g-value distribution with p.d.f/p.m.f. fg, thus:

P (g|¬w) =
TY

t=1

mY

`=1

P (gt,`|¬w)

=
TY

t=1

mY

`=1

fg(gt,`).
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For the watermarked case P (g|w), we assume the g-values are independent across
timesteps t but not across layers `:

P (g|w) =
TY

t=1

mY

`=1

P (gt,`|w, gt,<`).

To compute P (gt,`|w, gt,<`), we introduce and marginalize over a latent variable  t,` 2
{1, . . . , N} which represents the number of unique candidate tokens in a tournament
‘match’ at layer `, on timestep t:

P (gt,`|w, gt,<`) =
NX

c=1

P (gt,`| t,` = c)P ( t,` = c|gt,<`).

Next, the distribution P (gt,`| t,` = c) is equal to the distribution of the maximum of
c i.i.d. samples from fg, which can be shown to equal:

P (gt,`| t,` = c) =

(
cFg(gt,`)

c�1fg(gt,`) if fg is continuous
Fg(gt,`)

c � [Fg(gt,`)� fg(gt,`)]
c if fg is discrete.

848

K.2 Proof of Theorem 11849

Proof. In this proof we refer to Methods Algorithm 1 for single layer Tournament
sampling. First note that if p(xt) = 0 then P(Alg 1 returns xt) = 0; the rest of this
proof assumes p(xt) 6= 0.

P(Alg 1 returns xt)

=
NX

j=1

jX

i=1

P(|Y ⇤| = j, xt appears i times in Y ⇤,Alg 1 returns xt)

=
NX

j=1

jX

i=1

✓
N

j

◆
p(V <g1(xt,r))N�j

✓
j

i

◆
p(xt)

ip(V =g1(xt,r) \ xt)
j�i

i

j

=
NX

j=1

✓
N

j

◆
p(V <g1(xt,r))N�j

jX

i=1

✓
j

i

◆
i

j
p(xt)

ip(V =g1(xt,r) \ xt)
j�i. (rearrange)

Now note that, by application of Lemma 43:

jX

i=1

✓
j

i

◆
i

j
p(xt)

ip(V =g1(xt,r) \ xt)
j�i = p(xt)

h
p(xt) + p(V =g1(xt,r) \ xt)

ij�1
(Lemma 43)

= p(xt) p(V =g1(xt,r))j�1. (simplify)
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Substituting this back in:

P(Alg 1 returns xt)

=
NX

j=1

✓
N

j

◆
p(V <g1(xt,r))N�jp(xt)p(V

=g1(xt,r))j�1

=
p(xt)

p(V =g1(xt,r))

NX

j=1

✓
N

j

◆
p(V <g1(xt,r))N�jp(V =g1(xt,r))j (rearrange)

=
p(xt)

p(V =g1(xt,r))

✓h
p(V <g1(xt,r)) + p(V =g1(xt,r))

iN
� p(V <g1(xt,r))N

◆
(binomial formula)

=
p(xt)

p(V =g1(xt,r))

⇣
p(V g1(xt,r))N � p(V <g1(xt,r))N

⌘
. (simplify)

850

K.3 Proof of computational complexities851

Tournament sampling852

The tournament-based implementation of multi-layer Tournament sampling presented853

in Methods Algorithm 2 requires Nm samples to be taken from pLM(·|x<t) and Nm�1854

comparison operations to decide the winners of the matches. The number of g-values855

to be computed is at most Nm +Nm�1 + · · ·+N = Nm+1 �N (if you compute the856

g-values for all candidates in the tournament) or m|V | (if you compute g-values for857

all tokens in the vocabulary for every layer).858

Vectorised tournament, general859

The general vectorised implementation of Tournament sampling presented in860

Theorem 15 requires m applications of Equation (E21). Equation (E21) requires the861

computation of p(V <g(xt)) and p(V =g(xt)) for each xt 2 V ; this can be computed in862

O(|V | log |V |) operations by first sorting the g-values. The number of g-values to be863

computed is m|V |, and only one sample needs to be taken at the end of the process.864

Vectorised tournament, binary g-values865

In the special case of binary g-values (which we use in most of our experiments, with a866

Bernoulli g-value distribution), each layer only requires the computation of p(V g1=0)867

and p(V g1=1) (see Corollary 14), thus no sort is required and the number of operations868

is O(|V |) per layer.869

Gumbel sampling870

Gumbel sampling (Supplementary Appendix B.1.1) requires us to compute |V | g-871

values – i.e., Ui in Equation (B12). We then need to compute � p(xi)
log(Ui)

for every xi 2 V872

then take the argmin, which requires O(|V |) operations.873
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Soft Red List sampling874

Soft Red List sampling (Supplementary Appendix B.1.2) requires us to compute |V |875

(binary) g-values. Adding a constant to all logits on the green list and taking softmax876

requires O(|V |) operations, then finally we take a single sample from pwm.877

K.4 Proof of Theorem 17878

Proof. Equation (E16) gives an expression for pwm(xt|p, r, fg, 2, 1) which we can
rewrite:

pwm(xt|p, r, fg, 2, 1) = p(xt)
⇣
p(V =g1(xt,r)) + 2p(V <g1(xt,r))

⌘
(Eqn E16)

= p(xt)

 
X

x2V

p(x)
⇥

g1(x,r)=g1(xt,r) + 2 g1(x,r)<g1(xt,r)

⇤
!

(rearrange)

Next observe that for any x, xt 2 V (here for conciseness we write Er to mean
Er⇠Unif(R)):

Er

⇥
g1(x,r)=g1(xt,r)

⇤
+ 2Er

⇥
g1(x,r)<g1(xt,r)

⇤

=Er

⇥
g1(x,r)=g1(xt,r)

⇤
+ Er

⇥
g1(x,r)<g1(xt,r)

⇤
+ Er

⇥
g1(x,r)>g1(xt,r)

⇤
(by Methods Def 4)

=Er

⇥
g1(x,r)=g1(xt,r) + g1(x,r)<g1(xt,r) + g1(x,r)>g1(xt,r)

⇤

=Er[1]

=1.

Substituting back:

Er [pwm(xt|p, r, fg, 2, 1)] = p(xt)

 
X

x2V

p(x)

!

= p(xt).

879

K.5 Proof of Theorem 18880

Proof. Proof by induction. The m = 1 base case is given by Theorem 17. For the
induction case, suppose Equation (G23) is true for m�1. From Theorem 15, we know
pwm(·|p, rt, fg, 2,m) = W (p(m�1)

wm , gm(·, rt), 2) where p(m�1)
wm = pwm(·|p, rt, fg, 2,m� 1)

is the watermarked distribution for m� 1 layers. So:

Ert⇠Unif(R) [pwm(xt|p, rt, fg, 2,m)]

=Ert⇠Unif(R) [W (pwm(·|p, rt, fg, 2,m� 1), gm(·, rt), 2)] .
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Now consider that pwm(·|p, rt, fg, 2,m� 1) depends on rt only via the g`(·, rt) values
for ` = 1, . . . ,m� 1. Because of our definition of g-values using a pseudorandom hash
function (Methods Definition 4), we can separate the expectation for different layers:

=Ert⇠Unif(R)

⇥
Er

0
t⇠Unif(R) [W (pwm(·|p, rt, fg, 2,m� 1), gm(·, r0

t
), 2)]

⇤

=Ert⇠Unif(R) [pwm(·|p, rt, fg, 2,m� 1)] (Thm 17)
=p(xt). (induction assumption)

881

K.6 Proof of Theorem 19882

Proof. Consider the family of probability distributions over a two-word vocabulary
V = {a, b} with pLM(a) = p and pLM(b) = 1�p for some p 2 [0, 1]. Then by considering
the cases where a appears i times in the N samples, we can write:

Er [pwm(a|pLM, r, fg, N, 1)]

=Er

"
pN +

N�1X

i=1

✓
N

i

◆
pi(1� p)N�i


g1(a,r)>g1(b,r) + g1(a,r)=g1(b,r)

i

N

�#

=pN +
N�1X

i=1

✓
N

i

◆
pi(1� p)N�i


1� Cfg

2
+ Cfg

i

N

�
, (K35)

where Cfg is the collision probability of fg. Expression K35 is a polynomial in p
of degree  N . If the sampling algorithm is non-distortionary, then this polynomial
equals pLM(a) = p for all p 2 [0, 1], so the polynomial coefficients must be zero for all
powers other than p1. However, consider the coefficient of p2:

2X

i=1

✓
N

i

◆✓
N � 1

2� i

◆
(�1)2�i


1� Cfg

2
+ Cfg

i

N

�

=�N(N � 1)


1� Cfg

2
+ Cfg

1

N

�
+

N(N � 1)

2


1� Cfg

2
+ Cfg

2

N

�

=
N(N � 1)

4

⇥
Cfg � 1

⇤
.

This is non-zero as N > 2 and Cfg 6= 1. Proof by contradiction.883

K.7 Proof of Theorem 21884

Proof. In Methods Algorithm 3, each response yi is in fact a continuation of its cor-885

responding prompt xi. Therefore we write yi = xi

ni+1, . . . ,x
i

Ti
where ni is the length886

of prompt xi = xi

1, . . . ,x
i

ni
.887

Now, each Pwm

�
yi|xi, k; (x1,y1), . . . , (xi�1,yi�1)

�
can be written as a prod-

uct
Q

Ti

t=ni+1 Pwm

�
xi

t
|xi

<t
, k; (x1,y1), . . . , (xi�1,yi�1)

�
. Let Wi denote the set of all
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timesteps t = ni+1, . . . , Ti for which the context window xi

t�H:t�1 := (xi

t�H
, . . . ,xi

t�1)
is already in the context history C1[C2[ · · ·[Ci (see line 6 in Methods Algorithm 3).
Thus:

Pwm

�
xi

t
|xi

<t
, k; (x1,y1), . . . , (xi�1,yi�1)

�

=

(
pLM(xi

t
|xi

<t
) if t 2Wi

P
⇥
S
�
pLM(·|xi

<t
), h(xi

t�H:t�1, k)
�
= xi

t

⇤
otherwise.

Thus:

Ek⇠Unif(R)

"
KY

i=1

Pwm

�
yi|xi, k; (x1,y1), . . . , (xi�1,yi�1)

�
#

=Ek⇠Unif(R)

"
KY

i=1

TiY

t=ni+1

Pwm

�
xi

t
|xi

<t
, k; (x1,y1), . . . , (xi�1,yi�1)

�
#

=Ek⇠Unif(R)

2

4
KY

i=1

Y

t2Wi

pLM(xi

t
|xi

<t
)
Y

t 62Wi

P
⇥
S
�
pLM(·|xi

<t
), h(xi

t�H:t�1, k)
�
= xi

t

⇤
3

5

Note that this product depends on k only through h(xi

t�H:t�1, k), where all xi

t�H:t�1
terms are different. By pseudorandom definition of h (Methods Section 5.3), tak-
ing expectation Ek⇠Unif(R) over the whole product is equivalent to taking separate
expectations over the random seed produced by h:

=
KY

i=1

Y

t2Wi

pLM(xi

t
|xi

<t
)
Y

t 62Wi

Er⇠Unif(R)

�
P
⇥
S
�
pLM(·|xi

<t
), r
�
= xi

t

⇤�

=
KY

i=1

Y

t2Wi

pLM(xi

t
|xi

<t
)
Y

t 62Wi

pLM(xi

t
|xi

<t
) (S non-distortionary)

=
KY

i=1

TiY

t=ni+1

pLM(xi

t
|xi

<t
)

=
KY

i=1

pLM(yi|xi).

888

K.8 Proof of Theorem 25889

Proof. We can divide Fgw(z) by how many unique samples there are in the N samples
drawn from pLM in Methods Algorithm 1:

Fgw(z) = Pr⇠Unif(R),x⇠pwm(·|p,r,fg,N,1) [g1(x, r)  z] (Definition 24)

76



=
NX

j=1

CN,j

pLM
Pr⇠Unif(R) [j unique y1, . . . , yj all have g1(yi, r)  z]

=
NX

j=1

CN,j

pLM
Fg(z)

j . (Methods Definition 3)

Next, if fg is continuous, then:

fgw(z) =
d

dz
Fgw(z)

= fg(z)
NX

j=1

CN,j

pLM
jFg(z)

j�1. (chain rule)

Lastly, if fg is is discrete with support z1 < z2 < · · · < zL, then for each zi:

fgw(zi) = Fgw(zi)� Fgw(zi�1) (let Fgw(z0) = 0.)

=
NX

j=1

CN,j

pLM
Fg(zi)

j �
NX

j=1

CN,j

pLM
Fg(zi�1)

j (shown above)

=
NX

j=1

CN,j

pLM

⇣
Fg(zi)

j � [Fg(zi)� fg(zi)]
j

⌘
(rearrange)

=
NX

j=1

CN,j

pLM

 
jX

k=1

(�1)k�1

✓
j

k

◆
Fg(zi)

j�kfg(zi)
k

!
(binomial formula)

= fg(zi)
NX

j=1

CN,j

pLM

 
jX

k=1

(�1)k�1

✓
j

k

◆
Fg(zi)

j�kfg(zi)
k�1

!
.
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K.9 Proof of Theorem 29891

Proof. From Equation (H24),

FN+1
gw

(z) =
N+1X

j=1

CN+1,j
pLM

Fg(z)
j .

Note that CN+1,j
pLM

can be written as:

CN+1,j
pLM

= CN,j

pLM
PN,j

pLM
(same) + CN,j�1

pLM
PN,j�1
pLM

(new)

where PN,j

pLM
(same) is the probability that an additional sample from pLM is already in892

a collection Y of N samples sampled i.i.d. from pLM, given that Y contains j unique893
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elements. Similarly PN,j�1
pLM

(new) is the probability that an additional sample from894

pLM is not already in the collection Y of N samples sampled from pLM, given that Y895

contains j � 1 unique elements.896

Now, we can substitute this in:

FN+1
gw

(z) =
N+1X

j=1

⇥
CN,j

pLM
PN,j

pLM
(same) + CN,j�1

pLM
PN,j�1
pLM

(new)
⇤
Fg(z)

j

=
NX

j=1

CN,j

pLM

⇥
PN,j

pLM
(same)Fg(z)

j + PN,j

pLM
(new)Fg(z)

j+1
⇤

(reindex)

=
NX

j=1

CN,j

pLM

⇥
PN,j

pLM
(same) + PN,j

pLM
(new)Fg(z)

⇤
Fg(z)

j (rearrange)

=
NX

j=1

CN,j

pLM

⇥
1� (1� Fg(z))PN,j

pLM
(new)

⇤
Fg(z)

j (P(new) + P(same) = 1)

= FN

gw
(z)� (1� Fg(z))

NX

j=1

PN,j

pLM
(new)CN,j

pLM
Fg(z)

j (Eqn H24)

� FN

gw
(z).

When 0 < FN

gw
(z) < 1, the equality holds iff PN,j

pLM
(new)CN,j

pLM
= 0 for all j = 1, . . . , N ;897

equivalently iff the support of pLM(·|x<t) has j or fewer elements for all j = 1, . . . , N .898

This is true iff pLM(·|x<t) is one-hot.899

K.10 Proof of Theorem 31900

Proof. For conciseness, we will write g(x) to mean g1(x, r). From Equation (E16):

pwm(x|pLM, r, fg, 2, 1) = pLM(x)
h
pLM(V =g(x)) + 2pLM(V <g(x))

i

= pLM(x)

2

4pLM(x) +
X

x02V,x0 6=x

pLM(x0)
�

g(x0)=g(x) + 2 g(x0)<g(x)

�
3

5 .

So the collision probability C2,1
pwm

=
P

x2V
pwm(x|pLM, r, fg, 2, 1)2 equals:

C2,1
pwm

=
X

x2V

pLM(x)2

2

4pLM(x) +
X

x02V,x0 6=x

pLM(x0)
�

g(x0)=g(x) + 2 g(x0)<g(x)

�
3

5
2

.

Expanding this out, it can be written as C2,1
pwm

= A+B + C +D where:

A =
X

x2V

pLM(x)4
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B = 2
X

x2V

pLM(x)3
X

x02V,x0 6=x

pLM(x0)
�

g(x0)=g(x) + 2 g(x0)<g(x)

�

C =
X

x2V

pLM(x)2
X

x02V,x0 6=x

pLM(x0)2
�

g(x0)=g(x) + 2 g(x0)<g(x)

�2

D =
X

x2V

pLM(x)2
X

x1,x22V,

x1 6=x,x2 6=x,x1 6=x2

pLM(x1)pLM(x2)
�

g(x1)=g(x) + 2 g(x1)<g(x)

� �
g(x2)=g(x) + 2 g(x2)<g(x)

�

Tackling these individually, first we have A = C4,1
pLM

. Now B: for x0 6= x:

Er

⇥
g(x0)=g(x) + 2 g(x0)<g(x)

⇤
= Er

⇥
g(x0)=g(x) + g(x0)<g(x) + g(x0)>g(x)

⇤
= 1

so:

Er[B] = 2
X

x2V

pLM(x)3
X

x02V,x0 6=x

pLM(x0) = 2
X

x2V

pLM(x)3(1� pLM(x)) = 2C3,1
pLM
� 2C4,1

pLM
.

Next C:

Er

h�
g(x0)=g(x) + 2 g(x0)<g(x)

�2i
= Er

⇥
g(x0)=g(x) + 4 g(x0)<g(x)

⇤

= C2,1
fg

+ 4
1� C2,1

fg

2

= 2� C2,1
fg

.

and so:

Er[C] =
X

x2V

pLM(x)2
X

x02V,x0 6=x

pLM(x0)2
⇣
2� C2,1

fg

⌘

=
⇣
2� C2,1

fg

⌘X

x2V

pLM(x)2(C2,1
pLM
� pLM(x)2)

=
⇣
2� C2,1

fg

⌘
(C2,1

pLM
)2 �

⇣
2� C2,1

fg

⌘
C4,1

pLM
.

Lastly for D, note that for x1 6= x, x2 6= x, x1 6= x2:

Er

⇥�
g(x1)=g(x) + 2 g(x1)<g(x)

� �
g(x2)=g(x) + 2 g(x2)<g(x)

�⇤

=Er

⇥
g(x1)=g(x2)=g(x) + 2 g(x1)<g(x2)=g(x) + 2 g(x2)<g(x1)=g(x) + 4 g(x1)<g(x),g(x2)<g(x)

⇤

=C3,1
fg

+ 2
C3,2

fg

3⇥ 2
+ 2

C3,2
fg

3⇥ 2
+ 4

 
C3,2

fg

3⇥ 2
+

C3,3
fg

3

!

=C3,1
fg

+
4

3
C3,2

fg
+

4

3
C3,3

fg

=
4

3
� 1

3
C3,1

fg
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where the last equality is because because C3,1
fg

+ C3,2
fg

+ C3,3
fg

= 1. Also note that:

X

x1,x22V,

x1 6=x,x2 6=x,x1 6=x2

pLM(x1)pLM(x2) =
X

x12V :
x1 6=x

pLM(x1) (1� pLM(x)� pLM(x1))

= (1� pLM(x))2 � C2,1
pLM

+ pLM(x)2

= 1� C2,1
pLM
� 2pLM(x) + 2pLM(x)2.

And so:

Er[D] =
X

x2V

pLM(x)2
�
1� C2,1

pLM
� 2pLM(x) + 2pLM(x)2

�✓4

3
� 1

3
C3,1

fg

◆

=

✓
4

3
� 1

3
C3,1

fg

◆"�
1� C2,1

pLM

�X

x2V

pLM(x)2 � 2
X

x2V

pLM(x)3 + 2
X

x2V

pLM(x)4
#

=

✓
4

3
� 1

3
C3,1

fg

◆⇥
C2,1

pLM
� (C2,1

pLM
)2 � 2C3,1

pLM
+ 2C4,1

pLM

⇤
.

Summing all four together and rearranging:

Er⇠Unif(R)

⇥
C2,1

pwm

⇤
=C4,1

pLM
+ 2C3,1

pLM
� 2C4,1

pLM
+
⇣
2� C2,1

fg

⌘
(C2,1

pLM
)2 �

⇣
2� C2,1

fg

⌘
C4,1

pLM

+

✓
4

3
� 1

3
C3,1

fg

◆⇥
C2,1

pLM
� (C2,1

pLM
)2 � 2C3,1

pLM
+ 2C4,1

pLM

⇤

=


4

3
� 1

3
C3,1

fg

�
C2,1

pLM
+


2

3
+

1

3
C3,1

fg
� C2,1

fg

� �
C2,1

pLM

�2

�

2

3
� 2

3
C3,1

fg

�
C3,1

pLM
�

1

3
+

2

3
C3,1

fg
� C2,1

fg

�
C4,1

pLM
.
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K.11 Proof of Theorem 32902

Proof. From Theorem 31 we have:

Er⇠Unif(R)

⇥
C2,1

pwm

⇤
=


4

3
� 1

3
C3,1

fg

�
C2,1

pLM
+


2

3
+

1

3
C3,1

fg
� C2,1

fg

� �
C2,1

pLM

�2

�

2

3
� 2

3
C3,1

fg

�
C3,1

pLM
�

1

3
+

2

3
C3,1

fg
� C2,1

fg

�
C4,1

pLM
.
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Noting that
h
2
3 �

2
3C

3,1
fg

i
� 0, and from Lemma 44, we have C3,1

pLM
 1

2C
2,1
pLM

(1+C2,1
pLM

)

(with equality iff pLM is one-hot), and so:

Er⇠Unif(R)

⇥
C2,1

pwm

⇤
�

4

3
� 1

3
C3,1

fg

�
C2,1

pLM
+


2

3
+

1

3
C3,1

fg
� C2,1

fg

� �
C2,1

pLM

�2

�

2

3
� 2

3
C3,1

fg

�
1

2
C2,1

pLM
(1 + C2,1

pLM
)�


1

3
+

2

3
C3,1

fg
� C2,1

fg

�
C4,1

pLM
(substitute)

=C2,1
pLM

+


1

3
+

2

3
C3,1

fg
� C2,1

fg

� h�
C2,1

pLM

�2 � C4,1
pLM

i
. (rearrange)

Note that
�
C2,1

pLM

�2 � C4,1
pLM

. From Lemma 45 we have 2
3C

3,1
g
� C2,1

g
� 1

3 . It follows903

that Er⇠Unif(R)

⇥
C2,1

pwm

⇤
� C2,1

pLM
.904

K.12 Proof of Theorem 39905

Proof. For Algorithm 5, the acceptance rate is:

X

xn+12V

pwm(xn+1|x1:n; k)min

✓
1,

qwm(xn+1|x1:n; k)

pwm(xn+1|x1:n; k)

◆

=
X

xn+12V

min (pwm(xn+1|x1:n; k), qwm(xn+1|x1:n; k)) .

Note that min(a, b) is concave in (a, b). Thus for two random variables a, b, we have
E[min{a, b}]  min (E[a],E[b]) by Jensen’s inequality. So taking expectation over k:

Ek⇠Unif(R) [acceptance rate]

=
X

xn+12V

Ek⇠Unif(R) [min (pwm(xn+1|x1:n; k), qwm(xn+1|x1:n; k))]


X

xn+12V

min
�
Ek⇠Unif(R) [pwm(xn+1|x1:n; k)] ,Ek⇠Unif(R) [qwm(xn+1|x1:n; k)]

�
.

Now note that:

Ek⇠Unif(R) [pwm(xn+1|x1:n; k)]

:=Ek⇠Unif(R) (P [S(p(·|x1:n), fr(x1:n, k)) = xn+1]) (Definition 37)
=Er⇠Unif(R) (P [S(p(·|x1:n), r) = xn+1]) (property of fr, see Methods Section 5.3)
=p(xn+1|x1:n) (S non-distortionary)

and similarly for q. Thus:

Ek⇠Unif(R) [acceptance rate] 
X

xn+12V

min (p(xn+1|x1:n), q(xn+1|x1:n))
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=
X

xn+12V

p(xn+1|x1:n)min

✓
1,

q(xn+1|x1:n)

p(xn+1|x1:n)

◆
.

This is the acceptance rate for speculative sampling without watermarking (Defini-906

tion 35).907

K.13 Proof of Theorem 41908

Proof. There are two cases. Case 1: If xn+1 is sampled within the for loop on lines 8
to 15, we can write down the following expression for q0(xn+1|x1:n; kD, kT ):

q0(xn+1|x1:n; k
D, kT ) = pwm(xn+1|x1:n; k

D)min

⇢
1,

q(xn+1|x1:n)

p(xn+1|x1:n)

�
+

 
1�

X

x2V

pwm(x|x1:n; k
D)min

⇢
1,

q(x|x1:n)

p(x|x1:n)

�!
(q � p)+

wm

�
xn+1|x1:n; k

T
�
.

The first term corresponds to the probability of sampling xn+1 from the draft model909

and accepting it. The second term corresponds to the probability of not accepting any910

token from the draft model, then sampling xn+1 from the rejection distribution.911

Now recall that, from Definition 40:

pwm(xt|x<t; k
D) := P

⇥
S
�
p(·|x<t), fr(x<t, k

D)
�
= xt

⇤

qwm(xt|x<t; k
T ) := P

⇥
S
�
q(·|x<t), fr(x<t, k

T )
�
= xt

⇤

(q � p)wm

+ (xt|x<t; k
T ) := P

⇥
S
�
[q(·|x<t)� p(·|x<t)]+ , fr(x<t, k

T )
�
= xt

⇤

Now, taking expectation over the keys kD ⇠ Unif(R) and kT ⇠ Unif(R) is equivalent
to taking expectation over the random seed r ⇠ Unif(R) (see Methods Section 5.3);
furthermore S is non-distortionary (Definition 16), so it follows that:

EkD⇠Unif(R)

⇥
pwm(xt|x<t; k

D)
⇤
= p(xt|x<t)

EkT⇠Unif(R)

⇥
qwm(xt|x<t; k

T )
⇤
= q(xt|x<t)

EkT⇠Unif(R)

⇥
(q � p)wm

+ (xt|x<t; k
T )
⇤
= [q(xt|x<t)� p(xt|x<t)]+.

It follows that:

EkD⇠Unif(R),kT⇠Unif(R)

⇥
q0(xn+1|x1:n; k

D, kT )
⇤
= p(xn+1|x1:n)min

⇢
1,

q(xn+1|x1:n)

p(xn+1|x1:n)

�
+

 
1�

X

x2V

p(x|x1:n)min

⇢
1,

q(x|x1:n)

p(x|x1:n)

�!
(q � p)+ (xn+1|x1:n) .

This expression is equal to the probability distribution of the next token generated by912

speculative sampling, and it can be shown (see Theorem 1 proof in [5]) to be equal to913

the target distribution q(xn+1|x1:n).914

82



Case 2: If xn+1 is sampled from qwm(·|x1:n; kT ) on line 16, then in expectation915

over kT this is also q(·|x1:n).916

K.14 Proof of Theorem 42917

Proof. For Algorithm 6,

EkD⇠Unif(R),kT⇠Unif(R)[acceptance rate]

=EkD⇠Unif(R),kT⇠Unif(R)

"
X

x2V

pwm(x|x1:n; k
D)min

✓
1,

q(x|x1:n)

p(x|x1:n)

◆#

=
X

x2V

EkD⇠Unif(R)

⇥
pwm(x|x1:n; k

D)
⇤
min

✓
1,

q(x|x1:n)

p(x|x1:n)

◆

=
X

x2V

p(x|x1:n)min

✓
1,

q(x|x1:n)

p(x|x1:n)

◆
. (K36)

The last equality follows from S being non-distortionary (Definition 16) and the fact918

that taking expectation over the key is equivalent to taking expectation over the ran-919

dom seed (Methods Section 5.3). The expression in Equation (K36) is the acceptance920

rate for speculative sampling without watermarking (Definition 35).921
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