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Supplementary Notes

ML-based COPD enriched in lung tissue

Utilizing S-LDSC to perform tissue and cell-type specific analysis, we observed that fetal lung
and smooth-muscle are the relevant tissues for ML-based COPD (Supplementary Tables 11 and
12). These tissues and cells are similar to previous work [S1], further indicating that our ML-
based COPD is a valid COPD phenotype and the improvement observed in number of additional
hits/loci are not due to capturing other non-COPD phenotypes with high heritability (e.g., height).
Furthermore, we observed that colon smooth muscle (H3K4mel; P = 5 x 1071%) and fetal lung
(H3K4mel; P = 2 x 107?) are the relevant tissues for ML-based COPD GWAS conditional on
FEV,/FVC (Supplementary Table 13). Similar to S-LDSC analysis, GARFIELD [52] indicated that
the fetal lung has the largest enrichment (Supplementary Figure 6) and the conditional GWAS of
ML-based COPD on FEV;/FVC was enriched in fetal lung and embryonic lung (Supplementary
Figure 7). Lastly, to understand the effect of cis-regulatory interactions, we applied GREAT [53] to
ML-based COPD GWS loci. The ML-based loci were significantly enriched for 82 ontology terms,
primarily development and morphogenesis-related. Of particular note, GREAT results were enriched
for respiratory and cardiovascular system development and morphology terms (Supplementary

Table 14).

PheWAS analysis of significant ML-based COPD hits

Phenome-wide association studies (PheWAS) are used to examine pleiotropic effects, which are
particularly relevant when considering pharmacological interventions on implicated genes or pathways.
We performed PheWAS for the 796 independent ML-based GWAS hits using 4,083 phenotypes in
UKB and 2,803 phenotypes in FinnGen. We used a false discovery rate (FDR) of 5% to detect
phenotype and variant pairs that are significant in our PheWAS (Supplementary Table 15). Not
surprisingly, most of the significant associations detected by PheWAS are related to different lung
function measures, such as FVC, FEV, FEV,/FVC, and PEF (Supplementary Table 16). Similar
to Sakornsakolpat et al. [S1], our PheWAS analysis identified association with body composition:
Weight (131 hits), BMI (96 hits), and fat-free mass (89 hits). In addition, PheWAS detected multiple

significant associations with blood counts: white blood cell count (85 hits), red blood cell counts (85
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hits), haemoglobin concentration (85 hits), and platelet count (83 hits).

Conditional and DeepNull GWAS on ML-based COPD

Previous works |58, | showed that many COPD hits are shared with FEV;/FVC, FEV,, FVC,
and peak expiratory flow (PEF) hits. To ensure our ML-based COPD GWAS is not solely driven
by FEV;/FVC, we performed a secondary ML-based COPD GWAS conditioned on FEV;/FVC
(Supplementary Figure 8 illustrates the Manhattan plot and Supplementary Figure 9 illustrates
the Q-Q plot). The SNP-heritability estimated from S-LDSC for conditional GWAS was 0.11
(s.e.m=0.01). The conditional GWAS identified 175 independent GWS hits at 117 independent
GWS loci after merging hits within 250kb (Supplementary Table 21 and Table 22). Although the
conditional analysis ensures that our ML-based COPD GWAS is not solely driven by FEV;/FVC, it
does not rule out cases where FEV;/FVC has a non-linear effect on ML-based COPD. We utilized
DeepNull [526] to account for possible non-linear relationships between age, sex, and FEV;/FVC.
The ML-based COPD GWAS using DeepNull (Extended Data Fig 4 illustrates the Manhattan plot
and Supplementary Figure 11 illustrates the Q-Q plot) identified 181 independent GWS at 129
independent GWS loci after merging hits within 250kb (Supplementary Tables 25 and 26). Thus, our
ML-based COPD prediction captures a disease signal beyond FEV; /FVC (Supplementary Table 27
and Table 28). Furthermore, we performed ML-based COPD GWAS conditioned on FEV;/FVC,
FEVi, FVC, and PEF, observing a SNP-heritability of 0.04 (s.e.m = 0.00) and 41 independent
GWS hits at 31 independent GWS loci (Supplementary Figure 10, Supplementary Table 23 and
Table 24).

Permutation tests to validate ML-based phenotyping

To ensure that our result is not influenced by some bias introduced by our ML-based phenotyping
procedure, we trained the ResNet18 model using permuted medical-record-based COPD labels and
observed that the model predicts almost the same value for all individuals (0.0384 % 0.0000), which
matches the disease prevalence in the training data. In other words, the model cannot detect any
patterns from inputs to the permuted labels and falls back on the best guess of prevalence for the
probability of having COPD as ML-based COPD is agnostic to covariates such as age and height.

Furthermore, we ran a GWAS on a permuted version of the original ML-based COPD phenotype
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and observed that this permuted GWAS has SNP-heritability of zero (0.00 + 0.01) and that no
GWS variants were detected. Lastly, to ensure that the relationship between ML-based COPD and
covariates is maintained when permuting GWAS inputs, we performed an additional experiment that
shuffled our ML-based COPD phenotype and all GWAS covariates together. Note that, assuming
low stochasticity in the model training process, this experimental setup is equivalent to jointly
permuting spirometry curves, labels, and covariates across individuals, rerunning model training,

and performing a GWAS. In this experiment as well no GWS variants were detected.

ML-based COPD identifies COPD better than proxy-GOLD for genetic discovery

First, we binarized the ML-based COPD risk into case/control labels with 50% prevalence (Methods)
and compared a GWAS on this phenotype (hereafter “binarized ML-based COPD”) with GWAS
performed on medical-record-based COPD labels. We observed that binarized ML-based COPD
has a higher significance level for all hits and the absolute magnitude of binarized ML-based COPD
is larger than the raw label equivalents for all hits (Supplementary Figure 14). We compared our
binarized ML-based COPD with Sakornsakolpat et al. [58] where we observed that our binarized
ML-based COPD variants are more significant (Extended Data Fig 7a) than Sakornsakolpat et al.
[58] while having the same effect size estimates (R? = 0.91; Extended Data Fig 7b). Furthermore,
when binarizing ML-based COPD so that disease prevalence matches Sakornsakolpat et al. [S§]
(prevalence = 13.86%), the prevalence-matched binarized ML-based COPD has better power. Finally,
when comparing a binarized ML-based COPD where we match the prevalence to proxy-GOLD,
we observed that binarized ML-based COPD outperforms proxy-GOLD on all metrics including
replicating previously known COPD hits (Extened Data Fig 8 and Figure 15). Thus, even when

ML-based COPD is considered as a binary trait, we show increased power (Supplementary Table 8).

Replication of ML-based COPD novel loci in three independent datasets

A GWAS on the ML-based liability score identifies 265 COPD risk loci in addition to 91 previously
known COPD loci with respect to to Sakornsakolpat et al. [S8| and GWAS catalog entries (as of 2022-
07-09) for COPD, emphysema, chronic bronchitis. Out of 265 COPD-specific loci, 221 independently
re-identified as associated with COPD or COPD-related lung function as follows. We observed that

101 out of 265 is statistically significant in a previous COPD GWAS [S8| after Bonferroni correction.
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Also, 198 out of 265 are previously known FEV; or FEV; /FVC loci with respect to [510] and GWAS
catalog entries (Supplementary Table 31 and Extended Data Fig 3). From the remaining 67 novel
loci out of 265, which are not previously known loci for COPD or COPD-related lung function, 23 is
statistically significant in a previous COPD GWAS |[S8] after Bonferroni correction that includes
UKB samples. Furthermore, we analyzed three additional studies that do not include UKB samples
to further quantify the replication status of these 67 loci. These three datasets are GBMI (Global
Biobank Meta-analysis Initiative) [527] excluding the UKB samples, SpiroMeta [528], and ICGC
(International COPD Genetics Consortium) [S7]. We defined two replication strategies: First, we
defined supportive replication as consistent effect size direction between our ML-based COPD and
the three comparators. The ICGC and GBMI GWAS are based on a COPD phenotype; thus, we
expect their effect size signs to match our ML-based COPD. SpiroMeta phenotypes, on the other
hand, capture lung function, so we expect their effect size signs to be the opposite of our ML-based
COPD signs. Second, we defined strict replication as consistent effect size direction in any study with
Bonferroni-corrected P < 0.1 (one-sided) for that study. We observed that 38/67 loci have supportive
replication where the chance of this happening randomly is extremely small (P < 2 x 107%6). In
addition, we observed that 6/67 have strict replication and, when relaxing the strict replication
p-value from Bonferroni-corrected to nominal P < 0.1, 27/67 loci replicate (Supplementary Table 31

and Extended Data Fig 3).

Tissue/Cell-type specific enrichment analysis of ML-based COPD hits

We utilized two methods to perform tissue/cell-type specific enrichment analysis. First, we utilized
the tissues specific analysis in S-LDSC [54, 55| where we utilized 53 baseline version 1 annotations
(see URLs), “Multi_tissue gene expr” (includes both GTEx [S6] and Franke lab data [S7, 58]) and
“Multi_tissue chromatin” (includes both Roadmap |59, | and EN-TEX data). In the case of
gene expression, we utilize 53 tissues or cell types created by Finucane et al.[55] while Franke lab
data consists of 152 tissues or cell types. In the case of chromatin data, Roadmap [S9, | has
397 cell-type- or tissue-specific annotations while EN-TEX data has 93 cell-type- or tissue-specific
annotations. As recommended by the S-LDSC authors, we used the -log (p-value) of regression
coefficient (7) as the metric to pick the specific tissue or cell-type. Second, we utilize GARFIELD

[52] to perform tissue-specific analysis where we utilized 424 DNase I hypersensitive site hotspot
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annotations provided by the GARFIELD authors [52] and we used the default parameters.

Functional analyses with GREAT

We utilized GREAT v4.0.4 [53] on the human GRCh37 assembly to perform functional enrichment
analysis of ML-based COPD risk loci. The default “basal+extension” region-gene association rule
was used with 5 kb upstream, 1 kb downstream, 1000 kb extension, and curated regulatory domains
included. GREAT analyzes enrichment of terms drawn from multiple data sources including Gene
Ontology Biological Process (GOBP), the Mammalian Phenotype Ontology for phenotypes induced
by a single gene knockout (MP1KO), and the Human Phenotype Ontology (HP). We considered
terms to be statistically significant if the Bonferroni-corrected P-values for both the region-based

and gene-based tests were < 0.05.
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Supplementary Figures

M) r D D
BatchNorm BatchNorm BatchNorm
T — T T

a N N
1D conv 1D conv 1D conv
3, f, s=1 3, f, s=1 1, f, s=1
I T —
{ N N
RelU RelU 1D avg pool
2,s=2
N R J
7y
BatchNorm BatchNorm
1D conv 1D conv
3, f, s=1 3, f, =2
—/ —/

Supplementary Fig. 1: An overview of the one-dimension ResNet18-D residual and downsample
layers. a) A basic residual layer [S11]. b) A downsampling residual layer following ResNet18-D
architecture modifications [512].
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Supplementary Fig. 2: An overview of the cross-fold training and application process.
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Supplementary Fig. 3: An ablation study assessing the impact of training dataset size on ResNet18
model performance. Ten separate ResNet18 models were trained on subsampled versions of the
full training dataset (n=259,748) and then evaluated across the COPD status, hospitalization, and
death tasks using the full validation dataset. Each subsampled dataset is a valid subset of all larger
datasets. For example, all samples in the 40% dataset are also contained in the 50-100% datasets.
Each point in the figure denotes the average metric over 100 bootstrapping samples while error bars
denote the associated 95% confidence intervals. Unfilled points represent metrics with statistically
significant differences compared to the corresponding 100% model under paired boostrapping. a)
A comparison of validation AUROC across dataset sizes. b) A comparison of validation AUPRC
across dataset sizes. ¢) A comparison of validation F1 scores across dataset sizes.
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Supplementary Fig. 5: QQplot of ML-based COPD GWAS. The error band indicates the
95% confidence interval. We obtained P44 from BOLT-LMM using a two-sided test.

S10



g Tissue
blastula
blood
blood vessel
bone
brain
brain hippocampus
breast
cerebellar
cervix
colon
connective
embryonic lung
epithelium

es cell

eye

fetal adrenal gland
fetal brain

fetal heart

fetal intestine, large
fetal intestine, small
fetal kidney

fetal lung

fetal membrane
fetal muscle

fetal muscle, lower limb
fetal muscle, trunk
fetal muscle, upper trunk
fetal placenta
fetal renal cortex
fetal renal pelvis
fetal skin

fetal spinal cord
fetal spleen

fetal stomach
fetal testes

fetal thymus
fibroblast

foreskin

gingival

heart

ips cell

kidney

liver

lung

muscle
myometrium
nervous
pancreas
pancreatic duct
prostate

skin

spinal cord

testis

urothelium

uterus

epithelium

fetal lung

fetal reng| Pelvis

GWAS P-value Threshold
e 1c-08 e» 1e-05 1

Supplementary Fig. 6: Enrichment overlap of ML-based COPD GWAS with DNase 1
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Supplementary Fig. 7: Enrichment overlap of ML-based COPD conditional on
FEV;/FVC GWAS with DNase I hotspots computed using GARFIELD. We observed
the strongest enrichment in blood, fetal lung, and embryonic lung. GWAS p-values were obtained
from BOLT-LMM using a two-sided test.
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Supplementary Fig. 8 ML-based COPD GWAS Manhattan plot conditional on
FEV,/FVC. We obtained p-values from BOLT-LMM using a two-sided test.
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Supplementary Fig. 9: QQplot of ML-based COPD GWAS conditional on FEV; /FVC.
The error band indicates the 95% confidence interval. We obtained P, from BOLT-LMM using
a two-sided test.
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Supplementary Fig. 10: ML-based COPD GWAS Manhattan plot conditional on
FEV,/FVC, FEV,, FVC, and PEF. We obtained p-values from BOLT-LMM using a two-
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Supplementary Fig. 11: QQplot of ML-based COPD GWAS via DeepNull. The error
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test.
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Supplementary Fig. 12: Statistical power comparison of ML-based COPD with GBMI
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Y-axis is the -log p-value of the ML-based COPD. Both p-values are computed using two-sided tests.
The vertical and horizontal red line indicates the genome-wide significance level. The diagonal red
line indicates the y=x. The orange dots indicate variants-in-hits that are significant for GBMI COPD
excluding UKB but not significant for our ML-based COPD and green dots indicate variants-in-hits
that are significant for our ML-based COPD but not significant for the GBMI COPD excluding
UKB GWAS. b) Effect size correlation of ML-based COPD and GBMI COPD excluding UKB. The
X-axis is the effect size of GBMI COPD excluding UKB for all GWS variants-in-hits and Y-axis is
the effect size of our ML-based COPD. Light red band is the 95% confidence interval (e.g., band) of

effect size correlation.
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Supplementary Fig. 14: Statistical power comparison of binarized ML-based COPD
with medical-record-based COPD labels. a) The X-axis is the -log p-value of medical-record-
based COPD. The Y-axis is -log p-value of the binarized ML-based COPD. Both p-values are
computed using two-sided tests. The vertical and horizontal red line indicates the genome-wide
significance level. The diagonal red line indicates the y=x. The orange dots indicate variants-in-hits
that are significant for medical-record-based COPD but not significant for our binarized ML-based
COPD and green dots indicate variants-in-hits that are significant for our binarized ML-based COPD
but not significant for the medical-record-based COPD label GWAS. b) Effect size correlation of
binarized ML-based COPD and medical-record-based COPD GWAS. The X-axis is the effect size of
medical-record-based label COPD for all GWS variants-in-hits and Y-axis is the effect size of our
binarized ML-based COPD. Light red band is the 95% confidence interval (e.g., band) of effect size

correlation.
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Regenie. The X-axis is the effect size of BOLT-LMM for all GWS hits and Y-axis is the effect size
of Regenie obtained from proxy-GOLD COPD. Light red band is the 95% confidence interval (e.g.,
band) of effect size correlation.
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Label

Definition

Usage

Self report

Code 6 in field 6152 (medical conditions in touch
screen questionnaires) or codes 1112, 1113, or 1472
in field 20002 (medical conditions in verbal inter-
view).

Definition of medical-record-
based COPD labels below
used in training.

Primary Care

ICD-10 codes J41, J42, J43, or J44 in field 42040
(GP clinical event records), after Read v2 and v3
codes in the records mapped into ICD-10 codes.

Definition of medical-record-
based COPD labels below
used in training.

Training Hospital-
ization

Includes primary or secondary causes of hospital-
ization. ICD-9 codes 491, 492, or 496 in field 41271
(Diagnoses - ICD9), or ICD-10 codes J41, J42, J43,
or J44 in field 41270 (Diagnoses - ICD10).

Definition of medical-record-
based COPD labels below
used in training.

Medical-record-
based

If a COPD case in at least one of "self report", "pri-

mary care", and "training hospitalization" COPD
labels.

Training of ML models.

Evaluation medical-
record-based

Logical OR of "self report", "primary care", and
"training hospitalization" labels only when all three
sources exist for an individual.

Evaluation of ML models and
GWAS hits (Results). Having
all three sources increases the
likelihood of a correct COPD
label which is preferred for
evaluation.

Future hospitaliza-
tion

Only includes cases with COPD as primary cause
of hospitalization after the spirometry test date.
ICD-10 codes J41, J42, J43, or J44 in field 41234
(records in HES inpatient diagnoses dataset) after
converting ICD-9 codes to ICD-10 codes.

Evaluation of ML models (Re-
sults).

Death

ICD-10 J41, J42, J43, or J44 codes in field 40001
(primary cause of death).

Evaluation of ML models and
GWAS hits (Results).

Hospitalization

Similar to "future hospitalization" but also in-
cludes cases before the spirometry test date.

Evaluation of GWAS hits (Re-
sults).

Proxy-GOLD

Mirrors moderate or worse GOLD grading for a
single blow without bronchodilation: FEV;/FVC
< 0.7 and FEV;%predicted < 80%.

Evaluating the noisiness of
training labels, "medical-
record-based" COPD. Evalu-
ation of binarized ML-based
COPD liability (Results).

Supplementary Table 1: Definition of the binary COPD labels in UKB. These labels were
used for both training and evaluating ML models as well as running label-based GWAS.

See the attached Excel table.

Supplementary Table 2: Overview of various model architectures.
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Flow-volume ResNet18 0.8161 (0.8055-0.8295 0.9490 (0.9207-0.9713

Model Medical-record-based AUC Hospitalization AUC Death AUC
GOLD 24 0.6892 (0.6788-0.6991) 0.7607 (0.7350-0.7802) 0.8374 (0.7708-0.8978)
FEV; /FVC Ratio 0.7785 (0.7652-0.7917) 0.8362 (0.8191-0.8566) 0.8871 (0.8047-0.9398)
FEV;1%predicted 0.7793 (0.7669-0.7909) 0.8712 (0.8517-0.8878) 0.9166 (0.8571-0.9654)
Spiro-metric LogReg 0.7976 (0.7852-0.8096) 0.8748 (0.8545-0.8924) 0.9348 (0.8981-0.9611)
Spiro-metric MLP 0.8023 (0.7903-0.8142) 0.8776 (0.8575-0.8958) 0.9379 (0.9086-0.9628)
Flow-volume MLP 0.8031 ( 0.8808 (0.8604-0.9006) 0.9453 (0.9139-0.9720)

( ( ( )

0.7885-0.8146)
) 0.8949 (0.8779-0.9106)

Model Medical-record-based AUPRC Hospitalization AUPRC Death AUPRC
GOLD 2-4 0.1447 (0.1328-0.1562)  0.0359 (0.0305-0.0410) 0.0053 (0.0034-0.0075)
FEV, /FVC Ratio 0.2199 (0.1979-0.2364) 0.0833 (0.0663-0.1043) 0.0219 (0.0111-0.0374)
FEV;%predicted 0.2100 (0.1888-0.2309) 0.0940 (0.0740-0.1144) 0.0292 (0.0147-0.0512)
Spiro-metric LogReg 0.2546 (0.2305-0.2768) 0.1078 (0.0862-0.1345) 0.0288 (0.0157-0.0508)
Spiro-metric MLP 0.2859 (0.2622-0.3112)  0.1343 (0.1042-0.1662)  0.0383 (0.0164-0.0774)
Flow-volume MLP 0.3160 (0.2896-0.3389) 0.1639 (0.1298-0.1976) 0.0426 (0.0193-0.0820)
Flow-volume ResNet18 0.3282 (0.3004-0.3527) 0.1777 (0.1403-0.2100)  0.0586 (0.0260-0.1223)
Model Medical-record-based F1 Hospitalization F1 Death F1
GOLD 2-4 - - -
FEV; /FVC Ratio 0.3067 (0.2892-0.3224) 0.1918 (0.1649-0.2170) 0.0490 (0.0046—-0.0900)
FEV%predicted 0.2984 (0.2778-0.3199) 0.1901 (0.1583-0.2201) 0.0825 (0.0222-0.1544)
Spiro-metric LogReg 0.3435 (0.3217-0.3599)  0.2100 (0.1796-0.2352) 0.0567 (0.0136-0.1225)
Spiro-metric MLP 0.3536 (0.3291-0.3739)  0.2263 (0.1920-0.2556) 0.1158 (0.0425-0.2046)
Flow-volume MLP 0.3633 (0.3393-0.3852)  0.2603 (0.2191-0.2967) 0.1174 (0.0553-0.2151)
Flow-volume ResNet18 0.3793 (0.3565-0.3993)  0.2709 (0.2369-0.3040) 0.1205 (0.0374-0.2253)

Supplementary Table 3: Comparison of model AUC, AUPRC, and F1 scores across
evaluation medical-record-based COPD disease status, future COPD-related hospital-
ization, and COPD-related death. GOLD 2-4, FEV; /FVC Ratio, and FEV;%predicted denote
risk models based on standard spirometry metrics. The spirometry metric logistic regression and
MLP models were trained to predict COPD status from only FEV; /FVC ratio, FEV;, FVC, and
PEF while the flow-volume MLP and ResNet18 models utilized the entire flow-volume curve. We
performed hyperparameter sweeps for each class of deep learning model, selecting the model that
minimized the binary cross entropy loss over the modeling validation set. 95% confidential intervals
were generated using bootstrapping (n = 100 bootstrapping trials; Methods).
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Model Medical-record-based AUC Hospitalization AUC Death AUC
GOLD 24 0.1269 (0.1156-0.1371) 0.1342 (0.1185-0.1527)  0.1116 (0.0596-0.1577
FEV;/FVC Ratio 0.0376 (0.0293-0.0460) 0.0587 (0.0446-0.0733)  0.0619 (0.0174-0.1177
FEV%predicted 0.0368 0.0238

Spiro-metric LogReg
Spiro-metric MLP
Flow-volume MLP

)
( )
(0.0276-0.0460)

0.0185 (0.0112-0.0245)

0.0138 (0.0075-0.0179)

0.0130 (0.0073-0.0185)

)
( )
(0.0128-0.0398)
0.0202 (0.0124-0.0277)
0.0173 (0.0086-0.0258)
0.0142 (0.0078-0.0232)

0.0141 (0.0017-0.0285
0.0110 (0.0015-0.0205

)
)
0.0324 (-0.0007-0.0768)
)
)
0.0036 (-0.0048-0.0117)

Model Medical-record-based AUPRC Hospitalization AUPRC Death AUPRC
GOLD 24 0.1836 (0.1636-0.2048)  0.1418 (0.1077-0.1711)  0.0533 (0.0212-0.1155)
FEV1/FVC Ratio 0.1084 (0.0912-0.1252)  0.0944 (0.0704-0.1206)  0.0367 (0.0122-0.0823)
FEV; %predicted 0.1182 (0.0940-0.1380)  0.0837 (0.0569-0.1096)  0.0294 (0.0043-0.0744)
Spiro-metric LogReg 0.0737 (0.0588-0.0914)  0.0699 (0.0504-0.0912)  0.0298 (0.0076-0.0738)
Spiro-metric MLP 0.0424 (0.0304-0.0548)  0.0434 (0.0275-0.0589) 0.0203 (-0.0003-0.0537)
Flow-volume MLP 0.0122 (0.0031-0.0193)  0.0138 (0.0020-0.0275)  0.0160 (0.0004-0.0389)
Model Medical-record-based F'1 Hospitalization F1 Death F1
GOLD 2-4 - - -
FEV;/FVC Ratio 0.0725 (0.0587-0.0923)  0.0791 (0.0596-0.1024)  0.0715 (0.0005-0.1630)
FEV,%predicted 0.0809 (0.0611-0.1017)  0.0809 (0.0545-0.1120) 0.0380 (-0.0449-0.1233)
Spiro-metric LogReg 0.0358 (0.0222-0.0514)  0.0609 (0.0404-0.0843) 0.0637 (-0.0053-0.1603)
Spiro-metric MLP 0.0257 (0.0120-0.0394)  0.0446 (0.0246-0.0704) 0.0047 (-0.1067-0.1027)
Flow-volume MLP 0.0160 (0.0042-0.0293) 0.0107 (-0.0147-0.0375) 0.0031 (-0.0782-0.0605)

Supplementary Table 4: Paired bootstrapping between the flow-volume ResNet18 and
other candidate COPD models’ AUC, AUPRC, and F1 scores across evaluation medical-
record-based COPD disease status, future COPD-related hospitalization, and COPD-
related death. These results show the relative significance level of improvement of the flow-volume
ResNet18 model over other candidate models from Supplementary Table 3 using paired bootstrapping
(n = 100 bootstrapping trials; Methods).

Model Spearman R Pearson R Pearson R Squared
FEV; /FVC Ratio 0.1744 (0.1674-0.1815)  0.2187 (0.2072-0.2310)  0.0479 (0.0429-0.0533
FEV;%predicted 0.1767 (0.1685-0.1843) 0.1938 (0.1850-0.2047) 0.0376 (0.0342-0.0419
Spiro-metric LogReg 0.1905 (0.1843-0.1983) 0.2758 (0.2554-0.3026) 0.0762 (0.0652-0.0915

Spiro-metric MLP
Flow-volume MLP
Flow-volume ResNet18

0.1988 (0.1928-0.2062

(

( )
( )
0.1964 (0.1907-0.2033)
( )
0.2037 (0.1975-0.2114)

0.3366 (0.3177-0.3593

(

( )
( )
0.3158 (0.2960-0.3361)
( )
0.3498 (0.3318-0.3703)

0.1134 (0.1009-0.1291

(
(
0.0998 (0.0876-0.1130
(
0.1225 (0.1101-0.1371

Supplementary Table 5: Comparison of model COPD risk with an individual’s number

of exacerbatory events.
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Model Spearman R Pearson R Pearson R Squared

FEV;/FVC Ratio  0.0292 (0.0258-0.0335) 0.1311 (0.1212-0.1421) 0.0746 (0.0665-0.0853)
FEV; %predicted 0.0269 (0.0222-0.0323)  0.1560 (0.1410-0.1745)  0.0849 (0.0742-0.0985)
Spiro-metric LogReg  0.0131 (0.0099-0.0156) 0.0740 (0.0626-0.0848) 0.0463 (0.0386-0.0533)
( ) ( ) )
( ) ( ) )

Spiro-metric MLP 0.0072 (0.0049-0.0093) 0.0340 (0.0254-0.0413) 0.0227 (0.0169-0.0284
Flow-volume MLP 0.0049 (0.0028-0.0073) 0.0132 (0.0078-0.0193) 0.0091 (0.0053-0.0134

N N N N

Supplementary Table 6: Comparison of model COPD risk with an individual’s number
of exacerbatory events. These results are similar to Supplementary Table 5 while to compute
the significant level improvement between two models we used the paired bootstrapping (n = 100
bootstrapping trials).

See the attached Excel table.

Supplementary Table 7: Comparison of cross-fold models.

Phenotype Prevalence #Hits #Loci SNP- Notes
heritability
ML-based COPD NA 796 356  0.2028
(0.0104)
Proxy-GOLD 7.22% 45 30 0.0414
(0.0039)
COPD (Medical-record-based) 4.44% 2 2 0.0112
(0.0029)
COPD (Sakornsakolpat et al. 13.86% 117 84 0.0686
2019) (0.0058)
FEV; UKB (Shrine et al. NA 406 244  0.1799
2019) (0.0073)
FVC UKB (Shrine et al. 2019) NA 342 228 0.1779
(0.0063)
FEV;/FVC UKB (Shrine et NA 669 328  0.2035
al. 2019) (0.01)
Binarized ML-based COPD 13.86% 142 89 0.0726 We fixed the prevalence of ML-
Sakornsakolpat et al. 2019 (0.0054) based COPD to be the same
prevalence as Sakornsakolpat et al.
Binarized ML-based COPD 7.22% 56 37 0.0506 We fixed the prevalence of ML-
Proxy-GOLD prevalence (0.0041) based COPD to be the same

as Proxy-GOLD

Supplementary Table 8: Comparison of different model GWAS results and prevalence.
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See the attached Excel table.

Supplementary Table 9: ML-based COPD GWS hits. CHR, chromosome; POS, base-pair
variant position; EA, effect allele; NEA, non-effect allele; BETA, estimated effect size; SE, standard
error; SRC, imputed or genotyped variant; INFO, imputation INFO score (set to 1 for genotyped
variants); P, GWAS p-value. GENE CONTEXT, genomic context of the variant. Notation for gene
context:

e Overlapping gene(s):

— [A]: variant overlaps gene A

— [A,B]: variant overlaps genes A and B
e Downstream genes:

— [1A: variant position is 0 < p < 10% bp upstream of closest downstream gene A

— [1-A: variant position is 103 < p < 10* bp upstream of closest downstream gene A
— [1-A: variant position is 10* < p < 10° bp upstream of closest downstream gene A
— [1--A: variant position is 10° < p < 10% bp upstream of closest downstream gene A
— [1: closest downstream gene is further than 10° bp

e Upstream genes: mirrors downstream gene notation, e.g., B-[] means variant position is
103 < p < 10* bp downstream of closest gene B.

See the attached Excel table.

Supplementary Table 10: ML-based COPD GWS loci. CHR, chromosome; POS, base-pair
variant position; EA, effect allele; NEA, non-effect allele; BETA, estimated effect size; SE, standard
error; SRC, imputed or genotyped variant; INFO, imputation INFO score (set to 1 for genotyped
variants); P, GWAS p-value. GENE CONTEXT, genomic context of the variant. Notation for gene
context:

e Overlapping gene(s):

— [A]: variant overlaps gene A

— [A,B]: variant overlaps genes A and B
e Downstream genes:

— [JA: variant position is 0 < p < 10% bp upstream of closest downstream gene A

— [1-A: variant position is 10% < p < 10* bp upstream of closest downstream gene A
— [1-A: variant position is 10* < p < 10° bp upstream of closest downstream gene A
— [1--A: variant position is 10° < p < 10% bp upstream of closest downstream gene A

[1: closest downstream gene is further than 10° bp

e Upstream genes: mirrors downstream gene notation, e.g., B-[] means variant position is
103 < p < 10* bp downstream of closest gene B.
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See the attached Excel table.

Supplementary Table 11: Cell-type specific chromatin marks identify disease-relevant
cell-type for ML-based COPD. We performed cell-type specific chromatin heritability enrichment
analysis via S-LDSC. We obtained the cell-type specific chromatin from S-LDSC website on BROAD.
The second column is the regression coefficient corresponding to the cell type specific annotation
and third column is the corresponding standard mean error. The last column is the p-value from a
one-sided test that the regression coefficient is greater than zero with no adjustment for multiple-
hypothesis tests. It is recommended by the authors [S5] that significant level of regression coefficient
(e.g., p-value column) should be used to identify disease-relevant cell-type.

See the attached Excel table.

Supplementary Table 12: S-LDSC enrichments of ML-based COPD for cell-type spe-
cific chromatin marks. In addition to detecting the COPD-relevant cell-type, we compute the
enrichment of ML-based COPD in cell-type specific chromatin marks. Prop._SNPs is the fraction of
SNPs that is covered by each cell-type specific annotation. Prop._h2 is the fraction of ML-based
COPD that is captured by each cell-type specific annotation. Enrichment is defined as the %.
Enrichment_std_error is the standard error of enrichment computed by S-LDSC via block-jackknife.

See the attached Excel table.

Supplementary Table 13: Cell-type specific chromatin marks identify disease-relevant
cell-type for ML-based COPD conditional on FEV;/FVC . We performed cell-type specific
chromatin heritability enrichment analysis via S-LDSC.

Term Description Region P Gene P Num regions
GO:0072359 circulatory system development 4.49e-05 2.62e-12 78
GO:0007507 heart development 1.37e-04 1.61e-10 56
MP:0005385 cardiovascular system phenotype 1.49e-04  1.35e-09 137
HP:0001626  Abnormality of the cardiovascular system 7.61le-04 7.53e-04 71
MP:0002127 abnormal cardiovascular system morphology 8.33e-04  2.82e-08 111
MP:0001544 abnormal cardiovascular system physiology 1.29e-03  6.25e-09 97
MP:0001175 abnormal lung morphology 5.76e-03  1.67e-05 47
GO:0003007 heart morphogenesis 5.80e-03 4.21e-07 34
MP:0001176 abnormal lung development 2.34e-02  1.33e-03 21
MP:0003115 abnormal respiratory system development 2.44e-02  3.32e-04 23
HP:0030680 Abnormality of cardiovascular system morphology  3.33e-02  4.65e-03 52
MP:0002132 abnormal respiratory system morphology 3.90e-02 1.77e-05 60
GO0:0003205 cardiac chamber development 4.71e-02  1.09e-06 27
GO:0003279 cardiac septum development 4.78¢-02  8.32e-07 22

Supplementary Table 14: Cardiovascular and respiratory term enrichments of the ML-
based COPD loci. Enrichments were computed using GREAT [53] with default parameters. The
82 total terms significant at Bonferroni-corrected P-value 0.05 by both the two-sided region-based
binomial and two-sided gene-based hypergeometric tests were filtered to those with description that
matched the regular expression ‘cardiac|cardio|cardialheart|circulatory|respir|lung|pulmon’.
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See the attached Excel table.

Supplementary Table 15: PheWAS of ML-based COPD significant hits. We extracted the
statistical test for all phenotypes in Neal lab and FinnGen of all ML-based COPD significant hits
(796 independent GWS hits). In the case of FinnGen, variants position used the GRCh38-hg38 build,
we used USCS liftover to match the variants. VID is the variant ID created by chr:bp:ref:alt
where chr is the chromosome, bp is the variant position, ref is the reference allele, and alt is the
alternative allele. P is the p-value obtrained from Neal lab and FinnGen GWAS and FDR is the
computed false discovery rate.

See the attached Excel table.

Supplementary Table 16: Summary of ML-based COPD PheWAS based on phenotypes.
We sorted phenotypes in Neal lab and FinnGen based on number significant hits obtained from
ML-based COPD. We used the FDR < 5% to consider significant.

See the attached Excel table.

Supplementary Table 17: Novel ML-based COPD GWS hits. CHR, chromosome; POS,
base-pair variant position; EA, effect allele; NEA, non-effect allele; BETA, estimated effect size; SE,
standard error; SRC, imputed or genotyped variant; INFO, imputation INFO score (set to 1 for
genotyped variants); P, GWAS p-value. We obtained p-values from BOLT-LMM using a two-sided
test. GENE CONTEXT, genomic context of the variant. Notation for gene context:

e Overlapping gene(s):

— [A]: variant overlaps gene A

— [A,B]: variant overlaps genes A and B
e Downstream genes:

— [JA: variant position is 0 < p < 10% bp upstream of closest downstream gene A

— [1-A: variant position is 10% < p < 10* bp upstream of closest downstream gene A
— [1-A: variant position is 10* < p < 10° bp upstream of closest downstream gene A
— [1--A: variant position is 10° < p < 10% bp upstream of closest downstream gene A
— [1: closest downstream gene is further than 10 bp

e Upstream genes: mirrors downstream gene notation, e.g., B-[] means variant position is
103 < p < 10* bp downstream of closest gene B.
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See the attached Excel table.

Supplementary Table 18: ML-based COPD GWS hits compared to other GWAS. CHR,
chromosome; POS, base-pair variant position; EA, effect allele; NEA, non-effect allele; BETA,
estimated effect size; SE, standard error; SRC, imputed or genotyped variant; INFO, imputation
INFO score (set to 1 for genotyped variants); P ML-based COPD, ML-based COPD GWAS P-value;
P DeepNull, ML-based COPD GWAS P-value via DeepNull; P FEV1/FVC, FEV1/FVC GWAS
P-value; P GOLD 2-4, GOLD 2-4 GWAS P-value; P_ Sakornsakolpat 2019; COPD GWAS P-value
obtained from Sakornsakolpat 2019 [S1]. We obtained p-values from BOLT-LMM using a two-sided
test. GENE CONTEXT, genomic context of the variant. Notation for gene context:

e Overlapping gene(s):

— [A]: variant overlaps gene A

— [A,B]: variant overlaps genes A and B
e Downstream genes:

— [1A: variant position is 0 < p < 10% bp upstream of closest downstream gene A

— [1-A: variant position is 103 < p < 10* bp upstream of closest downstream gene A
— [1-A: variant position is 10* < p < 10° bp upstream of closest downstream gene A
— [1--A: variant position is 10° < p < 10% bp upstream of closest downstream gene A
— [1: closest downstream gene is further than 10° bp

e Upstream genes: mirrors downstream gene notation, e.g., B-[] means variant position is
103 < p < 10* bp downstream of closest gene B.
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See the attached Excel table.

Supplementary Table 19: Novel ML-based COPD GWS loci. CHR, chromosome; POS,
base-pair variant position; EA, effect allele; NEA, non-effect allele; BETA, estimated effect size; SE,
standard error; SRC, imputed or genotyped variant; INFO, imputation INFO score (set to 1 for
genotyped variants); P, GWAS p-value. We obtained p-values from BOLT-LMM using a two-sided
test. GENE CONTEXT, genomic context of the variant. Notation for gene context:

e Overlapping gene(s):

— [A]: variant overlaps gene A

— [A,B]: variant overlaps genes A and B
e Downstream genes:

— [JA: variant position is 0 < p < 10% bp upstream of closest downstream gene A

— [1-A: variant position is 103 < p < 10* bp upstream of closest downstream gene A
— [1-A: variant position is 10* < p < 10° bp upstream of closest downstream gene A
— [1--A: variant position is 10° < p < 10% bp upstream of closest downstream gene A
— [J: closest downstream gene is further than 10° bp

e Upstream genes: mirrors downstream gene notation, e.g., B-[] means variant position is
103 < p < 10* bp downstream of closest gene B.

See the attached Excel table.

Supplementary Table 20: ML-based COPD GWS Loci compared to other GWAS. CHR,
chromosome; POS, base-pair variant position; EA, effect allele; NEA, non-effect allele; BETA,
estimated effect size; SE, standard error; SRC, imputed or genotyped variant; INFO, imputation
INFO score (set to 1 for genotyped variants); P ML-based COPD, ML-based COPD GWAS P-value;
P DeepNull, ML-based COPD GWAS P-value via DeepNull; P FEV1/FVC, FEV1/FVC GWAS
P-value; P GOLD 2-4, GOLD 2-4 GWAS P-value; P_ Sakornsakolpat 2019; COPD GWAS P-value
obtained from Sakornsakolpat 2019 [S1].
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See the attached Excel table.

Supplementary Table 21: ML-based COPD GWS hits conditional on FEV; /FVC. CHR,
chromosome; POS, base-pair variant position; EA, effect allele; NEA, non-effect allele; BETA,
estimated effect size; SE, standard error; SRC, imputed or genotyped variant; INFO, imputation
INFO score (set to 1 for genotyped variants); P, ML-based COPD GWAS P-value. We obtained
p-values from BOLT-LMM using a two-sided test. GENE CONTEXT, genomic context of the
variant. Notation for gene context:

e Overlapping gene(s):

— [A]: variant overlaps gene A

— [A,B]: variant overlaps genes A and B
e Downstream genes:

— [JA: variant position is 0 < p < 103 bp upstream of closest downstream gene A

— [1-A: variant position is 10 < p < 10* bp upstream of closest downstream gene A
— [1-A: variant position is 10* < p < 10° bp upstream of closest downstream gene A
— [1--A: variant position is 10° < p < 10% bp upstream of closest downstream gene A
— [1: closest downstream gene is further than 10° bp

e Upstream genes: mirrors downstream gene notation, e.g., B-[] means variant position is
103 < p < 10* bp downstream of closest gene B.

See the attached Excel table.

Supplementary Table 22: ML-based COPD GWS loci conditional on FEV,; /FVC, FEV,,
FVC, and PEF. CHR, chromosome; POS, base-pair variant position; EA, effect allele; NEA, non-
effect allele; BETA, estimated effect size; SE, standard error; SRC, imputed or genotyped variant;
INFO, imputation INFO score (set to 1 for genotyped variants); P, ML-based COPD GWAS P-value.
We obtained p-values from BOLT-LMM using a two-sided test. GENE CONTEXT, genomic context
of the variant. Notation for gene context:

e Overlapping gene(s):

— [A]: variant overlaps gene A

— [A,B]: variant overlaps genes A and B
e Downstream genes:

— [1A: variant position is 0 < p < 10% bp upstream of closest downstream gene A

— [1-A: variant position is 103 < p < 10* bp upstream of closest downstream gene A
— [1-A: variant position is 10* < p < 10° bp upstream of closest downstream gene A
— [1--A: variant position is 10° < p < 10% bp upstream of closest downstream gene A
— [1: closest downstream gene is further than 10° bp

e Upstream genes: mirrors downstream gene notation, e.g., B-[] means variant position is
103 < p < 10* bp downstream of closest gene B.
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See the attached Excel table.

Supplementary Table 23: ML-based COPD GWS hits conditional on FEV;/FVC,
FEV1, FVC, and PEF. CHR, chromosome; POS, base-pair variant position; EA, effect allele;
NEA, non-effect allele; BETA, estimated effect size; SE, standard error; SRC, imputed or genotyped
variant; INFO, imputation INFO score (set to 1 for genotyped variants); P, ML-based COPD GWAS
P-value. We obtained p-values from BOLT-LMM using a two-sided test. GENE CONTEXT,
genomic context of the variant. Notation for gene context:

e Overlapping gene(s):

— [A]: variant overlaps gene A

— [A,B]: variant overlaps genes A and B
e Downstream genes:

— [JA: variant position is 0 < p < 103 bp upstream of closest downstream gene A

— [1-A: variant position is 10 < p < 10* bp upstream of closest downstream gene A
— [1-A: variant position is 10* < p < 10° bp upstream of closest downstream gene A
— [1--A: variant position is 10° < p < 10% bp upstream of closest downstream gene A
— [1: closest downstream gene is further than 10° bp

e Upstream genes: mirrors downstream gene notation, e.g., B-[] means variant position is
103 < p < 10* bp downstream of closest gene B.

See the attached Excel table.

Supplementary Table 24: ML-based COPD GWS loci conditional on FEV; /FVC. CHR,
chromosome; POS, base-pair variant position; EA, effect allele; NEA, non-effect allele; BETA,
estimated effect size; SE, standard error; SRC, imputed or genotyped variant; INFO, imputation
INFO score (set to 1 for genotyped variants); P, ML-based COPD GWAS P-value. We obtained
p-values from BOLT-LMM using a two-sided test. GENE CONTEXT, genomic context of the
variant. Notation for gene context:

e Overlapping gene(s):

— [A]: variant overlaps gene A

— [A,B]: variant overlaps genes A and B
e Downstream genes:

— [1A: variant position is 0 < p < 10% bp upstream of closest downstream gene A

— [1-A: variant position is 103 < p < 10* bp upstream of closest downstream gene A
— [1-A: variant position is 10* < p < 10° bp upstream of closest downstream gene A
— [1--A: variant position is 10° < p < 10% bp upstream of closest downstream gene A
— [1: closest downstream gene is further than 10° bp

e Upstream genes: mirrors downstream gene notation, e.g., B-[] means variant position is
103 < p < 10* bp downstream of closest gene B.
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See the attached Excel table.

Supplementary Table 25: ML-based COPD GWS hits via DeepNull. CHR, chromosome;
POS, base-pair variant position; EA, effect allele; NEA, non-effect allele; BETA, estimated effect size;
SE, standard error; SRC, imputed or genotyped variant; INFO, imputation INFO score (set to 1 for
genotyped variants); P, ML-based COPD GWAS P-value. We obtained p-values from BOLT-LMM
using a two-sided test. GENE CONTEXT, genomic context of the variant. Notation for gene
context:

e Overlapping gene(s):

— [A]: variant overlaps gene A

— [A,B]: variant overlaps genes A and B
e Downstream genes:

— [JA: variant position is 0 < p < 103 bp upstream of closest downstream gene A

— [1-A: variant position is 10 < p < 10* bp upstream of closest downstream gene A
— [1-A: variant position is 10* < p < 10° bp upstream of closest downstream gene A
— [1--A: variant position is 10° < p < 10% bp upstream of closest downstream gene A
— [1: closest downstream gene is further than 10° bp

e Upstream genes: mirrors downstream gene notation, e.g., B-[] means variant position is
103 < p < 10* bp downstream of closest gene B.

See the attached Excel table.
Supplementary Table 26: ML-based COPD GWS loci via DeepNull. CHR, chromosome;

)

POS, base-pair variant position; EA, effect allele; NEA, non-effect allele; BETA, estimated effect size;

Y

SE, standard error; SRC, imputed or genotyped variant; INFO, imputation INFO score (set to 1 for
genotyped variants); P, ML-based COPD GWAS P-value. We obtained p-values from BOLT-LMM
using a two-sided test. GENE CONTEXT, genomic context of the variant. Notation for gene
context:

e Overlapping gene(s):

— [A]: variant overlaps gene A

— [A,B]: variant overlaps genes A and B
e Downstream genes:

— [1A: variant position is 0 < p < 10% bp upstream of closest downstream gene A

— [1-A: variant position is 103 < p < 10* bp upstream of closest downstream gene A
— [1-A: variant position is 10* < p < 10° bp upstream of closest downstream gene A
— [1--A: variant position is 10° < p < 10% bp upstream of closest downstream gene A
— [1: closest downstream gene is further than 10° bp

e Upstream genes: mirrors downstream gene notation, e.g., B-[] means variant position is
103 < p < 10* bp downstream of closest gene B.
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See the attached Excel table.

Supplementary Table 27: ML-based COPD GWS DeepNull hits not significant in the
FEV,;/FVC ratio GWAS. CHR, chromosome; POS, base-pair variant position; EA, effect allele;
NEA, non-effect allele; BETA, estimated effect size; SE, standard error; SRC, imputed or genotyped
variant; INFO, imputation INFO score (set to 1 for genotyped variants); P, ML-based COPD GWAS
P-value. We obtained p-values from BOLT-LMM using a two-sided test. GENE CONTEXT,
genomic context of the variant. Notation for gene context:

e Overlapping gene(s):

— [A]: variant overlaps gene A

— [A,B]: variant overlaps genes A and B
e Downstream genes:

— [JA: variant position is 0 < p < 103 bp upstream of closest downstream gene A

— [1-A: variant position is 10 < p < 10* bp upstream of closest downstream gene A
— [1-A: variant position is 10* < p < 10° bp upstream of closest downstream gene A
— [1--A: variant position is 10° < p < 10% bp upstream of closest downstream gene A
— [1: closest downstream gene is further than 10° bp

e Upstream genes: mirrors downstream gene notation, e.g., B-[] means variant position is
103 < p < 10* bp downstream of closest gene B.

See the attached Excel table.

Supplementary Table 28: ML-based COPD GWS DeepNull loci not significant in the
FEV,/FVC ratio GWAS. CHR, chromosome; POS, base-pair variant position; EA, effect allele;
NEA, non-effect allele; BETA, estimated effect size; SE, standard error; SRC, imputed or genotyped
variant; INFO, imputation INFO score (set to 1 for genotyped variants); P, ML-based COPD GWAS
P-value. We obtained p-values from BOLT-LMM using a two-sided test. GENE CONTEXT,
genomic context of the variant. Notation for gene context:

e Overlapping gene(s):

— [A]: variant overlaps gene A

— [A,B]: variant overlaps genes A and B
e Downstream genes:

— [1A: variant position is 0 < p < 10% bp upstream of closest downstream gene A

— [1-A: variant position is 103 < p < 10* bp upstream of closest downstream gene A
— [1-A: variant position is 10* < p < 10° bp upstream of closest downstream gene A
— [1--A: variant position is 10° < p < 10% bp upstream of closest downstream gene A
— [1: closest downstream gene is further than 10° bp

e Upstream genes: mirrors downstream gene notation, e.g., B-[] means variant position is
103 < p < 10* bp downstream of closest gene B.
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Phenotype 1 Phenotype 2 Tg

ML-based COPD COPD (Sakornsakolpat et al. 2019) 0.8985
(0.0736)
ML-based COPD COPD (GBMI excluding UKB) 0.4845
(0.0513)
ML-based COPD COPD (Hobbs et al. 2017) 0.8226
(0.0823)
MRB COPD COPD (Hobbs et al. 2017) 0.7487
(0.1716)
ML-based COPD (No MRB COPD (Hobbs et al. 2017) 0.8267
Cases) (0.0782)
ML-based COPD (No MRB COPD (GBMI excluding UKB) 0.4395
Cases) (0.0468)
Binarized ML-base COPD COPD (Sakornsakolpat et al. 2019) 0.943
(Proxy-GOLD prevalence) (0.0854)
ML-based COPD FEV; UKB (Shrine et al. 2019) -0.7031
(0.0441)
ML-based COPD FEV;/FVC UKB (Shrine et al. 2019)  -0.7837
(0.0491)
ML-based COPD FVC UKB (Shrine et al. 2019) -0.3440
(0.0261)
ML-based COPD PEF UKB (Shrine et al. 2019) -0.5757
(0.0385)
ML-based COPD Height UKB 0.0580
(0.0214)
ML-based COPD Asthma UKB 0.3980
(0.037)
COPD (Sakornsakolpat et al. Asthma UKB 0.4815
2019) (0.0531)
COPD (Sakornsakolpat et al. Height UKB 0.1289
2019) (0.0329)

Supplementary Table 29: COPD genetic correlation with existing GWAS. The genetic
correlation between two phenotypes is computed using S-LDSC.

See the attached Excel table.

Supplementary Table 30: Comparison of p-value for ML-based COPD with Hobbs et al.
2017 COPD [S13] for 22 previously detected COPD loci in Hobbs et al. 2017 [S13].VID
is the variant ID created by chr:bp:ref:alt where chr is the chromosome, bp is the variant position,
ref is the reference allele, and alt is the alternative allele. HOBBES-2017-P is the p-value obtained
from Hobbs et al. 2017 [S13] full summary statistics, ML-BASED-COPD-P is the p-value of GWAS
on ML-based COPD risk, ML-BASED-COPD-NO-CASE-P is the p-value of GWAS on ML-based
COPD risk restricted to control samples. We obtained p-values from BOLT-LMM using a two-sided
test.
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See the attached Excel table.

Supplementary Table 31: ML-based COPD novel loci replication in GBMI, ICGC, and
SpiroMeta. We analyzed three studies that do not include UK Biobank samples to quantify
loci replication. These three datasets are GBMI (Global Biobank Meta-analysis Initiative) [S14],
SpiroMeta [515], and ICGC (International COPD Genetics Consortium) [S13]. CHR, chromosome;
POS, base-pair variant position; EA, effect allele; NEA, non-effect allele; BETA, estimated effect size;
SE, standard error; ICGC-EA, ICGC-BETA, ICGC-P, GMBI-P, SpiroMeta-FVC-EA, SpiroMeta-
FVC-BETA, SpiroMeta-FVC-P, SpiroMeta-FEV1-EA, SpiroMeta-FEV1-BETA, SpiroMeta-FEV1-P,
SpiroMeta-Ratio-EA, SpiroMeta-Ratio-BETA, SpiroMeta-Ratio-P, Strict Replication, and Supportive
Replication. All obtained p-values from previous studies used a two-sided test. We defined supportive
replication as consistent effect size direction across studies. The ICGC and GBMI GWAS are
based on a COPD phenotype; thus, we expect their effect size signs to match our ML-based COPD.
SpiroMeta phenotypes, on the other hand, capture lung function, so we expect their effect size signs
to be the opposite of our ML-based COPD signs. We defined strict replication as consistent effect
size direction in any study with Bonferroni correction of P < 0.1 (one-sided) for that study.

Ground Truth PRS AUROC AUPRC Top Decile Prevalence R

Eval. MRB COPD  ResNet18 0.550 (0.541-0.560) 0.088 (0.084-0.092) 0.097 (0.089-0.104)  0.046 (0.037-0.056)
Eval. MRB COPD MRB COPD 0.517 (0.509-0.528)  0.079 (0.076-0.082) 0.081 (0.076-0.086) 0.018 (0.010-0.027)
Eval. MRB COPD  Sakornsakolpat 0.538 (0.529-0.548) 0.085 (0.081-0.089) 0.095 (0.086-0.103) 0.036 (0.028-0.045)
Eval. MRB COPD FEV;/FVC 0.540 (0.531-0.551)  0.085 (0.082-0.090) 0.095 (0.088-0.104) 0.037 (0.028-0.047)
Hospitalization ResNet18 0.564 (0.549-0.577) 0.023 (0.021-0.025) 0.025 (0.022-0.028) 0.029 (0.022-0.036)
Hospitalization MRB COPD 0.514 (0.504-0.526)  0.018 (0.017-0.020) 0.020 (0.018-0.021) 0.006 (0.001-0.013)
Hospitalization Sakornsakolpat  0.551 (0.537-0.565) 0.022 (0.020-0.024) 0.025 (0.022-0.028) 0.024 (0.018-0.031)
Hospitalization FEV,/FVC 0.560 (0.546-0.573)  0.023 (0.021-0.025) 0.026 (0.023-0.029) 0.028 (0.021-0.034)
Death ResNet18 0.598 (0.557-0.632)  0.004 (0.003-0.005) 0.004 (0.003-0.005) 0.016 (0.009-0.023)
Death MRB COPD 0.503 (0.473-0.537)  0.002 (0.002-0.003) 0.002 (0.002-0.003) 0.001 (-0.004-0.007)
Death Sakornsakolpat  0.575 (0.533-0.606) 0.003 (0.002-0.004) 0.003 (0.002-0.005)  0.013 (0.006-0.019)
Death FEV,/FVC 0.599 (0.554-0.645) 0.004 (0.003-0.005) 0.004 (0.003—0.005) 0.016 (0.009-0.024)

Supplementary Table 32: Comparison of PRSs in UKB. The PRSs are defined based on the
GWAS effect sizes of ML-based COPD, Medical-record-based (MRB) COPD, and Sakornsakolpat et
al. [S1], and the FEV; /FVC. The numbers in the parenthesis show the 95% confidence interval. R
is the Pearson correlation between true phenotypic values and estimated PRS.
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Ground Truth PRS AUROC AUPRC Top Decile Prevalence R

COPD Status ResNet18 0.615 (0.598-0.631) 0.632 (0.615-0.650) 0.682 (0.647-0.720) 0.205 (0.178-0.232)
COPD Status MRB COPD 0.525 (0.511-0.538)  0.550 (0.536-0.565) 0.547 (0.517-0.577) 0.046 (0.022-0.066)
COPD Status Sakornsakolpat 0.616 (0.599-0.630) 0.623 (0.602-0.640) 0.689 (0.655-0.721) 0.202 (0.173-0.227)
COPD Status FEV;/FVC 0.618 (0.602-0.632) 0.627 (0.608-0.644) 0.688 (0.644-0.723) 0.206 (0.182-0.230)
pctEmph vida ResNet18 NA NA NA 0.106 (0.079-0.127)
pctEmph vida MRB COPD NA NA NA 0.043 (0.017-0.066)
pctEmph  vida Sakornsakolpat NA NA NA 0.140 (0.114-0.168)
pctEmph_ vida FEV;/FVC NA NA NA 0.138 (0.113-0.157)
Pil0_SRWA _vida ResNetl8 NA NA NA 0.051 (0.030-0.072)
Pil0_ SRWA vida MRB COPD NA NA NA 0.000 (-0.023-0.024)
Pil0_SRWA _vida Sakornsakolpat NA NA NA 0.021 (-0.005-0.042)
Pil0_SRWA vida FEV;/FVC NA NA NA 0.026 (-0.001-0.051)

Supplementary Table 33: Comparison of PRSs in COPDGene. The PRSs are defined
based on the GWAS effect sizes of ML-based COPD, Medical-record-based (MRB) COPD, and
Sakornsakolpat et al. [S1], and the ratio, FEV;/FVC. The numbers in the parenthesis show the 95%
confidence interval. The effected individuals are defined as the individuals with final GOLD stage 2,
3, and 4 post-QA. R is the Pearson correlation between true phenotypic values and estimated PRS.

Model Medical-record-based AUC Hospitalization AUC Death AUC
FEV; /FVC Ratio 0.6977 (0.6622-0.7286) 0.8225 (0.7542-0.8705) 0.9862 (0.9732-0.9953)
Flow-volume ResNet18  0.7523 (0.7201-0.7890) 0.8705 (0.8262—0.9151) 0.9918 (0.9781-0.9992)
Model Medical-record-based AUPRC Hospitalization AUPRC Death AUPRC
FEV, /FVC Ratio 0.0914 (0.0708-0.1145) 0.0383 (0.0230-0.0587) 0.0357 (0.0107-0.0888)
Flow-volume ResNet18 0.1786 (0.1398-0.2190) 0.1031 (0.0616—0.1558) 0.2851 (0.0472—-0.5777)
Model Medical-record-based F1 Hospitalization F1 Death F1
FEV,/FVC Ratio 0.1866 (0.1491-0.2178) 0.0898 (0.0588-0.1228) 0.0507 (0.0077-0.1048)

Flow-volume ResNet18 0.2400 (0.1969-0.2856) 0.1915 (0.1259-0.2532) 0.1495 (0.0000-0.4369)

Supplementary Table 34: Comparison of model AUC, AUPRC, and F1 scores across
tasks in non-Europeans. Performance metrics are calculated using non-European individuals
with valid spirometry blows for medical-record-based COPD disease status (n = 8,201, prevalence
= 3.244%), future COPD-related hospitalization(n = 21,878, prevalence = 0.384%), and COPD-
related death(n = 26, 125, prevalence= 0.034%). FEV;/FVC Ratio denotes a risk model based on
standard spirometry metrics. The flow-volume ResNet18 model utilized the entire flow-volume curve.
We performed hyperparameter sweeps for each class of deep learning model, selecting the model that
minimized the binary cross entropy loss over the modeling validation set. 95% confidential intervals
were generated using bootstrapping (n = 100 bootstrapping trials). Bold values denote that a model
is statistically better than other models for the given task metric (n = 100 bootstrapping trials).
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Codes Description MRB COPD
J41 Simple and mucopurulent chronic bronchitis  0.6%

J42 Unspecified chronic bronchitis 3.4%

J43 Emphysema 21.4%

J44 Other chronic obstructive pulmonary disease 92.7%

Supplementary Table 35: COPD ICD10 codes. MRB stands for medical-record-based COPD.
Note each individual might have multiple codes, but a large fraction of affected individuals have a
J44 or its equivalent in their medical records and do not have information about COPD subtypes.

Dataset Split n  MRB Eval. MRB GOLD Hospitalization Death
Modeling Train 259746  0.0383 0.0473  0.0725 0.0075 0.0007
Modeling Validation = 65281 (0.0388 0.0479 0.0720 0.0072 0.0007
Fold 1 Train 128739 0.0384 0.0486 0.0711 0.0076  0.0007
Fold 1 Validation =~ 32310 0.0391 0.0477  0.0719 0.0073  0.0008
Fold 2 Train 129691 0.0379 0.0456  0.0734 0.0072  0.0007
Fold 2 Validation =~ 32637 0.0381 0.0480 0.0714 0.0069 0.0006
PRS Holdout 110739 0.0640 0.0748 - 0.0053 0.0021

Supplementary Table 36: Prevalence of COPD cases across datasets. MRB stands for
medical-record-based. GOLD labels are omitted for the PRS holdout set since it contains individuals
with invalid blows. n is the number of individuals in each dataset.

Dataset Split n FEV, FVC FEV;/FVC FEV;%predicted
Modeling Train 259746 2.84+0.75 3.76+£0.95 0.75+0.07 96.47 £+ 16.96
Modeling Validation 65281 2.84 +0.75 3.76+0.94 0.7540.07 96.48 + 16.90
Fold 1 Train 128739 2.84 +0.75 3.76 £0.95 0.75 £ 0.07 96.50 £+ 16.84
Fold 1 Validation 32310 2.84+£0.75 3.76+0.95 0.75+£0.07 96.53 4+ 16.90
Fold 2 Train 129691 2.84 +£0.75 3.76 £0.95 0.75 £ 0.07 96.47 +17.04
Fold 2 Validation 32637 2.84+£0.75 3.76+0.94 0.75+£0.07 96.47 4+ 16.86

Supplementary Table 37: Mean spirometry metrics across datasets. The PRS holdout set
is omitted since it contains only individuals with invalid blows. n is the number of individuals in
each dataset and FEV;%predicted is the predicted FEV; using age, sex, and height as features.

Dataset  Split n Age Sex  Height (cm) BMI  Smoking (packs per year) Smoker Occasional Smoker
Modeling  Train 259746 56.60 £7.98 0.4616 168.80+9.14 27.38 +4.68 9.69 +£14.64  0.3262 0.1448
Modeling  Validation ~ 65281 56.59 £7.95 0.4599 168.82+9.11 27.35+ 4.66 9.66 +14.73  0.3246 0.1464
Fold 1 Train 128739 56.61 £7.98 0.4622 168.82+£9.12 27.38 +4.66 9.66 +14.60  0.3267 0.1437
Fold 1 Validation 32310 56.54 £7.96 0.4572 168.80+£9.10 27.31+4.65 9.73+14.85 0.3239 0.1481
Fold 2 Train 129691 56.59 £7.97 0.4607 168.78 £9.15 27.37+4.70 9.70 +£14.65  0.3251 0.1461
Fold 2 Validation 32637 56.64 +£7.94 0.4622 168.84 £9.11 27.40 +4.67 9.57+14.58  0.3247 0.1452

Supplementary Table 38: Covariates mean across datasets.

See the attached Excel table.

Supplementary Table 39: Overview of hyperparameters considered for model architec-

tures.
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See the attached Excel table.

Supplementary Table 40: Overview of the final hyperparameters used for each archi-
tecture.

Pheno Name UKB Data-Field
Age 21003

BMI 21001

Sex 31

Height 50

Current tobacco smoking 1239

Past tobacco smoking 1249

Smoking pack years 20161

Supplementary Table 41: Set of non-PC covariates utilized in ML-based GWAS. UKB
Data-Field code for non-PC covariates.
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