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Reviewers' comments:  

Reviewer #1 (Remarks to the Author):  

The authors investigated the prognostic value of deep learning-based automated epicardial adipose 

tissue (EAT) quantification and compared it to traditional clinical risk factors and coronary artery 

calcium (CAC) scoring. The study analyzed 24,090 National Lung Screening Trial (NLST) participants 

who underwent non-ECG-synchronized, non-contrast low-dose chest CT. During the follow-up 

period, EAT volume and density were independently associated with all-cause and cardiovascular 

mortality. EAT quantification provided incremental prognostic value beyond clinical risk factors, 

body mass index (BMI), education, and CAC score. These findings suggest that EAT volume and 

density measurements from low-dose chest CT are independent predictors of all-cause and 

cardiovascular mortality in heavy smokers, with potential implications for CVD risk stratification in 

this high-risk population.  

While the clinical utility would be suggested and I think this research is suitable for Communication 

Medicine, I have several concerns.  

1. The authors improved their automated EAT measurement tool according to the supplementary 

method. (The current version is three)  

On the other hand, similar algorithms were found in previous reports (doi: 

10.1109/TMI.2018.2804799, https://doi.org/10.1038/s41598-022-06351-z).  

How was the performance improvement of the authors' algorithm compared to previous ones?  

2. A article with a similar concept was published regarding low-dose chest CT and cardiovascular 

disease, in which Not measuring EAT but assessing chest CT predicted cardiovascular disease risk 

(https://doi.org/10.1038/s41467-021-23235-4).  

What are the superior points to focus on EAT measurements compared to the above?  

3. EAT volume and EAT density were closely correlated according to Fig.2.  

So, I suppose one of them could be enough to predict prognosis. Please discuss and explain the 

rationale to include both EAT volume and EAT density.  

4. The result was concluded just from one dataset. Could the authors validate and replicate it using 

other cohorts like LIDC-IDRI and NSCLC Radiogenomics?  

5. Is the conclusions just applied to groups of heavy smokers? Please discuss the situations in non-

smoking and mild-smoking groups.  

Reviewer #2 (Remarks to the Author):  

Please see attachment for a formatted reivew.  

This manuscript shows that EAT volume and density from lung cancer screening images are 

associated with cardiovascular and all cause mortality. Effects are beyond clinical factors, BMI, and 

Agatston score. This is a significant contribution towards the use of chest CT images to obtain 

improved cardiovascular prediction. The manuscript needs considerable editing and additional 



analyses as it was difficult to follow.  

Some specific concerns are:  

• There must be a better description of EAT segmentation. This is my biggest concern as all else 

flows from this. In the main document, it is not clear that this is the paper with “validation” of the 

method. An assertion was made with references 14 and 34. Neither one supports this claim. This led 

me on a wild goose chase trying to track down the validation. Then I found some validation in the 

Supplement. I had issues with the meager text.  

o I could not understand the text below.  

This system, used in the present study and in (4), is the third version of our heart segmentation 

system. The first (5) and second (6) versions were trained on 129 and 858 CT scans, respectively, and 

achieved median Dice coefficients of 0.90 and 0.95, respectively  

o What is the loss function?  

o As this is the validation for the entire result, I would have expected some figures showing good 

segmentations and bad segmentations.  

o With the extensive down sampling, I am surprised that one can even see the pericardial sac. Is this 

a magic down-sampling technique?  

o There is a lot of talk about versions and data. It is impenetrable. It probably makes perfect sense, 

but I do not understand it.  

o Was testing indeed done on a held-out test set of 1306 scans, all of which were volumetrically 

manually labeled?  

o Was testing done at the original resolution or down-sampled resolution? If the original, a DICE of 

0.95 hardly makes sense as the associated partial volume errors would probably give a worse DICE 

than this.  

o What is the loss function?  

o It would be nice to compare EAT from lung cancer screening to a gated exam.  

o Probably more is missing.  

• As some scans will suffer from motion making it very difficult to identity the pericardial sac, I am 

surprised that authors did not simply lump EAT and paricardial adipose.  

• For that matter, is there any association of risk with paricardial adipose?  

• Table 3. What is Model 3?  

• Table 4. How much of the incremental CAC value is due to the power of zero?  

• Results. What is this? 10 cm3/m2. At first, I thought it was normalized by height. But that does not 

make sense. Please explicitly describe.  

• In some analyses, the EAT and HU HRs for cardiovascular death was higher than for all cause. Yet, 

when we look at Fig 3, thre is a remarkable effect of EAT and HU on all cause! Are there any 

inconsistencies here? I would like to see some discussion on Fig 3 and all-cause death.  

Reviewer #3 (Remarks to the Author):  

This research study investigated the prognostic value of deep learning-based automated epicardial 

adipose tissue (EAT) quantification in heavy smokers at risk for cardiovascular disease (CVD). The 

study compared the predictive capabilities of EAT quantification with traditional clinical risk factors 

and coronary artery calcium (CAC) scoring. The researchers analyzed data from 24,090 participants 

in the National Lung Screening Trial (NLST). These participants underwent non-ECG-synchronized, 



non-contrast low-dose chest computed tomography (CT) scans. A previously developed deep-

learning algorithm (for ECG-gated CT) was employed to quantify the volume and density of 

epicardial adipose tissue (EAT).  

Over a median follow-up period of 12.3 years, EAT volume and density were independently 

associated with all-cause and cardiovascular mortality. This suggests that assessing EAT volume and 

density through low-dose chest CT scans could be a useful tool for CVD risk stratification in heavy 

smokers, who are already at an increased risk for cardiovascular problems due to their smoking 

habits. The findings of this research study suggest that incorporating EAT quantification into routine 

lung cancer screening CT scans can provide valuable information for assessing the risk of 

cardiovascular disease and mortality in heavy smokers.  

While the overall concept is worthwhile and the NLST cohort is appropriate for this study, there are 

several significant limitations, which need to be addressed, mostly related to the methods used and 

to the patient selection within the NLST cohort.  

A major and critical fault is that the EAT probability score is based on machine learning (even if it is a 

simple logistic regression) and is designed to maximize the mortality prediction, but it was 

developed in the same population it is subsequently tested in. This is likely causing a significant 

overfit. Importantly, this probability score is shown to be the key variable, but development and 

testing in the same cohort undermine its significance.  

Moreover, the marginal incremental AUC gain of 1% by adding EAT score for mortality prediction (is 

it significant by AUC ?) may be attributed form the leakage of the outcome data when fitting the EAT 

probability score.  

The overall performance of clinical parameters alone is better than any of the imaging parameters.  

It is not clear that in Table 4 the clinical+CAC+EAT is better than clinical+CAC. Importantly EAT 

already includes information about mortality from the fitting as described in the appendix.  

Why is the CAC score available on the subset only? Was the additional value of EAT compared on 

13996/24090 images only? How was this subset selected? Previously the same group published a 

study in nature communications where 14,959 cases were processed for CAC scoring. How were the 

CAC scores obtained for this analysis? Seems many different sub-cohorts are utilized.  

Were stents and pacemakers excluded from the CAC analysis?  

Since EAT volume and attenuation are negatively (and significantly) correlated, they shouldn’t be in 

the same model. The authors do not present EAT attenuation in a model without EAT volume.  

EAT attenuation and volume should be presented separately.  

There is no validation of quantification of EAT for nongated scans provided.  

The presented NRI is continuous and does not have a straightforward clinical interpretation. Can 

categorical positive/negative NRIs and 95% CI be provided?  



Why is CAC modeled as a categorical variable, but EAT is modeled as continuous? Why?  

Author affiliations missing for MCL, VKR, TM  

Table 3 - model 3 definition is missing (which covariates were adjusted?)  

Why is the distinction of CAC categories <300 HU (standard to have 400 HU as threshold)- 

misleading?  

For Table 4, what is the N value?  

In addition, the algorithm offers EAT measurements in under 2 seconds without human input, 

making it an “end-to-end” solution for CV risk assessment in clinical settings” -On what kind of a 

computer? IIs this GPU enabled, and what kind of GPU? Does it include CAC scoring?  

Discussion - Inflammation is a common pathophysiology pathway for CVD and cancer -this paragraph 

is speculative; no data is presented in the manuscript relating to this  

Same with the Epicardial adipose tissue section may be an index and promotor of local coronary 

artery inflammation. This paragraph is unrelated to the paper.  



Deep Learning Analysis of Epicardial Adipose Tissue on Non-ECG-gated Low-Dose 
Chest CT: Uncovering Hidden Cardiovascular Risk in Heavy Smokers 

Foldyna 

 

This manuscript shows that EAT volume and density from lung cancer screening images are 
associated with cardiovascular and all cause mortality. Effects are beyond clinical factors, BMI, 
and Agatston score. This is a significant contribution towards the use of chest CT images to 
obtain improved cardiovascular prediction. The manuscript needs considerable editing and 
additional analyses as it was difficult to follow.  

Some specific concerns are: 

• There must be a better description of EAT segmentation. This is my biggest concern as all 
else flows from this. In the main document, it is not clear that this is the paper with 
“validation” of the method. An assertion was made with references 14 and 34. Neither one 
supports this claim. This led me on a wild goose chase trying to track down the validation. 
Then I found some validation in the Supplement. I had issues with the meager text.  

o I could not understand the text below.  
This system, used in the present study and in (4), is the third version of our heart 
segmentation system. The first (5) and second (6) versions were trained on 129 and 
858 CT scans, respectively, and achieved median Dice coefficients of 0.90 and 0.95, 
respectively 

o What is the loss function? 
o As this is the validation for the entire result, I would have expected some figures 

showing good segmentations and bad segmentations.  
o With the extensive down sampling, I am surprised that one can even see the 

pericardial sac. Is this a magic down-sampling technique? 
o There is a lot of talk about versions and data. It is impenetrable. It probably makes 

perfect sense, but I do not understand it.  
o Was testing indeed done on a held-out test set of 1306 scans, all of which were 

volumetrically manually labeled?  
o Was testing done at the original resolution or down-sampled resolution? If the 

original, a DICE of 0.95 hardly makes sense as the associated partial volume errors 
would probably give a worse DICE than this.  

o What is the loss function? 
o It would be nice to compare EAT from lung cancer screening to a gated exam.  
o Probably more is missing.  

• As some scans will suffer from motion making it very difficult to identity the pericardial sac, I 
am surprised that authors did not simply lump EAT and paricardial adipose.  

• For that matter, is there any association of risk with paricardial adipose? 
• Table 3. What is Model 3? 
• Table 4. How much of the incremental CAC value is due to the power of zero? 
• Results. What is this? 10 cm3/m2. At first, I thought it was normalized by height. But that 

does not make sense. Please explicitly describe.  
• In some analyses, the EAT and HU HRs for cardiovascular death was higher than for all 

cause. Yet, when we look at Fig 3, thre is a remarkable effect of EAT and HU on all cause! 



Are there any inconsistencies here? I would like to see some discussion on Fig 3 and all-
cause death.  

 

 



Point-by-point responses to the editor and reviewers 

We thank the editor and the reviewers for their valuable feedback and insigh ul comments and appreciate the me 
and effort they have put into reviewing our manuscript. We agree with the sugges ons and made the necessary 
modifica ons for the manuscript's improvement. Please find detailed responses to individual comments below: 

Referee #1: 

The authors inves gated the prognos c value of deep learning-based automated epicardial adipose ssue (EAT) 
quan fica on and compared it to tradi onal clinical risk factors and coronary artery calcium (CAC) scoring. The 
study analyzed 24,090 Na onal Lung Screening Trial (NLST) par cipants who underwent non-ECG-synchronized, 
non-contrast low-dose chest CT. During the follow-up period, EAT volume and density were independently 
associated with all-cause and cardiovascular mortality. EAT quan fica on provided incremental prognos c value 
beyond clinical risk factors, body mass index (BMI), educa on, and CAC score. These findings suggest that EAT 
volume and density measurements from low-dose chest CT are independent predictors of all-cause and 
cardiovascular mortality in heavy smokers, with poten al implica ons for CVD risk stra fica on in this high-risk 
popula on. 
While the clinical u lity would be suggested and I think this research is suitable for Communica on Medicine, I 
have several concerns. 

1.  The authors improved their automated EAT measurement tool according to the supplementary method. 
(The current version is three). On the other hand, similar algorithms were found in previous reports (doi: 
10.1109/TMI.2018.2804799, h ps://doi.org/10.1038/s41598-022-06351-z). How was the performance 
improvement of the authors' algorithm compared to previous ones? 

We thank the reviewer for their insigh ul comments and the opportunity to clarify our work in rela on to the 
referenced studies (1) and (2). While these studies highlight the efficacy of their respec ve automa c EAT 
segmenta on tools through comparison with manual measurements, our research primarily centers on the 
prognos c implica ons of such an automated approach, contras ng it with conven onal clinical risk factors. 
Consequently, the EAT segmenta on tool we developed serves a subsidiary role in our study. 

Nonetheless, it is worth no ng that our segmenta on tool was conceived and validated using a significantly larger 
and more diverse dataset compared to studies (1) and (2). Specifically, study (1) u lized a total of 89 scans, study (2) 
employed 250 scans, whereas our research incorporated a total of 2,164 manually labeled cardiac and non-cardiac 
CT scans across three dis nct cohorts of asymptoma c and stable chest pain pa ents as well as people undergoing 
lung cancer screening. Moreover, our segmenta on tool is openly accessible to the public. 

It is worth men oning that our study focuses on metrics derived from heart segmenta ons, while studies (1) and (2) 
concentrate on EAT segmenta ons. Both methods are equally viable – the masks will only differ in the pericardium 
area. At the same me, the remaining voxels will be equal between manual and automa c EAT segmenta on due to 
HU thresholding. This compara ve informa on has been included in our paper, along with appropriate cita ons to 
these studies. 

1. h ps://doi.org/10.1038/s41598-022-06351-z 
2. h ps://www.ncbi.nlm.nih.gov/pmc/ar cles/PMC6076348/pdf/nihms943682.pdf 

 



2.  A ar cle with a similar concept was published regarding low-dose chest CT and cardiovascular disease, in 
which Not measuring EAT but assessing chest CT predicted cardiovascular disease risk 
(h ps://doi.org/10.1038/s41467-021-23235-4). What are the superior points to focus on EAT measurements 
compared to the above? 

Thank you for bringing the Chao et al. study to our a en on. The referenced paper (1) presents a deep learning (DL) 
model that extracts features from the heart in three views, combines them, and uses them to classify cardiovascular 
disease (CVD) risk. The study team validated the DL-based CVD mortality predic on model against standard coronary 
CTA-derived imaging markers (CAC score and CAD-RADS class) and the clinical 10-year MESA risk score. This study 
chose a less supervised approach and developed an imaged-based novel risk stra fica on system. This system 
performs well in the deriva on and valida on cohorts, but due to its design, it delivers limited insights into coronary 
artery disease pathophysiology. Furthermore, the study does not provide nested models that show the incremental 
value of the predic on model to established markers and tradi onal cardiovascular (CV) risk.  

We were more interested in applying our DL algorithm as a tool to assess EAT, a known imaging marker of CV risk, in 
which biology is well understood. S ll, its prognos c value has not been inves gated in a primary preven on cohort 
of people who undergo lung cancer screening. EAT is a metabolically ac ve ssue, and its volume and density are 
closely related to vascular inflamma on and atherogenesis. Therefore, changes in EAT may be precursors of coronary 
artery disease rather than surrogate markers of exis ng disease (e.g., CAC score) and, therefore, may have 
incremental prognos c value, specifically in primary preven on cohorts. The EAT segmenta ons produced are 
tangible and can be directly compared, offering a clear understanding of the process and results. 

In contrast, a deep learning CVD risk es ma on can be considered a "black box" approach, where the internal 
workings are not directly interpretable. While both methods are valid, they are dis nctly different. The simplicity and 
transparency of EAT segmenta on make it easier to adopt and understand. The essen al advantage of our approach 
lies in its transparency.  

 

1. h ps://doi.org/10.1038/s41467-021-23235-4 

 

3. EAT volume and EAT density were closely correlated according to Fig.2. So, I suppose one of them could be 
enough to predict prognosis. Please discuss and explain the ra onale to include both EAT volume and EAT density. 

Thank you for poin ng out the individual EAT measures. Higher EAT volume was indeed associated with events (raw 
EAT volume (per 10 cm3) HR: 1.04, 95%CI: 1.04–1.05, p<0.001, BSA-indexed EAT volume (per 10 cm3/m2) HR: 1.10, 
95%CI: 1.09–1.12, p<0.001).  

EAT density was also associated with events but with an HR <1 (EAT density (per 10 HU) HR: 0.87, 95%CI: 0.82–
0.92,p<0.001). The EAT volume confounds the raw EAT density value, as shown by the strong nega ve correla on 
between EAT volume and density as shown in Figure 2. (rho: -0.72, p<0.001). In other words, higher EAT volume 
automa cally leads to lower (more nega ve) EAT density. From the biological perspec ve, inflamma on of EAT is 
known to increase EAT density by increasing water content (i.e., edema) and connec ve ssue to lipid ra o. However, 
this effect is weaker than the associa on between EAT volume and density. Therefore, an adjustment for EAT volume 
is necessary and in accord with other studies inves ga ng the prognos c value of fat depots (e.g., Oikonomou et al. 
Lancet 2018). Our results show that higher EAT density at any given EAT volume is associated with mortality. 



EAT volume and density are both independent predictors (see Model 1 in Table 3), and, therefore, both contribute 
to prognosis. From a CAD pathogenesis perspec ve, increased EAT volume has tradi onally been associated with 
obesity and hyperlipidemia, while increased EAT density is a known index of inflamma on, two separate pathways 
driving atherogenesis.  

We added a corresponding descrip on to the manuscript's results sec on and now list the univariable results in Table 
3. 

 

4. The result was concluded just from one dataset. Could the authors validate and replicate it using other 
cohorts like LIDC-IDRI and NSCLC Radiogenomics?  

Thank you for raising the ques on of reproducibility and generalizability. Mul ple other studies have described the 
prognos c value of EAT volume and density. Our study aimed to apply a biologically well-known concept in a specific 
cohort of pa ents eligible for lung cancer screening. Furthermore, the accuracy of the DL algorithm has been 
validated in an independent valida on subset from PROMISE and NLST cohorts. 

5. Is the conclusions just applied to groups of heavy smokers? Please discuss the situa ons in non-smoking 
and mild-smoking groups. 

Thank you for bringing up this excellent point. This manuscript included par cipants from the NLST trial, all of whom 
have a ≥30 pack-year smoking history. This is an important popula on, as lung cancer screening is a common 
indica on for noncontrast chest CT. Future work will be necessary to understand implica ons for non-smokers and 
lesser smokers – we've added the following sentence in italics to the Limita ons sec on of the Discussion: 

"Third, the NLST cohort included only heavy smokers (≥30 pack years), and differences in EAT's prognos c value could 
not be calculated between heavy smokers, non-smokers, and lower-risk smokers with ≥20–30 pack years, a group 
currently also recommended for lung cancer screening. Future work is necessary to understand implica ons in non-
smokers and lesser smoking popula ons." 

Referee #2: 

Please see a achment for a forma ed reivew. 

This manuscript shows that EAT volume and density from lung cancer screening images are associated with 
cardiovascular and all cause mortality. Effects are beyond clinical factors, BMI, and Agatston score. This is a 
significant contribu on towards the use of chest CT images to obtain improved cardiovascular predic on. 
The manuscript needs considerable edi ng and addi onal analyses as it was difficult to follow.  

Some specific concerns are: 

1. There must be a be er descrip on of EAT segmenta on. This is my biggest concern as all else flows from 
this. In the main document, it is not clear that this is the paper with "valida on" of the method. An asser on 
was made with references 14 and 34. Neither one supports this claim. This led me on a wild goose chase 
trying to track down the valida on. Then I found some valida on in the Supplement. I had issues with the 
meager text.  

We thank the reviewer for their feedback and understand the concerns raised about the descrip on of our EAT 
segmenta on tool. In response, we have revised our manuscript to provide a more comprehensive and precise 



descrip on of our EAT segmenta on process. We have moved the revised detailed explana on from the 
supplementary materials into the main body of the manuscript to ensure its visibility and accessibility. 

Furthermore, we have made efforts to clarify that our paper serves as a valida on of the EAT segmenta on method. 
Specifically, we have emphasized our evalua on of the prognos c value of automa c EAT segmenta on, which we 
believe is a crucial aspect of valida ng its u lity and effec veness. We hope these revisions address the reviewer's 
concerns and provide a clearer understanding of our work. 

 

2. I could not understand the text below. This system, used in the present study and in (4), is the third version 
of our heart segmenta on system. The first (5) and second (6) versions were trained on 129 and 858 CT 
scans, respec vely, and achieved median Dice coefficients of 0.90 and 0.95, respec vely. 

We appreciate the reviewer's feedback on the clarity of our descrip ons. In response, we have streamlined the 
informa on about the different versions of our heart segmenta on system. Instead of detailing each version and 
their respec ve training data and performance, we have consolidated this informa on into a single sentence towards 
the end of the relevant sec on. This sentence briefly acknowledges the evolu on of our system, focusing on the 
current version used in this study, which we believe provides a more straigh orward and concise presenta on of our 
work. 

 

3. What is the loss func on? 

We employed the Dice loss func on for training our models. We have incorporated this informa on into the updated 
descrip on of our methodology. 

 

4. As this is the valida on for the en re result, I would have expected some figures showing good 
segmenta ons and bad segmenta ons.  

Thank you very much for poin ng out the missing image examples. Only a few (n=43) scans (see Flowchart 
Supplemental Figure S1) failed to be analyzed by the Deep Learning algorithm. We added image examples 
(Supplemental Figure S2) (see below) that display good and bad segmenta ons, including the most common reasons 
for failure. We reference the figure in the methods sec on of the manuscript. 



 

5. With the extensive down sampling, I am surprised that one can even see the pericardial sac. Is this a magic 
down-sampling technique? 

We appreciate the reviewer's ques on regarding our down-sampling technique. The extensive down-sampling was 
applied in the first step, a network tasked with localizing the heart through coarse segmenta on. The scans are then 
cropped around the heart center to guarantee that the en re heart is captured.  

The second network, which is responsible for the more detailed segmenta on, operates on a suitably down-sampled 
spacing. This two-step process allows us to maintain the necessary detail for accurate segmenta on while benefi ng 
from down-sampling's computa onal efficiency.  

 

6. There is a lot of talk about versions and data. It is impenetrable. It probably makes perfect sense, but I do 
not understand it.  

We appreciate the reviewer's feedback regarding the complexity of our descrip ons of the different versions and 
data. In response to this, as outlined in our answer to ques on 2, we have simplified this informa on in our revised 
manuscript to ensure it is more accessible and easier to understand. 

 

7. Was tes ng indeed done on a held-out test set of 1306 scans, all of which were volumetrically manually 
labeled?  



Yes. Overall, our group manually labeled 2,164 cases (PROMISE: n=1,140; FHS: n=628; NLST: n=396). Among these, 
858 and 1,306 independent cases were used for training and tes ng, respec vely. We adjusted the methods sec on 
of the manuscript to clarify this aspect. 

8. Was tes ng done at the original resolu on or down-sampled resolu on? If the original, a DICE of 0.95 hardly 
makes sense as the associated par al volume errors would probably give a worse DICE than this.  

We appreciate the reviewer's inquiry. Indeed, the tes ng was performed at the original resolu on. The Dice score of 
0.95, which we reported, is associated with heart segmenta on. Such a score is achievable, especially considering 
the size of the dataset used for training. Our dice score is in a range of previously described dice scores for segmen ng 
thoracic structures, as reported in the 2017 AAPM challenge (1). We revised the methods sec on to explicitly state 
that the evalua on was conducted on the original spacing/resolu on. 

1. h ps://aapm.onlinelibrary.wiley.com/doi/10.1002/mp.13141 

 

9. What is the loss func on? 

Please refer to the answer to the ques on 3. 

10. It would be nice to compare EAT from lung cancer screening to a gated exam. Probably more is missing.  

We used the DL algorithm to segment EAT in the PROMISE cohort (Foldyna et al. JACC CVI 2021). PROMISE CT scans 
are ECG-gated. The mean EAT volume and density in PROMISE were 57.5 ± 22.0 cm3/m2 and –86.8 ± 5.1 HU, 
respec vely. The values are similar to those we measured in the NLST cohort (70.3 ± 24.6 cm3/m2 and –77.7 ± 5.2 
HU, no ng that the PROMISE cohort was substan ally different. PROMISE enrolled symptoma c pa ents with stable 
chest pain, who were more frequently female (51% vs. 49%), and there were fewer pa ents with tobacco use (51%) 
compared to the 100% in NLST. PROMISE pa ents had a higher prevalence of tradi onal cardiovascular risk factors 
such as hypertension (64% vs. 35%) and diabetes mellitus (20% vs. 10%), limi ng the comparison.  

11. As some scans will suffer from mo on making it very difficult to iden ty the pericardial sac, I am surprised 
that authors did not simply lump EAT and paricardial adipose. For that ma er, is there any associa on of 
risk with paricardial adipose? 

Pericardial (outside pericardial sac) and epicardial (inside pericardial sac) adipose ssue (EAT) are o en described 
together as paracardial adipose ssue. Our algorithm is developed to recognize the pericardial sac and specifically 
measure the epicardial fat. EAT is known to have a stronger associa on with coronary artery disease and adverse 
events than other fat depots due to its stronger metabolic ac vity and proximity to the coronary arteries and 
myocardium. In our study, higher EAT volume was related to a higher CAC at baseline, as shown in Table 2. This 
associa on remained significant a er a full adjustment for age, sex, race, ethnicity, smoking status (current vs. 
former), number of pack years, hx of myocardial infarc on, hx of stroke, diabetes mellitus, hypertension, educa on 
status, and BMI (see full model results below). We added a corresponding descrip on to the results sec on (Page 4). 



 

12. Table 3. What is Model 3? 

Thank you for poin ng out the unclear descrip on of Table 3. We adjusted the footnote to describe the individual 
Cox regression models correctly. 

13. Table 4. How much of the incremental CAC value is due to the power of zero? 

In the subgroup of NLST subjects with available CAC scores (N=13,966), 3,355 (24%) presented with CAC=0. We 
performed an addi onal Harrell's C concordance analysis, including a CAC yes/no variable instead of a categorical 
CAC variable in the nested models. The incremental value of CAC yes/no was slightly lower than a model including 
categorical CAC—Harrell's C: 0.703 vs. 0.706 for all-cause mortality and 0.757 vs. 0.769 for CV mortality. 

14. Results. What is this? 10 cm3/m2. At first, I thought it was normalized by height. But that does not make 
sense. Please explicitly describe.  

Thank you for poin ng out this unclear aspect of the methods sec on. The unit describes EAT volume (cm3) indexed 
by body surface area (m2). We describe the indexing method in the methods sec on. Per journal guidelines, the 
results sec on comes first. Therefore, we revised the results descrip on to make the indexing method more 
transparent. 

The size of fat depots is associated with the individual body habitus and obesity. In our cohort, there was a moderate 
correla on between the raw EAT volume (cm3) and BMI as well as BSA (BMI rho: +0.51, p<0.001; BSA rho: +0.56, 
p<0.001). Therefore, we chose an approach used in other studies that indexed the raw EAT volume by BSA and 
adjusted all mul variable models for BMI. 

The corresponding descrip on can be found in the Methods sec on on page 12.  



15. In some analyses, the EAT and HU HRs for cardiovascular death was higher than for all cause. Yet, when we 
look at Fig 3, thre is a remarkable effect of EAT and HU on all cause! Are there any inconsistencies here? I 
would like to see some discussion on Fig 3 and all-cause death. 

Thank you for poin ng out this unclear aspect. EAT volume and density are closely related to coronary artery disease 
and, therefore, are more prognos c for cardiovascular death. Our study found a posi ve independent associa on 
between EAT volume and coronary artery disease, as shown in response to comment #11. 

The different magnitude of effect, comparing all-cause vs. CV mortality in Fig. 3, is due to the difference in event rates 
(All-cause mortality: 19.5% vs. CV mortality: 4.5%). Furthermore, EAT volume and density are categorized in quar les 
in Fig. 3, while they are con nuous in Table 3. Lastly, Fig. 3 is based only on univariable analysis, while Table 3 includes 
mul variable models. We checked the sta s cal analysis and did not find any inconsistencies. 

Referee #3: 

This research study inves gated the prognos c value of deep learning-based automated epicardial adipose ssue 
(EAT) quan fica on in heavy smokers at risk for cardiovascular disease (CVD). The study compared the predic ve 
capabili es of EAT quan fica on with tradi onal clinical risk factors and coronary artery calcium (CAC) scoring. 
The researchers analyzed data from 24,090 par cipants in the Na onal Lung Screening Trial (NLST). These 
par cipants underwent non-ECG-synchronized, non-contrast low-dose chest computed tomography (CT) scans. 
A previously developed deep-learning algorithm (for ECG-gated CT) was employed to quan fy the volume and 
density of epicardial adipose ssue (EAT). 

Over a median follow-up period of 12.3 years, EAT volume and density were independently associated with all-
cause and cardiovascular mortality. This suggests that assessing EAT volume and density through low-dose chest 
CT scans could be a useful tool for CVD risk stra fica on in heavy smokers, who are already at an increased risk 
for cardiovascular problems due to their smoking habits. The findings of this research study suggest that 
incorpora ng EAT quan fica on into rou ne lung cancer screening CT scans can provide valuable informa on 
for assessing the risk of cardiovascular disease and mortality in heavy smokers.  

While the overall concept is worthwhile and the NLST cohort is appropriate for this study, there are several 
significant limita ons, which need to be addressed, mostly related to the methods used and to the pa ent 
selec on within the NLST cohort. 

1. A major and cri cal fault is that the EAT probability score is based on machine learning (even if it is a simple 
logis c regression) and is designed to maximize the mortality predic on, but it was developed in the same 
popula on it is subsequently tested in. This is likely causing a significant overfit. Importantly, this probability 
score is shown to be the key variable, but development and tes ng in the same cohort undermine its 
significance.  

Thank you for this comment and the opportunity to clarify our approach. First and foremost, our paper serves as a 
valida on of the EAT segmenta on method. As described in the methods sec on, a dataset of 2,164 randomly 
selected CT scans from FHS (n=628), PROMISE (n=1,140), and NLST (n=396) was used to develop the system. We used 
858 cases (FHS, n=628, PROMISE, n=130; NLST, n=100) for training and tuning of the algorithm, while the remaining 
1,306 cases (PROMISE, n=1,010; NLST, n=296) were reserved for tes ng.  

We used a mul variable logis c regression model including EAT volume and density to calculate an EAT-based 
probability score, which we stra fied into three risk categories (low: <15%, medium: 15%–25%, high: >25%). This 



probability score is purely exploratory and should not be seen as a predic on score, which would need to fulfill 
specific requirements.  

2. Moreover, the marginal incremental AUC gain of 1% by adding EAT score for mortality predic on (is it 
significant by AUC ?) may be a ributed form the leakage of the outcome data when fi ng the EAT 
probability score.  

Please see our response to comment #1. 

3. The overall performance of clinical parameters alone is be er than any of the imaging parameters. It is not 
clear that in Table 4 the clinical+CAC+EAT is be er than clinical+CAC. Importantly EAT already includes 
informa on about mortality from the fi ng as described in the appendix.  

Please see our response to comment #1. 

4. Why is the CAC score available on the subset only? Was the addi onal value of EAT compared on 
13996/24090 images only? How was this subset selected? Previously the same group published a study in 
nature communica ons where 14,959 cases were processed for CAC scoring. How were the CAC scores 
obtained for this analysis? Seems many different sub-cohorts are u lized.  

Thank you for poin ng out the CAC subgroup measurements. We u lized the validated CAC scores obtained by our 
group and published in Zeleznik et al. Nature Comm 2021. At that me, the policy of the Na onal Cancer Ins tute 
was to only release up to 15,000 par cipants' data for any individual project.   

In the current study, we applied stricter image quality check criteria than the Zeleznik et al. study. Consequently, we 
excluded a larger group of subjects before the EAT analysis (1,682/25,815 (6.5%)) vs. 41/15,000 (0.3%) by Zeleznik et 
al. Therefore, some subjects eligible for CAC scoring did not undergo EAT segmenta on. We now provide a more 
comprehensive consort diagram to explain the individual steps to obtain the final analy cal cohort of 24,090 cases.  



 

5. Were stents and pacemakers excluded from the CAC analysis?  

The analysis included all available NLST par cipants, not excluding those with any implants, to avoid selec on bias.  

6. Since EAT volume and a enua on are nega vely (and significantly) correlated, they shouldn't be in the same 
model. The authors do not present EAT a enua on in a model without EAT volume. EAT a enua on and 
volume should be presented separately. 

The correla on between EAT volume and density is a crucial aspect of the analysis and can be explained by the 
complex biology of the epicardial adipose ssue. Please refer to the response to Referee #1 Comment #3. 

7. There is no valida on of quan fica on of EAT for nongated scans provided. 

We appreciate the reviewer's observa on. We would like to clarify that our EAT segmenta on system has indeed 
been developed and validated on ECG-gated and non-gated scans. Specifically, it was trained and tested, in addi on 
to other cohorts, on an independent subset of the Na onal Lung Screening Trial (NLST) cohort, which consists of non-
gated low-dose CT scans. This informa on was previously detailed in the supplementary material and has now been 
incorporated into the main body of the revised manuscript for be er visibility and understanding. 

8. The presented NRI is con nuous and does not have a straigh orward clinical interpreta on. Can categorical 
posi ve/nega ve NRIs and 95% CI be provided?  

We agree with the reviewer that the con nuous net reclassifica on index (NRI) is difficult to interpret. In general, 
NRI tests are increasingly cri cized by the research community for their unacceptable sta s cal behavior, incorrect 
sta s cal inferences, and lack of interpretability (Kathleen F. Kerr Radiology 2022). Therefore, we would like to 



abstain from showing 95% CIs. Furthermore, our regression models include mul ple independent variables 
(categorical and con nuous), so that we cannot provide categorical NRIs directly. Regarding the probability score, 
which we classified into three categories (low, medium, high), Kathleen F. Kerr et al. (Epidemiology, 2014) advise 
against using the NRI for 3 or more categories since it does not discriminate between different types of 
reclassifica ons.    

Instead, we added Harrell's C sta s cs (AUC equivalent for me-to-event data) to test individual models' 
performance. Moreover, we revised Table 4 to make it more readable and added Likelihood-ra o tests for nested 
models to test for incremental value of EAT and CAC vs. clinical parameters.   

9. Why is CAC modeled as a categorical variable, but EAT is modeled as con nuous? Why? 

We adhered to the clinical standard of using CAC categories. However, a supplemental sensi vity analysis using CAC 
as a con nuous measure did not reveal any differences in results. 

Mul variable regression results were as follows: 

All-cause mortality: 

 

CV-mortality: 



 

 

10. Author affilia ons missing for MCL, VKR, TM 

Thank you for poin ng out the missing informa on. We added the corresponding affilia ons for MCL, VKR, and TM. 

11. Table 3 - model 3 defini on is missing (which covariates were adjusted?) 

Thank you for poin ng out the unclear descrip on of Table 3. We adjusted the footnote of Table 3 to describe the 
individual Cox regression models clearly. Model 3 is the fully revised model, including EAT volume, EAT density, age, 
sex, Race, Ethnicity, smoking (current vs. former), pack-years, history of heart disease, stroke, diabetes mellitus, 
hypertension, educa on status, BMI, and CAC score. 

 

12. Why is the dis nc on of CAC categories <300 HU (standard to have 400 HU as threshold)- misleading? 

We used the standard density threshold of 130 HU to render CAC and the Agatston method to calculate the coronary 
calcium score. We calculated the CAC scores and stra fied them into clinically relevant categories. While some 
studies use a threshold of 400 Agatston units, we used the 300 Agatston unit cutoff according to prior publica ons 
in primary preven on cohorts (e.g., Hoffmann et al. Am. J. Cardiol. 2008, Zeleznik et al. Nature Communica ons 
2021). We added the corresponding reference (Hoffmann et al. Am. J. Cardiol. 2008) to the methods sec on. 

13. For Table 4, what is the N value? 



The N value is 13,860. We added a corresponding descrip on to the Table 4 footnote.  

14. In addi on, the algorithm offers EAT measurements in under 2 seconds without human input, making it an 
"end-to-end" solu on for CV risk assessment in clinical se ngs" -On what kind of a computer? IIs this GPU 
enabled, and what kind of GPU? Does it include CAC scoring?  

We thank the reviewer for the ques on. The EAT segmenta on tool does not include CAC scoring. It performs under 
2 seconds on a GPU-enabled machine – specifically, on a Linux worksta on with an Nvidia A6000 GPU. We added the 
missing informa on to the revised manuscript. 

15. Discussion - Inflamma on is a common pathophysiology pathway for CVD and cancer -this paragraph is 
specula ve; no data is presented in the manuscript rela ng to this. Same with the Epicardial adipose ssue 
sec on may be an index and promotor of local coronary artery inflamma on. This paragraph is unrelated to 
the paper. 

Thank you for poin ng out this unclear por on of the discussion. We agree that those two sec ons included 
informa on outside the scope of the current study. We condensed both paragraphs into one short sec on, added 
corresponding data from our study, and revised the references.  

 

 

 

 

 



Reviewers' comments:  

Reviewer #1 (Remarks to the Author):  

The authors prepared appropriate answers to my questions and revisited their paper. Therefore, I 

think this manuscript has reached a level with no publication problems.  

Reviewer #2 (Remarks to the Author):  

Authors responded adequately to my concerns. This is a great example of opportunistic screening. 

Thank you for providing details on the segmentations.  

David L Wilson  

Reviewer #3 (Remarks to the Author):  

Some progress has been made in the response, but unfortunately the authors did not answer the 

main critical points.  

1. A major and critical fault is that the EAT probability score is based on machine learning (even if it is 

a simple logistic regression) and is designed to maximize the mortality prediction, but it was 

developed in the same population it is subsequently tested in. This is likely causing a significant 

overfit. Importantly, this probability score is shown to be the key variable, but development and 

testing in the same cohort undermine its significance.  

>This probability is purely exploratory and should not be seen as a prediction score, which would 

need to fulfill specific requirements.  

This EAT probability score features as the main result in the key figure 3 of the paper. Considering 

the guidelines for AI research and the high profile of this journal, this parameter should be 

developed and evaluated in separate cohorts or removed from the analysis.  

Consequently, points 2 and 3 and not answered at all as they merely refer to the answer 1 in point.  

The answer to point 4 is unclear -if all 24090 cases could be processed for EAT, why could they not 

be processed for calcium? The paper is very confusing as Table 1 baseline characteristics have a 

different population than Table 4 . N is not given in Table 4. Also, CAC in Table 1 is incorrectly given 

as if for the whole population.  

Regarding point 8 the authors still utilize continuous NRI and do not want to show categorical NRI 

based on an editorial from 2022. This editorial actually criticizes continuous NRI in particular. 

Regarding categorical NRI the editorial ignores the fact that one can show reclassification separately 

for events and nonevents, which should be standard practice. The categorical NRI is often used, and 

the original manuscript on categorical NRI is cited over 6270 times and over 653 times since 2022 

according to Google Scholar.  



Response to review 

 

 

Report from reviewer 3 
 
Some progress has been made in the response, but unfortunately the authors did not 
answer the main critical points. 
 
1. A major and critical fault is that the EAT probability score is based on machine 
learning (even if it is a simple logistic regression) and is designed to maximize the 
mortality prediction, but it was developed in the same population it is subsequently 
tested in. This is likely causing a significant overfit. Importantly, this probability score is 
shown to be the key variable, but development and testing in the same cohort 
undermine its significance. 
 
Since the authors used some 24k+ patients from a registry obtained from multiple sites, 
this should represent many different scanners and locations. This should help 
generalizability. Of course, a different sub-population might yield somewhat different 
results, due to calibration differences for example. I think it is quite OK as long as the 
authors describe this as a limitation.  
 
More troubling is that I see no evidence of splitting their existing data into 
training/testing groups. Normally, we require this in Cox modeling. They do have a 
saving grace in that they are using very few features. However, when they include CAC 
+ EAT volume + EAT HU + clinicals, they do have a number of features. It would be 
better practice to split out training and testing data and report performance on both. 
Maybe this was done. If so, it should be made more clear.  
 
 
>This probability is purely exploratory and should not be seen as a prediction score, 
which would need to fulfill specific requirements. 
 
This EAT probability score features as the main result in the key figure 3 of the paper. 
Considering the guidelines for AI research and the high profile of this journal, this 
parameter should be developed and evaluated in separate cohorts or removed from the 
analysis. 
Consequently, points 2 and 3 and not answered at all as they merely refer to the answer 
1 in point. 
 
The answer to point 4 is unclear -if all 24090 cases could be processed for EAT, why 
could they not be processed for calcium? The paper is very confusing as Table 1 
baseline characteristics have a different population than Table 4 . N is not given in 
Table 4. Also, CAC in Table 1 is incorrectly given as if for the whole population. 
 
Regarding point 8 the authors still utilize continuous NRI and do not want to show 



categorical NRI based on an editorial from 2022. This editorial actually criticizes 
continuous NRI in particular. Regarding categorical NRI the editorial ignores the fact 
that one can show reclassification separately for events and nonevents, which should 
be standard practice. The categorical NRI is often used, and the original manuscript on 
categorical NRI is cited over 6270 times and over 653 times since 2022 according to 
Google Scholar. 
 
Authors could discuss categorical NRI and more carefully discuss the types of 
reclassifications.  

This email has been sent through the Springer Nature Tracking System NY-610A-
NPG&MTS 

 



Point-by-point responses to the editor and reviewers 

We thank the editor and the reviewers for their valuable feedback and insightful comments and appreciate the time 

and effort they have put into reviewing our manuscript. We also thank reviewer #2 for additional feedback. We agree 

with the suggestions and made the necessary modifications to the manuscript. Please find detailed responses to 

individual comments below: 

Referee #1: 

“The authors prepared appropriate answers to my questions and revisited their paper. Therefore, I think this 

manuscript has reached a level with no publication problems.” 

Thank you very much for the positive feedback. 

 

Referee #2: 

“Authors responded adequately to my concerns. This is a great example of opportunistic screening. Thank 

you for providing details on the segmentations.” 

We thank the reviewer for the positive feedback and are glad we could provide the requested information. 

 

Referee #3: 

“Some progress has been made in the response, but unfortunately the authors did not answer the main 

critical points. 

A major and critical fault is that the EAT probability score is based on machine learning (even if it is a simple 

logistic regression) and is designed to maximize the mortality prediction, but it was developed in the same 

population it is subsequently tested in. This is likely causing a significant overfit. Importantly, this probability 

score is shown to be the key variable, but development and testing in the same cohort undermine its 

significance. 

This probability is purely exploratory and should not be seen as a prediction score, which would need to fulfill 

specific requirements.” 

We thank the reviewer for pointing out this unclear aspect and apologize for any confusion. 

Epicardial adipose tissue (EAT) volume and density are known prognostic markers, tested and validated in other large 

imaging studies, as mentioned by Mancio et al. EHJ CVI 2018. Our discussion states the following: 

“Our study corroborates growing evidence linking increased EAT volume and density with adverse events. For 

instance, a large meta-analysis including over 20,000 subjects (mainly from the Framingham Heart Study (FHS), Multi-

Ethnic Study of Atherosclerosis (MESA), Heinz Nixdorf Recall (HNR) study, EISNER study, and the Rotterdam study) 

reported a strong relationship between EAT volume, CV risk factors, and CAD severity21.” 



In the current study, we automated the EAT segmentation. We validated EAT’s prognostic value as an opportunistic 

imaging marker in a cohort of individuals who underwent lung cancer screening CTs, a large cohort where manual 

segmentation is not feasible. The machine learning was used solely for the segmentation of the EAT. It was trained 

and validated in the Framingham Heart Study, PROMISE, and NLST, a variety of large, well-phenotyped cohorts with 

images acquired using different scanners at numerous sites across the US. Hence, our study did not intend to develop 

and test a novel biomarker; instead, it used deep learning to assess a well-known and validated imaging marker in a 

cohort of patients with increased CV risk who usually do not get CV evaluation. 

The methods section states the following: 

Training and testing data sets 

A dataset of 2,164 randomly selected CT scans from FHS (n=628), PROMISE (n=1,140), and NLST (n=396) was used to 

develop the system. Four experienced cardiovascular radiologists provided standard manual segmentations for all 

2,164 cases.  

We used 858 cases (FHS, n=628, PROMISE, n=130; NLST, n=100) for training and tuning of the algorithm, while the 

remaining 1,306 cases (PROMISE, n=1,010; NLST, n=296) were reserved for testing. 

 

“This EAT probability score features as the main result in the key figure 3 of the paper. Considering the 

guidelines for AI research and the high profile of this journal, this parameter should be developed and 

evaluated in separate cohorts or removed from the analysis. 

Consequently, points 2 and 3 and not answered at all as they merely refer to the answer 1 in point.” 

Again, we apologize for the confusion. As mentioned above, we did not define a new biomarker. We agree that the 

exploratory “EAT probability score” may need further validation in independent cohorts. We added the following 

sentence to the limitation section of the discussion.  

“Fourth, the EAT probability score combining EAT volume and density needs external validation. However, the large 

number of subjects from multiple sites (i.e., various scanners at different locations) warrants the generalizability of 

our results.” 

 

“The answer to point 4 is unclear -if all 24090 cases could be processed for EAT, why could they not be 

processed for calcium? The paper is very confusing as Table 1 baseline characteristics have a different 

population than Table 4 . N is not given in Table 4. Also, CAC in Table 1 is incorrectly given as if for the whole 

population.” 

Thank you for pointing out the CAC measurements available in a subgroup of the NLST participants. CAC scores were 

used solely for the multivariable adjustment in our study. We utilized the validated CAC scores obtained by our group 

and published in Zeleznik et al. Nature Comm 2021. As mentioned in our previous rebuttal, at the time of the last 

study, the policy of the National Cancer Institute was to only release up to 15,000 participants' data for any individual 

project. We did not re-segment the cohort as a newer CAC segmentation algorithm is being developed, and we 

decided to use the validated results derived from analyses performed in a strictly controlled fashion. The CAC scores 

in the 13,996 individuals employed in the current study represent a random sample (58%) of the NLST participants. 



Moreover, since all major results were statistically significant in this random sample, we expect that a larger sample 

size would lead to a lower standard error and, therefore, would further strengthen our findings by making the current 

results even more significant. However, we added a corresponding disclosure to the limitations section of the 

manuscript, stating that CAC was available solely in a random subgroup of the NLST cohort. This information is also 

available in the methods section of the manuscript and in the footnote of Tables 1 & 2 to avoid confusion. 

Furthermore, we added corresponding sample sizes for individual models to the footnote of Table 4, as requested by 

the reviewer. 

 

“Regarding point 8 the authors still utilize continuous NRI and do not want to show categorical NRI based 

on an editorial from 2022. This editorial actually criticizes continuous NRI in particular. Regarding categorical 

NRI the editorial ignores the fact that one can show reclassification separately for events and nonevents, 

which should be standard practice. The categorical NRI is often used, and the original manuscript on 

categorical NRI is cited over 6270 times and over 653 times since 2022 according to Google Scholar.” 

We thank the reviewer for the comment and the opportunity to discuss our approach in more detail. The reviewer 

is correct in stating that the beforementioned editorial by Kathleen F. Kerr (Radiology, 2022) criticizes the category-

free (i.e., continuous) NRI. The editorial states, "the category-free NRI statistic ignores the magnitude of change”. 

However, the editorial also states that the “same issue can arise with categorical NRI statistics because they also only 

account for the direction of risk reclassification, not the magnitude”. Moreover, we allow us to disagree with the 

reviewer's statement that the editorial ignores the separate reclassification for events and nonevents. Figure 1 and 

examples 1 to 3 differentiate between event and non-event NRIs.  

The reviewer further states that “categorical NRI is often used, and the original manuscript on categorical NRI is cited 

over 6270 times and over 653 times since 2022 according to Google Scholar”. This statement is correct. However, the 

same author group that developed the highly cited original NRI (i.e., Pencina et al.) published the extensions of the 

NRI, i.e., the category-free or continuous NRI, in Statistics in Medicine in 2011. They state that the NRI “is more 

objective and comparable across studies if using the category-free version” and conclude that “the category-less or 

continuous NRI is the most objective and versatile measure of improvement in risk prediction”. They argue that “in 

cases where no established categories exist, it is more prudent to use a version of NRI which does not require 

categories, rather than trying to create them for one particular application”. This reflects our case. 

Moreover, our analysis is of an exploratory nature, and future studies are needed to validate the results in different 

cohorts. As Pencina et al. (2011) point out: “the category-based NRI is influenced by the relationship between 

category cut-offs and event rates. Hence, it may be misleading to apply the same fixed categories to events defined 

differently or time horizons of different duration which lead to varying incidence rates. This problem is absent when 

we use the category-free NRI, which is unaffected by event rates”.  

In summary, Pencina et al., who developed both the original and the continuous NRI, conclude that “the continuous 

NRI offers the widest and most standardized application.”  

We added the following statement to the statistical analysis portion of the methods section:  

“We used the continuous NRI as recommended by Pencina et al., as continuous NRI offers the widest and most 

standardized application and is not affected by different event rates and should thus be used when comparing NRIs 

across studies.” 



Reviewers' comments:  

Reviewer #3 (Remarks to the Author):  

I had the opportunity to review the revised version of the manuscript.  

Unfortunately, the authors have not addressed some of the remaining issues.  

In particular - “Importantly, this probability score is shown to be the key variable, but development 

and testing in the same cohort undermine its significance.”  

The most pressing concern is the methodology used for the probability score that combines density 

and volume. Authors’ explanation does not acknowledge this and only discusses training for deriving 

EAT volumes. The concern is about the probability score, not the volumes.  

The authors put the description of the probability score in the statistical section, but deriving the 

probability score is a form of machine learning even if done with multivariable logistic regression, 

and training data needs to be separated from the test data.  

As previously highlighted, the approach of deriving and testing this combined score within the same 

population is methodologically flawed and has not been sufficiently addressed in the revision.  

Therefore, the probability score should be removed from the manuscript or retrained using a 

separate population to eliminate any potential data leakage to the testing data.  

The current approach, where the logistic regression model for the probability score is derived, 

trained, and tested within the same cohort, is not correct and likely overfits the data.  

Regarding different sample sizes for CAC and EAT I understand the authors' explanation of different 

sample sizes for CAC and EAT due to the historical processing sequence, but it makes the current 

manuscript difficult to follow. 



Point-by-point responses to the editor and reviewers 

We thank the editor and the reviewers for their valuable feedback and insightful comments and appreciate the time and effort 

they have put into reviewing our manuscript. We also thank reviewer #3 for additional feedback. We agree with the 

suggestions and made the necessary modifications to the manuscript. Please find detailed responses to the comments below: 

Reviewer #3 (Remarks to the Author): 

“I had the opportunity to review the revised version of the manuscript. Unfortunately, the authors have not addressed some 

of the remaining issues. In particular - “Importantly, this probability score is shown to be the key variable, but development 

and testing in the same cohort undermine its significance.” 

The most pressing concern is the methodology used for the probability score that combines density and volume. Authors’ 

explanation does not acknowledge this and only discusses training for deriving EAT volumes. The concern is about the 

probability score, not the volumes. 

The authors put the description of the probability score in the statistical section, but deriving the probability score is a form of 

machine learning even if done with multivariable logistic regression, and training data needs to be separated from the test 

data. 

As previously highlighted, the approach of deriving and testing this combined score within the same population is 

methodologically flawed and has not been sufficiently addressed in the revision. 

Therefore, the probability score should be removed from the manuscript or retrained using a separate population to eliminate 

any potential data leakage to the testing data. 

The current approach, where the logistic regression model for the probability score is derived, trained, and tested within the 

same cohort, is not correct and likely overfits the data. 

Regarding different sample sizes for CAC and EAT I understand the authors' explanation of different sample sizes for CAC and 

EAT due to the historical processing sequence, but it makes the current manuscript difficult to follow.” 

Response: 

We thank the reviewer for pointing out their concerns regarding developing and testing the probability score.  

As proposed by the reviewer, we removed the score from the manuscript and now provide data only on the EAT volume and 

density as separate variables. We now offer additional adjusted KM curves and recalculated the statistics in the revised Table 

4 using EAT volume and density as individual variables. We also removed the description of the probability score from the 

results, methods, and the corresponding Supplemental Text S1, score-related KM curves (Figure 3), and Supplemental Tables 

S4 & S5. Finally, we also adjusted the discussion accordingly. 

 



REVIEWERS' COMMENTS: 

Reviewer #3 (Remarks to the Author): 

authors finally resolved the issue
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