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Reviewers' comments:  

Reviewer #1 (Remarks to the Author):  

The authors investigated the prognostic value of deep learning-based automated epicardial adipose 

tissue (EAT) quantification and compared it to traditional clinical risk factors and coronary artery 

calcium (CAC) scoring. The study analyzed 24,090 National Lung Screening Trial (NLST) participants 

who underwent non-ECG-synchronized, non-contrast low-dose chest CT. During the follow-up 

period, EAT volume and density were independently associated with all-cause and cardiovascular 

mortality. EAT quantification provided incremental prognostic value beyond clinical risk factors, 

body mass index (BMI), education, and CAC score. These findings suggest that EAT volume and 

density measurements from low-dose chest CT are independent predictors of all-cause and 

cardiovascular mortality in heavy smokers, with potential implications for CVD risk stratification in 

this high-risk population.  

While the clinical utility would be suggested and I think this research is suitable for Communication 

Medicine, I have several concerns.  

1. The authors improved their automated EAT measurement tool according to the supplementary 

method. (The current version is three)  

On the other hand, similar algorithms were found in previous reports (doi: 

10.1109/TMI.2018.2804799, https://doi.org/10.1038/s41598-022-06351-z).  

How was the performance improvement of the authors' algorithm compared to previous ones?  

2. A article with a similar concept was published regarding low-dose chest CT and cardiovascular 

disease, in which Not measuring EAT but assessing chest CT predicted cardiovascular disease risk 

(https://doi.org/10.1038/s41467-021-23235-4).  

What are the superior points to focus on EAT measurements compared to the above?  

3. EAT volume and EAT density were closely correlated according to Fig.2.  

So, I suppose one of them could be enough to predict prognosis. Please discuss and explain the 

rationale to include both EAT volume and EAT density.  

4. The result was concluded just from one dataset. Could the authors validate and replicate it using 

other cohorts like LIDC-IDRI and NSCLC Radiogenomics?  

5. Is the conclusions just applied to groups of heavy smokers? Please discuss the situations in non-

smoking and mild-smoking groups.  

Reviewer #2 (Remarks to the Author):  

Please see attachment for a formatted reivew.  

This manuscript shows that EAT volume and density from lung cancer screening images are 

associated with cardiovascular and all cause mortality. Effects are beyond clinical factors, BMI, and 

Agatston score. This is a significant contribution towards the use of chest CT images to obtain 

improved cardiovascular prediction. The manuscript needs considerable editing and additional 



analyses as it was difficult to follow.  

Some specific concerns are:  

• There must be a better description of EAT segmentation. This is my biggest concern as all else 

flows from this. In the main document, it is not clear that this is the paper with “validation” of the 

method. An assertion was made with references 14 and 34. Neither one supports this claim. This led 

me on a wild goose chase trying to track down the validation. Then I found some validation in the 

Supplement. I had issues with the meager text.  

o I could not understand the text below.  

This system, used in the present study and in (4), is the third version of our heart segmentation 

system. The first (5) and second (6) versions were trained on 129 and 858 CT scans, respectively, and 

achieved median Dice coefficients of 0.90 and 0.95, respectively  

o What is the loss function?  

o As this is the validation for the entire result, I would have expected some figures showing good 

segmentations and bad segmentations.  

o With the extensive down sampling, I am surprised that one can even see the pericardial sac. Is this 

a magic down-sampling technique?  

o There is a lot of talk about versions and data. It is impenetrable. It probably makes perfect sense, 

but I do not understand it.  

o Was testing indeed done on a held-out test set of 1306 scans, all of which were volumetrically 

manually labeled?  

o Was testing done at the original resolution or down-sampled resolution? If the original, a DICE of 

0.95 hardly makes sense as the associated partial volume errors would probably give a worse DICE 

than this.  

o What is the loss function?  

o It would be nice to compare EAT from lung cancer screening to a gated exam.  

o Probably more is missing.  

• As some scans will suffer from motion making it very difficult to identity the pericardial sac, I am 

surprised that authors did not simply lump EAT and paricardial adipose.  

• For that matter, is there any association of risk with paricardial adipose?  

• Table 3. What is Model 3?  

• Table 4. How much of the incremental CAC value is due to the power of zero?  

• Results. What is this? 10 cm3/m2. At first, I thought it was normalized by height. But that does not 

make sense. Please explicitly describe.  

• In some analyses, the EAT and HU HRs for cardiovascular death was higher than for all cause. Yet, 

when we look at Fig 3, thre is a remarkable effect of EAT and HU on all cause! Are there any 

inconsistencies here? I would like to see some discussion on Fig 3 and all-cause death.  

Reviewer #3 (Remarks to the Author):  

This research study investigated the prognostic value of deep learning-based automated epicardial 

adipose tissue (EAT) quantification in heavy smokers at risk for cardiovascular disease (CVD). The 

study compared the predictive capabilities of EAT quantification with traditional clinical risk factors 

and coronary artery calcium (CAC) scoring. The researchers analyzed data from 24,090 participants 

in the National Lung Screening Trial (NLST). These participants underwent non-ECG-synchronized, 



non-contrast low-dose chest computed tomography (CT) scans. A previously developed deep-

learning algorithm (for ECG-gated CT) was employed to quantify the volume and density of 

epicardial adipose tissue (EAT).  

Over a median follow-up period of 12.3 years, EAT volume and density were independently 

associated with all-cause and cardiovascular mortality. This suggests that assessing EAT volume and 

density through low-dose chest CT scans could be a useful tool for CVD risk stratification in heavy 

smokers, who are already at an increased risk for cardiovascular problems due to their smoking 

habits. The findings of this research study suggest that incorporating EAT quantification into routine 

lung cancer screening CT scans can provide valuable information for assessing the risk of 

cardiovascular disease and mortality in heavy smokers.  

While the overall concept is worthwhile and the NLST cohort is appropriate for this study, there are 

several significant limitations, which need to be addressed, mostly related to the methods used and 

to the patient selection within the NLST cohort.  

A major and critical fault is that the EAT probability score is based on machine learning (even if it is a 

simple logistic regression) and is designed to maximize the mortality prediction, but it was 

developed in the same population it is subsequently tested in. This is likely causing a significant 

overfit. Importantly, this probability score is shown to be the key variable, but development and 

testing in the same cohort undermine its significance.  

Moreover, the marginal incremental AUC gain of 1% by adding EAT score for mortality prediction (is 

it significant by AUC ?) may be attributed form the leakage of the outcome data when fitting the EAT 

probability score.  

The overall performance of clinical parameters alone is better than any of the imaging parameters.  

It is not clear that in Table 4 the clinical+CAC+EAT is better than clinical+CAC. Importantly EAT 

already includes information about mortality from the fitting as described in the appendix.  

Why is the CAC score available on the subset only? Was the additional value of EAT compared on 

13996/24090 images only? How was this subset selected? Previously the same group published a 

study in nature communications where 14,959 cases were processed for CAC scoring. How were the 

CAC scores obtained for this analysis? Seems many different sub-cohorts are utilized.  

Were stents and pacemakers excluded from the CAC analysis?  

Since EAT volume and attenuation are negatively (and significantly) correlated, they shouldn’t be in 

the same model. The authors do not present EAT attenuation in a model without EAT volume.  

EAT attenuation and volume should be presented separately.  

There is no validation of quantification of EAT for nongated scans provided.  

The presented NRI is continuous and does not have a straightforward clinical interpretation. Can 

categorical positive/negative NRIs and 95% CI be provided?  



Why is CAC modeled as a categorical variable, but EAT is modeled as continuous? Why?  

Author affiliations missing for MCL, VKR, TM  

Table 3 - model 3 definition is missing (which covariates were adjusted?)  

Why is the distinction of CAC categories <300 HU (standard to have 400 HU as threshold)- 

misleading?  

For Table 4, what is the N value?  

In addition, the algorithm offers EAT measurements in under 2 seconds without human input, 

making it an “end-to-end” solution for CV risk assessment in clinical settings” -On what kind of a 

computer? IIs this GPU enabled, and what kind of GPU? Does it include CAC scoring?  

Discussion - Inflammation is a common pathophysiology pathway for CVD and cancer -this paragraph 

is speculative; no data is presented in the manuscript relating to this  

Same with the Epicardial adipose tissue section may be an index and promotor of local coronary 

artery inflammation. This paragraph is unrelated to the paper.  



Deep Learning Analysis of Epicardial Adipose Tissue on Non-ECG-gated Low-Dose 
Chest CT: Uncovering Hidden Cardiovascular Risk in Heavy Smokers 

Foldyna 

 

This manuscript shows that EAT volume and density from lung cancer screening images are 
associated with cardiovascular and all cause mortality. Effects are beyond clinical factors, BMI, 
and Agatston score. This is a significant contribution towards the use of chest CT images to 
obtain improved cardiovascular prediction. The manuscript needs considerable editing and 
additional analyses as it was difficult to follow.  

Some specific concerns are: 

• There must be a better description of EAT segmentation. This is my biggest concern as all 
else flows from this. In the main document, it is not clear that this is the paper with 
“validation” of the method. An assertion was made with references 14 and 34. Neither one 
supports this claim. This led me on a wild goose chase trying to track down the validation. 
Then I found some validation in the Supplement. I had issues with the meager text.  

o I could not understand the text below.  
This system, used in the present study and in (4), is the third version of our heart 
segmentation system. The first (5) and second (6) versions were trained on 129 and 
858 CT scans, respectively, and achieved median Dice coefficients of 0.90 and 0.95, 
respectively 

o What is the loss function? 
o As this is the validation for the entire result, I would have expected some figures 

showing good segmentations and bad segmentations.  
o With the extensive down sampling, I am surprised that one can even see the 

pericardial sac. Is this a magic down-sampling technique? 
o There is a lot of talk about versions and data. It is impenetrable. It probably makes 

perfect sense, but I do not understand it.  
o Was testing indeed done on a held-out test set of 1306 scans, all of which were 

volumetrically manually labeled?  
o Was testing done at the original resolution or down-sampled resolution? If the 

original, a DICE of 0.95 hardly makes sense as the associated partial volume errors 
would probably give a worse DICE than this.  

o What is the loss function? 
o It would be nice to compare EAT from lung cancer screening to a gated exam.  
o Probably more is missing.  

• As some scans will suffer from motion making it very difficult to identity the pericardial sac, I 
am surprised that authors did not simply lump EAT and paricardial adipose.  

• For that matter, is there any association of risk with paricardial adipose? 
• Table 3. What is Model 3? 
• Table 4. How much of the incremental CAC value is due to the power of zero? 
• Results. What is this? 10 cm3/m2. At first, I thought it was normalized by height. But that 

does not make sense. Please explicitly describe.  
• In some analyses, the EAT and HU HRs for cardiovascular death was higher than for all 

cause. Yet, when we look at Fig 3, thre is a remarkable effect of EAT and HU on all cause! 



Are there any inconsistencies here? I would like to see some discussion on Fig 3 and all-
cause death.  

 

 



Point-by-point responses to the editor and reviewers 

We thank the editor and the reviewers for their valuable feedback and insighƞul comments and appreciate the Ɵme 
and effort they have put into reviewing our manuscript. We agree with the suggesƟons and made the necessary 
modificaƟons for the manuscript's improvement. Please find detailed responses to individual comments below: 

Referee #1: 

The authors invesƟgated the prognosƟc value of deep learning-based automated epicardial adipose Ɵssue (EAT) 
quanƟficaƟon and compared it to tradiƟonal clinical risk factors and coronary artery calcium (CAC) scoring. The 
study analyzed 24,090 NaƟonal Lung Screening Trial (NLST) parƟcipants who underwent non-ECG-synchronized, 
non-contrast low-dose chest CT. During the follow-up period, EAT volume and density were independently 
associated with all-cause and cardiovascular mortality. EAT quanƟficaƟon provided incremental prognosƟc value 
beyond clinical risk factors, body mass index (BMI), educaƟon, and CAC score. These findings suggest that EAT 
volume and density measurements from low-dose chest CT are independent predictors of all-cause and 
cardiovascular mortality in heavy smokers, with potenƟal implicaƟons for CVD risk straƟficaƟon in this high-risk 
populaƟon. 
While the clinical uƟlity would be suggested and I think this research is suitable for CommunicaƟon Medicine, I 
have several concerns. 

1.  The authors improved their automated EAT measurement tool according to the supplementary method. 
(The current version is three). On the other hand, similar algorithms were found in previous reports (doi: 
10.1109/TMI.2018.2804799, hƩps://doi.org/10.1038/s41598-022-06351-z). How was the performance 
improvement of the authors' algorithm compared to previous ones? 

We thank the reviewer for their insighƞul comments and the opportunity to clarify our work in relaƟon to the 
referenced studies (1) and (2). While these studies highlight the efficacy of their respecƟve automaƟc EAT 
segmentaƟon tools through comparison with manual measurements, our research primarily centers on the 
prognosƟc implicaƟons of such an automated approach, contrasƟng it with convenƟonal clinical risk factors. 
Consequently, the EAT segmentaƟon tool we developed serves a subsidiary role in our study. 

Nonetheless, it is worth noƟng that our segmentaƟon tool was conceived and validated using a significantly larger 
and more diverse dataset compared to studies (1) and (2). Specifically, study (1) uƟlized a total of 89 scans, study (2) 
employed 250 scans, whereas our research incorporated a total of 2,164 manually labeled cardiac and non-cardiac 
CT scans across three disƟnct cohorts of asymptomaƟc and stable chest pain paƟents as well as people undergoing 
lung cancer screening. Moreover, our segmentaƟon tool is openly accessible to the public. 

It is worth menƟoning that our study focuses on metrics derived from heart segmentaƟons, while studies (1) and (2) 
concentrate on EAT segmentaƟons. Both methods are equally viable – the masks will only differ in the pericardium 
area. At the same Ɵme, the remaining voxels will be equal between manual and automaƟc EAT segmentaƟon due to 
HU thresholding. This comparaƟve informaƟon has been included in our paper, along with appropriate citaƟons to 
these studies. 

1. hƩps://doi.org/10.1038/s41598-022-06351-z 
2. hƩps://www.ncbi.nlm.nih.gov/pmc/arƟcles/PMC6076348/pdf/nihms943682.pdf 

 



2.  A arƟcle with a similar concept was published regarding low-dose chest CT and cardiovascular disease, in 
which Not measuring EAT but assessing chest CT predicted cardiovascular disease risk 
(hƩps://doi.org/10.1038/s41467-021-23235-4). What are the superior points to focus on EAT measurements 
compared to the above? 

Thank you for bringing the Chao et al. study to our aƩenƟon. The referenced paper (1) presents a deep learning (DL) 
model that extracts features from the heart in three views, combines them, and uses them to classify cardiovascular 
disease (CVD) risk. The study team validated the DL-based CVD mortality predicƟon model against standard coronary 
CTA-derived imaging markers (CAC score and CAD-RADS class) and the clinical 10-year MESA risk score. This study 
chose a less supervised approach and developed an imaged-based novel risk straƟficaƟon system. This system 
performs well in the derivaƟon and validaƟon cohorts, but due to its design, it delivers limited insights into coronary 
artery disease pathophysiology. Furthermore, the study does not provide nested models that show the incremental 
value of the predicƟon model to established markers and tradiƟonal cardiovascular (CV) risk.  

We were more interested in applying our DL algorithm as a tool to assess EAT, a known imaging marker of CV risk, in 
which biology is well understood. SƟll, its prognosƟc value has not been invesƟgated in a primary prevenƟon cohort 
of people who undergo lung cancer screening. EAT is a metabolically acƟve Ɵssue, and its volume and density are 
closely related to vascular inflammaƟon and atherogenesis. Therefore, changes in EAT may be precursors of coronary 
artery disease rather than surrogate markers of exisƟng disease (e.g., CAC score) and, therefore, may have 
incremental prognosƟc value, specifically in primary prevenƟon cohorts. The EAT segmentaƟons produced are 
tangible and can be directly compared, offering a clear understanding of the process and results. 

In contrast, a deep learning CVD risk esƟmaƟon can be considered a "black box" approach, where the internal 
workings are not directly interpretable. While both methods are valid, they are disƟnctly different. The simplicity and 
transparency of EAT segmentaƟon make it easier to adopt and understand. The essenƟal advantage of our approach 
lies in its transparency.  

 

1. hƩps://doi.org/10.1038/s41467-021-23235-4 

 

3. EAT volume and EAT density were closely correlated according to Fig.2. So, I suppose one of them could be 
enough to predict prognosis. Please discuss and explain the raƟonale to include both EAT volume and EAT density. 

Thank you for poinƟng out the individual EAT measures. Higher EAT volume was indeed associated with events (raw 
EAT volume (per 10 cm3) HR: 1.04, 95%CI: 1.04–1.05, p<0.001, BSA-indexed EAT volume (per 10 cm3/m2) HR: 1.10, 
95%CI: 1.09–1.12, p<0.001).  

EAT density was also associated with events but with an HR <1 (EAT density (per 10 HU) HR: 0.87, 95%CI: 0.82–
0.92,p<0.001). The EAT volume confounds the raw EAT density value, as shown by the strong negaƟve correlaƟon 
between EAT volume and density as shown in Figure 2. (rho: -0.72, p<0.001). In other words, higher EAT volume 
automaƟcally leads to lower (more negaƟve) EAT density. From the biological perspecƟve, inflammaƟon of EAT is 
known to increase EAT density by increasing water content (i.e., edema) and connecƟve Ɵssue to lipid raƟo. However, 
this effect is weaker than the associaƟon between EAT volume and density. Therefore, an adjustment for EAT volume 
is necessary and in accord with other studies invesƟgaƟng the prognosƟc value of fat depots (e.g., Oikonomou et al. 
Lancet 2018). Our results show that higher EAT density at any given EAT volume is associated with mortality. 



EAT volume and density are both independent predictors (see Model 1 in Table 3), and, therefore, both contribute 
to prognosis. From a CAD pathogenesis perspecƟve, increased EAT volume has tradiƟonally been associated with 
obesity and hyperlipidemia, while increased EAT density is a known index of inflammaƟon, two separate pathways 
driving atherogenesis.  

We added a corresponding descripƟon to the manuscript's results secƟon and now list the univariable results in Table 
3. 

 

4. The result was concluded just from one dataset. Could the authors validate and replicate it using other 
cohorts like LIDC-IDRI and NSCLC Radiogenomics?  

Thank you for raising the quesƟon of reproducibility and generalizability. MulƟple other studies have described the 
prognosƟc value of EAT volume and density. Our study aimed to apply a biologically well-known concept in a specific 
cohort of paƟents eligible for lung cancer screening. Furthermore, the accuracy of the DL algorithm has been 
validated in an independent validaƟon subset from PROMISE and NLST cohorts. 

5. Is the conclusions just applied to groups of heavy smokers? Please discuss the situaƟons in non-smoking 
and mild-smoking groups. 

Thank you for bringing up this excellent point. This manuscript included parƟcipants from the NLST trial, all of whom 
have a ≥30 pack-year smoking history. This is an important populaƟon, as lung cancer screening is a common 
indicaƟon for noncontrast chest CT. Future work will be necessary to understand implicaƟons for non-smokers and 
lesser smokers – we've added the following sentence in italics to the LimitaƟons secƟon of the Discussion: 

"Third, the NLST cohort included only heavy smokers (≥30 pack years), and differences in EAT's prognosƟc value could 
not be calculated between heavy smokers, non-smokers, and lower-risk smokers with ≥20–30 pack years, a group 
currently also recommended for lung cancer screening. Future work is necessary to understand implicaƟons in non-
smokers and lesser smoking populaƟons." 

Referee #2: 

Please see aƩachment for a formaƩed reivew. 

This manuscript shows that EAT volume and density from lung cancer screening images are associated with 
cardiovascular and all cause mortality. Effects are beyond clinical factors, BMI, and Agatston score. This is a 
significant contribuƟon towards the use of chest CT images to obtain improved cardiovascular predicƟon. 
The manuscript needs considerable ediƟng and addiƟonal analyses as it was difficult to follow.  

Some specific concerns are: 

1. There must be a beƩer descripƟon of EAT segmentaƟon. This is my biggest concern as all else flows from 
this. In the main document, it is not clear that this is the paper with "validaƟon" of the method. An asserƟon 
was made with references 14 and 34. Neither one supports this claim. This led me on a wild goose chase 
trying to track down the validaƟon. Then I found some validaƟon in the Supplement. I had issues with the 
meager text.  

We thank the reviewer for their feedback and understand the concerns raised about the descripƟon of our EAT 
segmentaƟon tool. In response, we have revised our manuscript to provide a more comprehensive and precise 



descripƟon of our EAT segmentaƟon process. We have moved the revised detailed explanaƟon from the 
supplementary materials into the main body of the manuscript to ensure its visibility and accessibility. 

Furthermore, we have made efforts to clarify that our paper serves as a validaƟon of the EAT segmentaƟon method. 
Specifically, we have emphasized our evaluaƟon of the prognosƟc value of automaƟc EAT segmentaƟon, which we 
believe is a crucial aspect of validaƟng its uƟlity and effecƟveness. We hope these revisions address the reviewer's 
concerns and provide a clearer understanding of our work. 

 

2. I could not understand the text below. This system, used in the present study and in (4), is the third version 
of our heart segmentaƟon system. The first (5) and second (6) versions were trained on 129 and 858 CT 
scans, respecƟvely, and achieved median Dice coefficients of 0.90 and 0.95, respecƟvely. 

We appreciate the reviewer's feedback on the clarity of our descripƟons. In response, we have streamlined the 
informaƟon about the different versions of our heart segmentaƟon system. Instead of detailing each version and 
their respecƟve training data and performance, we have consolidated this informaƟon into a single sentence towards 
the end of the relevant secƟon. This sentence briefly acknowledges the evoluƟon of our system, focusing on the 
current version used in this study, which we believe provides a more straighƞorward and concise presentaƟon of our 
work. 

 

3. What is the loss funcƟon? 

We employed the Dice loss funcƟon for training our models. We have incorporated this informaƟon into the updated 
descripƟon of our methodology. 

 

4. As this is the validaƟon for the enƟre result, I would have expected some figures showing good 
segmentaƟons and bad segmentaƟons.  

Thank you very much for poinƟng out the missing image examples. Only a few (n=43) scans (see Flowchart 
Supplemental Figure S1) failed to be analyzed by the Deep Learning algorithm. We added image examples 
(Supplemental Figure S2) (see below) that display good and bad segmentaƟons, including the most common reasons 
for failure. We reference the figure in the methods secƟon of the manuscript. 



 

5. With the extensive down sampling, I am surprised that one can even see the pericardial sac. Is this a magic 
down-sampling technique? 

We appreciate the reviewer's quesƟon regarding our down-sampling technique. The extensive down-sampling was 
applied in the first step, a network tasked with localizing the heart through coarse segmentaƟon. The scans are then 
cropped around the heart center to guarantee that the enƟre heart is captured.  

The second network, which is responsible for the more detailed segmentaƟon, operates on a suitably down-sampled 
spacing. This two-step process allows us to maintain the necessary detail for accurate segmentaƟon while benefiƟng 
from down-sampling's computaƟonal efficiency.  

 

6. There is a lot of talk about versions and data. It is impenetrable. It probably makes perfect sense, but I do 
not understand it.  

We appreciate the reviewer's feedback regarding the complexity of our descripƟons of the different versions and 
data. In response to this, as outlined in our answer to quesƟon 2, we have simplified this informaƟon in our revised 
manuscript to ensure it is more accessible and easier to understand. 

 

7. Was tesƟng indeed done on a held-out test set of 1306 scans, all of which were volumetrically manually 
labeled?  



Yes. Overall, our group manually labeled 2,164 cases (PROMISE: n=1,140; FHS: n=628; NLST: n=396). Among these, 
858 and 1,306 independent cases were used for training and tesƟng, respecƟvely. We adjusted the methods secƟon 
of the manuscript to clarify this aspect. 

8. Was tesƟng done at the original resoluƟon or down-sampled resoluƟon? If the original, a DICE of 0.95 hardly 
makes sense as the associated parƟal volume errors would probably give a worse DICE than this.  

We appreciate the reviewer's inquiry. Indeed, the tesƟng was performed at the original resoluƟon. The Dice score of 
0.95, which we reported, is associated with heart segmentaƟon. Such a score is achievable, especially considering 
the size of the dataset used for training. Our dice score is in a range of previously described dice scores for segmenƟng 
thoracic structures, as reported in the 2017 AAPM challenge (1). We revised the methods secƟon to explicitly state 
that the evaluaƟon was conducted on the original spacing/resoluƟon. 

1. hƩps://aapm.onlinelibrary.wiley.com/doi/10.1002/mp.13141 

 

9. What is the loss funcƟon? 

Please refer to the answer to the quesƟon 3. 

10. It would be nice to compare EAT from lung cancer screening to a gated exam. Probably more is missing.  

We used the DL algorithm to segment EAT in the PROMISE cohort (Foldyna et al. JACC CVI 2021). PROMISE CT scans 
are ECG-gated. The mean EAT volume and density in PROMISE were 57.5 ± 22.0 cm3/m2 and –86.8 ± 5.1 HU, 
respecƟvely. The values are similar to those we measured in the NLST cohort (70.3 ± 24.6 cm3/m2 and –77.7 ± 5.2 
HU, noƟng that the PROMISE cohort was substanƟally different. PROMISE enrolled symptomaƟc paƟents with stable 
chest pain, who were more frequently female (51% vs. 49%), and there were fewer paƟents with tobacco use (51%) 
compared to the 100% in NLST. PROMISE paƟents had a higher prevalence of tradiƟonal cardiovascular risk factors 
such as hypertension (64% vs. 35%) and diabetes mellitus (20% vs. 10%), limiƟng the comparison.  

11. As some scans will suffer from moƟon making it very difficult to idenƟty the pericardial sac, I am surprised 
that authors did not simply lump EAT and paricardial adipose. For that maƩer, is there any associaƟon of 
risk with paricardial adipose? 

Pericardial (outside pericardial sac) and epicardial (inside pericardial sac) adipose Ɵssue (EAT) are oŌen described 
together as paracardial adipose Ɵssue. Our algorithm is developed to recognize the pericardial sac and specifically 
measure the epicardial fat. EAT is known to have a stronger associaƟon with coronary artery disease and adverse 
events than other fat depots due to its stronger metabolic acƟvity and proximity to the coronary arteries and 
myocardium. In our study, higher EAT volume was related to a higher CAC at baseline, as shown in Table 2. This 
associaƟon remained significant aŌer a full adjustment for age, sex, race, ethnicity, smoking status (current vs. 
former), number of pack years, hx of myocardial infarcƟon, hx of stroke, diabetes mellitus, hypertension, educaƟon 
status, and BMI (see full model results below). We added a corresponding descripƟon to the results secƟon (Page 4). 



 

12. Table 3. What is Model 3? 

Thank you for poinƟng out the unclear descripƟon of Table 3. We adjusted the footnote to describe the individual 
Cox regression models correctly. 

13. Table 4. How much of the incremental CAC value is due to the power of zero? 

In the subgroup of NLST subjects with available CAC scores (N=13,966), 3,355 (24%) presented with CAC=0. We 
performed an addiƟonal Harrell's C concordance analysis, including a CAC yes/no variable instead of a categorical 
CAC variable in the nested models. The incremental value of CAC yes/no was slightly lower than a model including 
categorical CAC—Harrell's C: 0.703 vs. 0.706 for all-cause mortality and 0.757 vs. 0.769 for CV mortality. 

14. Results. What is this? 10 cm3/m2. At first, I thought it was normalized by height. But that does not make 
sense. Please explicitly describe.  

Thank you for poinƟng out this unclear aspect of the methods secƟon. The unit describes EAT volume (cm3) indexed 
by body surface area (m2). We describe the indexing method in the methods secƟon. Per journal guidelines, the 
results secƟon comes first. Therefore, we revised the results descripƟon to make the indexing method more 
transparent. 

The size of fat depots is associated with the individual body habitus and obesity. In our cohort, there was a moderate 
correlaƟon between the raw EAT volume (cm3) and BMI as well as BSA (BMI rho: +0.51, p<0.001; BSA rho: +0.56, 
p<0.001). Therefore, we chose an approach used in other studies that indexed the raw EAT volume by BSA and 
adjusted all mulƟvariable models for BMI. 

The corresponding descripƟon can be found in the Methods secƟon on page 12.  



15. In some analyses, the EAT and HU HRs for cardiovascular death was higher than for all cause. Yet, when we 
look at Fig 3, thre is a remarkable effect of EAT and HU on all cause! Are there any inconsistencies here? I 
would like to see some discussion on Fig 3 and all-cause death. 

Thank you for poinƟng out this unclear aspect. EAT volume and density are closely related to coronary artery disease 
and, therefore, are more prognosƟc for cardiovascular death. Our study found a posiƟve independent associaƟon 
between EAT volume and coronary artery disease, as shown in response to comment #11. 

The different magnitude of effect, comparing all-cause vs. CV mortality in Fig. 3, is due to the difference in event rates 
(All-cause mortality: 19.5% vs. CV mortality: 4.5%). Furthermore, EAT volume and density are categorized in quarƟles 
in Fig. 3, while they are conƟnuous in Table 3. Lastly, Fig. 3 is based only on univariable analysis, while Table 3 includes 
mulƟvariable models. We checked the staƟsƟcal analysis and did not find any inconsistencies. 

Referee #3: 

This research study invesƟgated the prognosƟc value of deep learning-based automated epicardial adipose Ɵssue 
(EAT) quanƟficaƟon in heavy smokers at risk for cardiovascular disease (CVD). The study compared the predicƟve 
capabiliƟes of EAT quanƟficaƟon with tradiƟonal clinical risk factors and coronary artery calcium (CAC) scoring. 
The researchers analyzed data from 24,090 parƟcipants in the NaƟonal Lung Screening Trial (NLST). These 
parƟcipants underwent non-ECG-synchronized, non-contrast low-dose chest computed tomography (CT) scans. 
A previously developed deep-learning algorithm (for ECG-gated CT) was employed to quanƟfy the volume and 
density of epicardial adipose Ɵssue (EAT). 

Over a median follow-up period of 12.3 years, EAT volume and density were independently associated with all-
cause and cardiovascular mortality. This suggests that assessing EAT volume and density through low-dose chest 
CT scans could be a useful tool for CVD risk straƟficaƟon in heavy smokers, who are already at an increased risk 
for cardiovascular problems due to their smoking habits. The findings of this research study suggest that 
incorporaƟng EAT quanƟficaƟon into rouƟne lung cancer screening CT scans can provide valuable informaƟon 
for assessing the risk of cardiovascular disease and mortality in heavy smokers.  

While the overall concept is worthwhile and the NLST cohort is appropriate for this study, there are several 
significant limitaƟons, which need to be addressed, mostly related to the methods used and to the paƟent 
selecƟon within the NLST cohort. 

1. A major and criƟcal fault is that the EAT probability score is based on machine learning (even if it is a simple 
logisƟc regression) and is designed to maximize the mortality predicƟon, but it was developed in the same 
populaƟon it is subsequently tested in. This is likely causing a significant overfit. Importantly, this probability 
score is shown to be the key variable, but development and tesƟng in the same cohort undermine its 
significance.  

Thank you for this comment and the opportunity to clarify our approach. First and foremost, our paper serves as a 
validaƟon of the EAT segmentaƟon method. As described in the methods secƟon, a dataset of 2,164 randomly 
selected CT scans from FHS (n=628), PROMISE (n=1,140), and NLST (n=396) was used to develop the system. We used 
858 cases (FHS, n=628, PROMISE, n=130; NLST, n=100) for training and tuning of the algorithm, while the remaining 
1,306 cases (PROMISE, n=1,010; NLST, n=296) were reserved for tesƟng.  

We used a mulƟvariable logisƟc regression model including EAT volume and density to calculate an EAT-based 
probability score, which we straƟfied into three risk categories (low: <15%, medium: 15%–25%, high: >25%). This 



probability score is purely exploratory and should not be seen as a predicƟon score, which would need to fulfill 
specific requirements.  

2. Moreover, the marginal incremental AUC gain of 1% by adding EAT score for mortality predicƟon (is it 
significant by AUC ?) may be aƩributed form the leakage of the outcome data when fiƫng the EAT 
probability score.  

Please see our response to comment #1. 

3. The overall performance of clinical parameters alone is beƩer than any of the imaging parameters. It is not 
clear that in Table 4 the clinical+CAC+EAT is beƩer than clinical+CAC. Importantly EAT already includes 
informaƟon about mortality from the fiƫng as described in the appendix.  

Please see our response to comment #1. 

4. Why is the CAC score available on the subset only? Was the addiƟonal value of EAT compared on 
13996/24090 images only? How was this subset selected? Previously the same group published a study in 
nature communicaƟons where 14,959 cases were processed for CAC scoring. How were the CAC scores 
obtained for this analysis? Seems many different sub-cohorts are uƟlized.  

Thank you for poinƟng out the CAC subgroup measurements. We uƟlized the validated CAC scores obtained by our 
group and published in Zeleznik et al. Nature Comm 2021. At that Ɵme, the policy of the NaƟonal Cancer InsƟtute 
was to only release up to 15,000 parƟcipants' data for any individual project.   

In the current study, we applied stricter image quality check criteria than the Zeleznik et al. study. Consequently, we 
excluded a larger group of subjects before the EAT analysis (1,682/25,815 (6.5%)) vs. 41/15,000 (0.3%) by Zeleznik et 
al. Therefore, some subjects eligible for CAC scoring did not undergo EAT segmentaƟon. We now provide a more 
comprehensive consort diagram to explain the individual steps to obtain the final analyƟcal cohort of 24,090 cases.  



 

5. Were stents and pacemakers excluded from the CAC analysis?  

The analysis included all available NLST parƟcipants, not excluding those with any implants, to avoid selecƟon bias.  

6. Since EAT volume and aƩenuaƟon are negaƟvely (and significantly) correlated, they shouldn't be in the same 
model. The authors do not present EAT aƩenuaƟon in a model without EAT volume. EAT aƩenuaƟon and 
volume should be presented separately. 

The correlaƟon between EAT volume and density is a crucial aspect of the analysis and can be explained by the 
complex biology of the epicardial adipose Ɵssue. Please refer to the response to Referee #1 Comment #3. 

7. There is no validaƟon of quanƟficaƟon of EAT for nongated scans provided. 

We appreciate the reviewer's observaƟon. We would like to clarify that our EAT segmentaƟon system has indeed 
been developed and validated on ECG-gated and non-gated scans. Specifically, it was trained and tested, in addiƟon 
to other cohorts, on an independent subset of the NaƟonal Lung Screening Trial (NLST) cohort, which consists of non-
gated low-dose CT scans. This informaƟon was previously detailed in the supplementary material and has now been 
incorporated into the main body of the revised manuscript for beƩer visibility and understanding. 

8. The presented NRI is conƟnuous and does not have a straighƞorward clinical interpretaƟon. Can categorical 
posiƟve/negaƟve NRIs and 95% CI be provided?  

We agree with the reviewer that the conƟnuous net reclassificaƟon index (NRI) is difficult to interpret. In general, 
NRI tests are increasingly criƟcized by the research community for their unacceptable staƟsƟcal behavior, incorrect 
staƟsƟcal inferences, and lack of interpretability (Kathleen F. Kerr Radiology 2022). Therefore, we would like to 



abstain from showing 95% CIs. Furthermore, our regression models include mulƟple independent variables 
(categorical and conƟnuous), so that we cannot provide categorical NRIs directly. Regarding the probability score, 
which we classified into three categories (low, medium, high), Kathleen F. Kerr et al. (Epidemiology, 2014) advise 
against using the NRI for 3 or more categories since it does not discriminate between different types of 
reclassificaƟons.    

Instead, we added Harrell's C staƟsƟcs (AUC equivalent for Ɵme-to-event data) to test individual models' 
performance. Moreover, we revised Table 4 to make it more readable and added Likelihood-raƟo tests for nested 
models to test for incremental value of EAT and CAC vs. clinical parameters.   

9. Why is CAC modeled as a categorical variable, but EAT is modeled as conƟnuous? Why? 

We adhered to the clinical standard of using CAC categories. However, a supplemental sensiƟvity analysis using CAC 
as a conƟnuous measure did not reveal any differences in results. 

MulƟvariable regression results were as follows: 

All-cause mortality: 

 

CV-mortality: 



 

 

10. Author affiliaƟons missing for MCL, VKR, TM 

Thank you for poinƟng out the missing informaƟon. We added the corresponding affiliaƟons for MCL, VKR, and TM. 

11. Table 3 - model 3 definiƟon is missing (which covariates were adjusted?) 

Thank you for poinƟng out the unclear descripƟon of Table 3. We adjusted the footnote of Table 3 to describe the 
individual Cox regression models clearly. Model 3 is the fully revised model, including EAT volume, EAT density, age, 
sex, Race, Ethnicity, smoking (current vs. former), pack-years, history of heart disease, stroke, diabetes mellitus, 
hypertension, educaƟon status, BMI, and CAC score. 

 

12. Why is the disƟncƟon of CAC categories <300 HU (standard to have 400 HU as threshold)- misleading? 

We used the standard density threshold of 130 HU to render CAC and the Agatston method to calculate the coronary 
calcium score. We calculated the CAC scores and straƟfied them into clinically relevant categories. While some 
studies use a threshold of 400 Agatston units, we used the 300 Agatston unit cutoff according to prior publicaƟons 
in primary prevenƟon cohorts (e.g., Hoffmann et al. Am. J. Cardiol. 2008, Zeleznik et al. Nature CommunicaƟons 
2021). We added the corresponding reference (Hoffmann et al. Am. J. Cardiol. 2008) to the methods secƟon. 

13. For Table 4, what is the N value? 



The N value is 13,860. We added a corresponding descripƟon to the Table 4 footnote.  

14. In addiƟon, the algorithm offers EAT measurements in under 2 seconds without human input, making it an 
"end-to-end" soluƟon for CV risk assessment in clinical seƫngs" -On what kind of a computer? IIs this GPU 
enabled, and what kind of GPU? Does it include CAC scoring?  

We thank the reviewer for the quesƟon. The EAT segmentaƟon tool does not include CAC scoring. It performs under 
2 seconds on a GPU-enabled machine – specifically, on a Linux workstaƟon with an Nvidia A6000 GPU. We added the 
missing informaƟon to the revised manuscript. 

15. Discussion - InflammaƟon is a common pathophysiology pathway for CVD and cancer -this paragraph is 
speculaƟve; no data is presented in the manuscript relaƟng to this. Same with the Epicardial adipose Ɵssue 
secƟon may be an index and promotor of local coronary artery inflammaƟon. This paragraph is unrelated to 
the paper. 

Thank you for poinƟng out this unclear porƟon of the discussion. We agree that those two secƟons included 
informaƟon outside the scope of the current study. We condensed both paragraphs into one short secƟon, added 
corresponding data from our study, and revised the references.  

 

 

 

 

 



Reviewers' comments:  

Reviewer #1 (Remarks to the Author):  

The authors prepared appropriate answers to my questions and revisited their paper. Therefore, I 

think this manuscript has reached a level with no publication problems.  

Reviewer #2 (Remarks to the Author):  

Authors responded adequately to my concerns. This is a great example of opportunistic screening. 

Thank you for providing details on the segmentations.  

David L Wilson  

Reviewer #3 (Remarks to the Author):  

Some progress has been made in the response, but unfortunately the authors did not answer the 

main critical points.  

1. A major and critical fault is that the EAT probability score is based on machine learning (even if it is 

a simple logistic regression) and is designed to maximize the mortality prediction, but it was 

developed in the same population it is subsequently tested in. This is likely causing a significant 

overfit. Importantly, this probability score is shown to be the key variable, but development and 

testing in the same cohort undermine its significance.  

>This probability is purely exploratory and should not be seen as a prediction score, which would 

need to fulfill specific requirements.  

This EAT probability score features as the main result in the key figure 3 of the paper. Considering 

the guidelines for AI research and the high profile of this journal, this parameter should be 

developed and evaluated in separate cohorts or removed from the analysis.  

Consequently, points 2 and 3 and not answered at all as they merely refer to the answer 1 in point.  

The answer to point 4 is unclear -if all 24090 cases could be processed for EAT, why could they not 

be processed for calcium? The paper is very confusing as Table 1 baseline characteristics have a 

different population than Table 4 . N is not given in Table 4. Also, CAC in Table 1 is incorrectly given 

as if for the whole population.  

Regarding point 8 the authors still utilize continuous NRI and do not want to show categorical NRI 

based on an editorial from 2022. This editorial actually criticizes continuous NRI in particular. 

Regarding categorical NRI the editorial ignores the fact that one can show reclassification separately 

for events and nonevents, which should be standard practice. The categorical NRI is often used, and 

the original manuscript on categorical NRI is cited over 6270 times and over 653 times since 2022 

according to Google Scholar.  



Response to review 

 

 

Report from reviewer 3 
 
Some progress has been made in the response, but unfortunately the authors did not 
answer the main critical points. 
 
1. A major and critical fault is that the EAT probability score is based on machine 
learning (even if it is a simple logistic regression) and is designed to maximize the 
mortality prediction, but it was developed in the same population it is subsequently 
tested in. This is likely causing a significant overfit. Importantly, this probability score is 
shown to be the key variable, but development and testing in the same cohort 
undermine its significance. 
 
Since the authors used some 24k+ patients from a registry obtained from multiple sites, 
this should represent many different scanners and locations. This should help 
generalizability. Of course, a different sub-population might yield somewhat different 
results, due to calibration differences for example. I think it is quite OK as long as the 
authors describe this as a limitation.  
 
More troubling is that I see no evidence of splitting their existing data into 
training/testing groups. Normally, we require this in Cox modeling. They do have a 
saving grace in that they are using very few features. However, when they include CAC 
+ EAT volume + EAT HU + clinicals, they do have a number of features. It would be 
better practice to split out training and testing data and report performance on both. 
Maybe this was done. If so, it should be made more clear.  
 
 
>This probability is purely exploratory and should not be seen as a prediction score, 
which would need to fulfill specific requirements. 
 
This EAT probability score features as the main result in the key figure 3 of the paper. 
Considering the guidelines for AI research and the high profile of this journal, this 
parameter should be developed and evaluated in separate cohorts or removed from the 
analysis. 
Consequently, points 2 and 3 and not answered at all as they merely refer to the answer 
1 in point. 
 
The answer to point 4 is unclear -if all 24090 cases could be processed for EAT, why 
could they not be processed for calcium? The paper is very confusing as Table 1 
baseline characteristics have a different population than Table 4 . N is not given in 
Table 4. Also, CAC in Table 1 is incorrectly given as if for the whole population. 
 
Regarding point 8 the authors still utilize continuous NRI and do not want to show 



categorical NRI based on an editorial from 2022. This editorial actually criticizes 
continuous NRI in particular. Regarding categorical NRI the editorial ignores the fact 
that one can show reclassification separately for events and nonevents, which should 
be standard practice. The categorical NRI is often used, and the original manuscript on 
categorical NRI is cited over 6270 times and over 653 times since 2022 according to 
Google Scholar. 
 
Authors could discuss categorical NRI and more carefully discuss the types of 
reclassifications.  

This email has been sent through the Springer Nature Tracking System NY-610A-
NPG&MTS 

 



Point-by-point responses to the editor and reviewers 

We thank the editor and the reviewers for their valuable feedback and insightful comments and appreciate the time 

and effort they have put into reviewing our manuscript. We also thank reviewer #2 for additional feedback. We agree 

with the suggestions and made the necessary modifications to the manuscript. Please find detailed responses to 

individual comments below: 

Referee #1: 

“The authors prepared appropriate answers to my questions and revisited their paper. Therefore, I think this 

manuscript has reached a level with no publication problems.” 

Thank you very much for the positive feedback. 

 

Referee #2: 

“Authors responded adequately to my concerns. This is a great example of opportunistic screening. Thank 

you for providing details on the segmentations.” 

We thank the reviewer for the positive feedback and are glad we could provide the requested information. 

 

Referee #3: 

“Some progress has been made in the response, but unfortunately the authors did not answer the main 

critical points. 

A major and critical fault is that the EAT probability score is based on machine learning (even if it is a simple 

logistic regression) and is designed to maximize the mortality prediction, but it was developed in the same 

population it is subsequently tested in. This is likely causing a significant overfit. Importantly, this probability 

score is shown to be the key variable, but development and testing in the same cohort undermine its 

significance. 

This probability is purely exploratory and should not be seen as a prediction score, which would need to fulfill 

specific requirements.” 

We thank the reviewer for pointing out this unclear aspect and apologize for any confusion. 

Epicardial adipose tissue (EAT) volume and density are known prognostic markers, tested and validated in other large 

imaging studies, as mentioned by Mancio et al. EHJ CVI 2018. Our discussion states the following: 

“Our study corroborates growing evidence linking increased EAT volume and density with adverse events. For 

instance, a large meta-analysis including over 20,000 subjects (mainly from the Framingham Heart Study (FHS), Multi-

Ethnic Study of Atherosclerosis (MESA), Heinz Nixdorf Recall (HNR) study, EISNER study, and the Rotterdam study) 

reported a strong relationship between EAT volume, CV risk factors, and CAD severity21.” 



In the current study, we automated the EAT segmentation. We validated EAT’s prognostic value as an opportunistic 

imaging marker in a cohort of individuals who underwent lung cancer screening CTs, a large cohort where manual 

segmentation is not feasible. The machine learning was used solely for the segmentation of the EAT. It was trained 

and validated in the Framingham Heart Study, PROMISE, and NLST, a variety of large, well-phenotyped cohorts with 

images acquired using different scanners at numerous sites across the US. Hence, our study did not intend to develop 

and test a novel biomarker; instead, it used deep learning to assess a well-known and validated imaging marker in a 

cohort of patients with increased CV risk who usually do not get CV evaluation. 

The methods section states the following: 

Training and testing data sets 

A dataset of 2,164 randomly selected CT scans from FHS (n=628), PROMISE (n=1,140), and NLST (n=396) was used to 

develop the system. Four experienced cardiovascular radiologists provided standard manual segmentations for all 

2,164 cases.  

We used 858 cases (FHS, n=628, PROMISE, n=130; NLST, n=100) for training and tuning of the algorithm, while the 

remaining 1,306 cases (PROMISE, n=1,010; NLST, n=296) were reserved for testing. 

 

“This EAT probability score features as the main result in the key figure 3 of the paper. Considering the 

guidelines for AI research and the high profile of this journal, this parameter should be developed and 

evaluated in separate cohorts or removed from the analysis. 

Consequently, points 2 and 3 and not answered at all as they merely refer to the answer 1 in point.” 

Again, we apologize for the confusion. As mentioned above, we did not define a new biomarker. We agree that the 

exploratory “EAT probability score” may need further validation in independent cohorts. We added the following 

sentence to the limitation section of the discussion.  

“Fourth, the EAT probability score combining EAT volume and density needs external validation. However, the large 

number of subjects from multiple sites (i.e., various scanners at different locations) warrants the generalizability of 

our results.” 

 

“The answer to point 4 is unclear -if all 24090 cases could be processed for EAT, why could they not be 

processed for calcium? The paper is very confusing as Table 1 baseline characteristics have a different 

population than Table 4 . N is not given in Table 4. Also, CAC in Table 1 is incorrectly given as if for the whole 

population.” 

Thank you for pointing out the CAC measurements available in a subgroup of the NLST participants. CAC scores were 

used solely for the multivariable adjustment in our study. We utilized the validated CAC scores obtained by our group 

and published in Zeleznik et al. Nature Comm 2021. As mentioned in our previous rebuttal, at the time of the last 

study, the policy of the National Cancer Institute was to only release up to 15,000 participants' data for any individual 

project. We did not re-segment the cohort as a newer CAC segmentation algorithm is being developed, and we 

decided to use the validated results derived from analyses performed in a strictly controlled fashion. The CAC scores 

in the 13,996 individuals employed in the current study represent a random sample (58%) of the NLST participants. 



Moreover, since all major results were statistically significant in this random sample, we expect that a larger sample 

size would lead to a lower standard error and, therefore, would further strengthen our findings by making the current 

results even more significant. However, we added a corresponding disclosure to the limitations section of the 

manuscript, stating that CAC was available solely in a random subgroup of the NLST cohort. This information is also 

available in the methods section of the manuscript and in the footnote of Tables 1 & 2 to avoid confusion. 

Furthermore, we added corresponding sample sizes for individual models to the footnote of Table 4, as requested by 

the reviewer. 

 

“Regarding point 8 the authors still utilize continuous NRI and do not want to show categorical NRI based 

on an editorial from 2022. This editorial actually criticizes continuous NRI in particular. Regarding categorical 

NRI the editorial ignores the fact that one can show reclassification separately for events and nonevents, 

which should be standard practice. The categorical NRI is often used, and the original manuscript on 

categorical NRI is cited over 6270 times and over 653 times since 2022 according to Google Scholar.” 

We thank the reviewer for the comment and the opportunity to discuss our approach in more detail. The reviewer 

is correct in stating that the beforementioned editorial by Kathleen F. Kerr (Radiology, 2022) criticizes the category-

free (i.e., continuous) NRI. The editorial states, "the category-free NRI statistic ignores the magnitude of change”. 

However, the editorial also states that the “same issue can arise with categorical NRI statistics because they also only 

account for the direction of risk reclassification, not the magnitude”. Moreover, we allow us to disagree with the 

reviewer's statement that the editorial ignores the separate reclassification for events and nonevents. Figure 1 and 

examples 1 to 3 differentiate between event and non-event NRIs.  

The reviewer further states that “categorical NRI is often used, and the original manuscript on categorical NRI is cited 

over 6270 times and over 653 times since 2022 according to Google Scholar”. This statement is correct. However, the 

same author group that developed the highly cited original NRI (i.e., Pencina et al.) published the extensions of the 

NRI, i.e., the category-free or continuous NRI, in Statistics in Medicine in 2011. They state that the NRI “is more 

objective and comparable across studies if using the category-free version” and conclude that “the category-less or 

continuous NRI is the most objective and versatile measure of improvement in risk prediction”. They argue that “in 

cases where no established categories exist, it is more prudent to use a version of NRI which does not require 

categories, rather than trying to create them for one particular application”. This reflects our case. 

Moreover, our analysis is of an exploratory nature, and future studies are needed to validate the results in different 

cohorts. As Pencina et al. (2011) point out: “the category-based NRI is influenced by the relationship between 

category cut-offs and event rates. Hence, it may be misleading to apply the same fixed categories to events defined 

differently or time horizons of different duration which lead to varying incidence rates. This problem is absent when 

we use the category-free NRI, which is unaffected by event rates”.  

In summary, Pencina et al., who developed both the original and the continuous NRI, conclude that “the continuous 

NRI offers the widest and most standardized application.”  

We added the following statement to the statistical analysis portion of the methods section:  

“We used the continuous NRI as recommended by Pencina et al., as continuous NRI offers the widest and most 

standardized application and is not affected by different event rates and should thus be used when comparing NRIs 

across studies.” 



Reviewers' comments:  

Reviewer #3 (Remarks to the Author):  

I had the opportunity to review the revised version of the manuscript.  

Unfortunately, the authors have not addressed some of the remaining issues.  

In particular - “Importantly, this probability score is shown to be the key variable, but development 

and testing in the same cohort undermine its significance.”  

The most pressing concern is the methodology used for the probability score that combines density 

and volume. Authors’ explanation does not acknowledge this and only discusses training for deriving 

EAT volumes. The concern is about the probability score, not the volumes.  

The authors put the description of the probability score in the statistical section, but deriving the 

probability score is a form of machine learning even if done with multivariable logistic regression, 

and training data needs to be separated from the test data.  

As previously highlighted, the approach of deriving and testing this combined score within the same 

population is methodologically flawed and has not been sufficiently addressed in the revision.  

Therefore, the probability score should be removed from the manuscript or retrained using a 

separate population to eliminate any potential data leakage to the testing data.  

The current approach, where the logistic regression model for the probability score is derived, 

trained, and tested within the same cohort, is not correct and likely overfits the data.  

Regarding different sample sizes for CAC and EAT I understand the authors' explanation of different 

sample sizes for CAC and EAT due to the historical processing sequence, but it makes the current 

manuscript difficult to follow. 



Point-by-point responses to the editor and reviewers 

We thank the editor and the reviewers for their valuable feedback and insightful comments and appreciate the time and effort 

they have put into reviewing our manuscript. We also thank reviewer #3 for additional feedback. We agree with the 

suggestions and made the necessary modifications to the manuscript. Please find detailed responses to the comments below: 

Reviewer #3 (Remarks to the Author): 

“I had the opportunity to review the revised version of the manuscript. Unfortunately, the authors have not addressed some 

of the remaining issues. In particular - “Importantly, this probability score is shown to be the key variable, but development 

and testing in the same cohort undermine its significance.” 

The most pressing concern is the methodology used for the probability score that combines density and volume. Authors’ 

explanation does not acknowledge this and only discusses training for deriving EAT volumes. The concern is about the 

probability score, not the volumes. 

The authors put the description of the probability score in the statistical section, but deriving the probability score is a form of 

machine learning even if done with multivariable logistic regression, and training data needs to be separated from the test 

data. 

As previously highlighted, the approach of deriving and testing this combined score within the same population is 

methodologically flawed and has not been sufficiently addressed in the revision. 

Therefore, the probability score should be removed from the manuscript or retrained using a separate population to eliminate 

any potential data leakage to the testing data. 

The current approach, where the logistic regression model for the probability score is derived, trained, and tested within the 

same cohort, is not correct and likely overfits the data. 

Regarding different sample sizes for CAC and EAT I understand the authors' explanation of different sample sizes for CAC and 

EAT due to the historical processing sequence, but it makes the current manuscript difficult to follow.” 

Response: 

We thank the reviewer for pointing out their concerns regarding developing and testing the probability score.  

As proposed by the reviewer, we removed the score from the manuscript and now provide data only on the EAT volume and 

density as separate variables. We now offer additional adjusted KM curves and recalculated the statistics in the revised Table 

4 using EAT volume and density as individual variables. We also removed the description of the probability score from the 

results, methods, and the corresponding Supplemental Text S1, score-related KM curves (Figure 3), and Supplemental Tables 

S4 & S5. Finally, we also adjusted the discussion accordingly. 

 



REVIEWERS' COMMENTS: 

Reviewer #3 (Remarks to the Author): 

authors finally resolved the issue


	Peer_Review_File_cover_letter
	1
	1 rev 2
	2
	3
	3 rev 2
	4
	5
	6
	7

	Title: Deep Learning Analysis of Epicardial Adipose Tissue on Non-ECG-gated Low-Dose Chest CT - Uncovering Hidden Cardiovascular Risk in Heavy Smokers


