1 PLS algorithm (canonical mode)

1.
$$X_0 = X, Y_0 = Y$$

2. For h = 1 ... H:

(a) Initialize

 $\xi_h = \text{first column of } X_{h-1} \quad \omega_h = \text{first column of } Y_{h-1}$

- (b) Until convergence of a_h :
- i. $a_h = X'_{h-1}\xi_h/\xi'_h\xi_h$, norm a_h ii. $\xi_h = X_{h-1}a_h$, norm ξ_h iii. $b_h = Y'_{h-1}\xi_h/\xi'_h\xi_h$, norm b_h iv. $\omega_h = Y_{h-1}b_h$, norm ω_h (c) $c_h = X'_{h-1}\xi_h$ $e_h = Y'_{h-1}\omega_h$
- (d) $X_h = X_{h-1} \xi_h c'_h$ $Y_h = Y_{h-1} \omega_h e'_h$

Step (c) computes the regression coefficients of the matrices X_{h-1} and Y_{h-1} on the latent variables ξ_h and ω_h .

Step (d) computes the deflated (residual) matrices.

2 sparse PLS algorithm (canonical mode)

Sparse PLS initializes step (a) in PLS by extracting the first pair of singular vectors (a_h, b_h) of the crossproduct $X'_{h-1}Y_{h-1}$, which includes variation in both X and Y and the correlation between the two sets.

The two loading vectors (a_h, b_h) are then computed with penalizations λ_a and λ_b in step (b), and the latent vectors (ξ_h, ω_h) are then computed, where $g_{\lambda}(y) = sign(y)(|y| - \lambda)_+$ is the soft-thresholding penalty function.

- 1. $X_0 = X$ $Y_0 = Y$
- 2. For $h = 1 \dots H$:
 - (a) Set $\tilde{M}_{h-1} = X'_{h-1}Y_{h-1}$, decompose \tilde{M}_{h-1} and extract the first pair of singular vectors $a_{old} = a_h$ and $b_{old} = b_h$
 - (b) Until convergence of a_{new} and b_{new} :
 - i. $a_{new} = g_{\lambda_a}(\tilde{M}_{h-1}b_{old})$, norm a_{new} ii. $b_{new} = g_{\lambda_b}(\tilde{M}'_{h-1}a_{old})$, norm b_{new} iii. $a_{old} = a_{new}$, $b_{old} = b_{new}$
 - (c) $\xi_h = X_{h-1}a_{new}$ $\omega_h = Y_{h-1}b_{new}$
 - (d) $c_h = X'_{h-1}\xi_h$ $e_h = Y'_{h-1}\omega_h$

(e)
$$X_h = X_{h-1} - \xi_h c'_h$$
 $Y_h = Y_{h-1} - \omega_h e'_h$

3 Canonical Correlation Analysis with Elastic Net penalization

CCA-EN initializes step (a) in PLS by setting $\xi_h = X_{h-1}^j$ and $\omega_h = Y_{h-1}^k$ such that $cor(X_{h-1}^j, Y_{h-1}^k)$ is maximized, for $j = 1 \dots p$ and $k = 1 \dots q$. Hence, this algorithm aims at maximizing the correlation (rather than the covariance for PLS and sPLS). The approximation on Elastic Net penalization finally consists in introducing soft-thresholding penalizations, as in sparse PLS, which makes both algorithms similar, except for the initiliza-

- 1. $X_0 = X$ $Y_0 = Y$
- 2. For $h = 1 \dots H$:

tion step.

- (a) Set $\xi_h = X_{h-1}^j$ and $\omega_h = Y_{h-1}^k$ such that $cor(X_{h-1}^j, Y_{h-1}^k)$ is maximized $a_{new} = X_{h-1}'\xi_h/\xi_h'\xi_h$ $b_{new} = Y_{h-1}'\xi_h/\xi_h'\xi_h$, norm a_{new} and b_{new}
- (b) Until convergence of a_{new} and b_{new} :
 - i. $a_{new} = g_{\lambda_a}(Y_{h-1}b_{old})$, norm a_{new}
 - ii. $b_{new} = g_{\lambda_b}(X_{h-1}a_{old})$, norm b_{new}
 - iii. $a_{old} = a_{new}, b_{old} = b_{new}$
- (c) $\xi_h = X_{h-1}a_{new}$, norm ξ_h $\omega_h = Y_{h-1}b_{new}$ norm ω_h
- (d) $c_h = X'_{h-1}\xi_h$ $e_h = Y'_{h-1}\omega_h$
- (e) $X_h = X_{h-1} \xi_h c'_h$ $Y_h = Y_{h-1} \omega_h e'_h$