
Figure 1: Illustration of the MapReduce framework: the “mapper” is applied to all input records, which
generates results that are aggregated by the “reducer”. The runtime groups together values by keys.

1: procedure Map(k, d)
2: Initialize.AssociativeArray(H)
3: for all t ∈ d do

4: H{t} ← H{t}+ 1
5: for all t ∈ H do

6: Emit(t, 〈k, H{t}〉)
1: procedure Reduce(t, [〈k1, f1〉, 〈k2, f2〉 . . .])
2: Initialize.List(P )
3: for all 〈k, f〉 ∈ [〈k1, f1〉, 〈k2, f2〉 . . .] do

4: Append(P, 〈k, f〉)
5: Sort(P )
6: Emit(t, P )

Figure 2: Pseudo-code of Ivory’s indexing algorithm in MapReduce. The mapper processes each document
and emits postings with the associated term as the key. The reducer gathers all postings for each term to
create the inverted index.

1: procedure Map(t, P )
2: [Q1, Q2, . . . Qn]← LoadQueries()
3: for all Qi ∈ [Q1, Q2, . . . Qn] do

4: if t ∈ Qi then

5: Initialize.AssociativeArray(H)
6: for all 〈k, f〉 ∈ P do

7: H{k} ← wt,q · wt,d

8: Emit(i,H)
1: procedure Reduce(i, [H1,H2,H3, . . .])
2: Initialize.AssociativeArray(Hf )
3: for all H ∈ [H1,H2,H3, . . .] do

4: Merge(Hf ,H)
5: Emit(i,Hf )

Figure 3: Pseudo-code of Ivory’s retrieval algorithm in MapReduce. The mapper processes the postings lists
in parallel. For each query term, the mapper initializes accumulators to hold partial score contributions from
all documents containing the term. The reducer adds up partial scores to produce the final results.

27




