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Supplementary Picture 1. Relative-importance indexes for a multiple linear regression
model with Kendall correlation values as response. Each predictor variable’s relative importance
index [40] was computed on the basis of a standard, non-interacting linear model. The higher a
variable’s contribution to the coefficient of determination, the higher its relative importance is. It turns
out that the predictor variable “e-value filter method” (filt) has an insignificant contribution to the
overall coefficient of determination (R2). Predictor variables “distance algorithm” (dalg) and “distance
formula” (dist) have both a contribution of around 15%, whereas the one for “alignment method”
(alnm) is around 65%. The “lmg” metric was used for this analysis.
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Supplementary Picture 2. Relative importance indexes for a multiple linear regression
model with Pearson correlation values as response variable. For details on this kind of
analysis, see last figure caption. It turns out that predictor variable “e-value filter method” (filt) has an
insignificant contribution to the overall coefficient of determination (R2). Here, the contribution of the
algorithms “coverage”, “trimming” and “greedy” (predictor variable named “dalg”) to R

2 is small
compared to the results with Kendall’s correlation coefficients. The predictor “distance formulae” (dist)
contribute to R

2 by around 30% which is approximately twice the amount observed in the results with
Kendall’s correlation coefficients.
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Supplementary Picture 3. Interaction effects between predictor variables “alignment
methods” and “algorithm” with Kendall correlations as response variable. Kendall
correlations were calculated between DDHs and intergenomic distances for the data set DS1. In the
picture, alignment methods are sorted ascending according to the correlation estimates of the
“coverage” predictor. Whereas algorithms “coverage” and “trimming” had an almost equal and
negative effect (i.e., made the correlation coefficient more negative) on the predictor “alignment
methods”, “greedy” had a less pronounced effect for most methods. A further look at the models’
coefficients revealed that GBDP methods incorporating BLAST+ with initial word lengths of 38-50 had an
average impact of about -0.5 on the correlation coefficient. The MUMmer- and BLAT-related variants
performed even better in this respect, achieving approx. -0.6.
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Supplementary Picture 4. Interaction effects between predictor variables “alignment
methods” and “algorithm” with Pearson correlations as response variable. Pearson
correlations were calculated between DDHs and intergenomic distances for the data set DS1. In the
picture, alignment methods are sorted ascending according to the correlation estimates of the
“coverage” predictor. Whereas algorithms “coverage” and “trimming” had an almost equal and
substantial negative effect (i.e., made the correlation coefficient more negative) on the predictor
“alignment methods”, “greedy” had a less pronounced effect for most methods. A further look at the
models’ coefficients revealed that GBDP methods incorporating BLAST+ with initial word lengths of 38-50
had an average impact of about and -0.7 on the correlation coefficient. The MUMmer- and BLAT-related
variants performed even better in this respect, achieving approx. -0.9.
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Supplementary Picture 5. Interaction effects between predictor variables “distance
formula” and “algorithm” with Kendall correlations as response variable. Kendall
correlations were calculated between DDHs and intergenomic distances for the data set DS1. Distance
formulae are sorted ascending according to the correlation estimates of the “coverage” predictor.
Whereas algorithms “coverage” and “trimming” had an almost equal and substantial negative effect
(i.e., made the correlation coefficient more negative) on the predictor “distance formulae”, “greedy” had
a less pronounced effect for most formulae.
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Supplementary Picture 6. Interaction effects between predictor variables “distance
formula” and “algorithm” with Pearson correlations as response variable. Pearson
correlations were calculated between DDHs and intergenomic distances for data set DS1. In the picture,
distance formulae are sorted ascending according to the correlation estimates of the “coverage”
predictor. Whereas algorithms “coverage” and “trimming” had an almost equal and substantial
negative effect (i.e., made the correlation coefficient more negative) on the predictor “distance
formulae”, “greedy” had a less pronounced effect for most formulae (except D4 and D5).
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Supplementary Picture 7. Overall distributions of the coefficients of variation as
computed for all 4350 distinct GBDP settings tested and their respective distance replicates.
The medians of both distributions revealed little differences between bootstrapping and jackknifing.
Rather, the way the coefficients of variation were aggregated for each GBDP setting (either median or
mean) slightly affected the overall median of the resulting distributions.
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Supplementary Picture 8. Distributions of the coefficients of variation grouped by
local-alignment method. The coefficients of variation (CV) of all 4350 distinct GBDP settings (and
their respective distance replicates) were aggregated by calculating the median. An average, MUMmer
(MU) yielded the lowest median coefficient of variation of all local-alignment methods tested. The two
boxplots for the BLAST+ method (BT) are much broader, apparently due to the wide range of diverse
BLAST+ settings tested in this study.
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Supplementary Picture 9. Results of the analysis of distance confidence intervals (CIs) for
a selected, well performing GBDP method using the coverage and trimming algorithms. The
subfigures show the relationship between intergenomic distance point estimates and the sizes of their
CIs obtained under either the coverage (left) or trimming algorithm (right). Left: Under both
bootstrapping (BS) and jackknifing (JK, with a deletion ratio of 50%) the width of the CIs decreased
towards the lower and upper bounds, as expected for proportion data. Right: The “trimming”
algorithm yields, on average, much broader CIs (note that the two subfigures are not drawn to scale).
Their sizes decrease with increasing distance point estimate. The broadest confidence interval observed
(≥ 0.4) occurred at a point estimate of around 0.2 and was associated with the genome pair
Methanococcus maripaludis C6 and Methanococcus maripaludis C7. The two genomes shared 162 HSPs
whose lengths were unevenly distributed: 61 had a length below 1kb, whereas 42 were significantly
above 10kb in length. This genome pair was part of a larger analysis that addressed the relationship
between the number of HSPs and average and median HSP lengths to the corresponding intergenomic
distance estimate (see next picture).
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Supplementary Picture 10. Relationship between intergenomic distance and the numbers
as well as lengths of underlying HSPs. This type of analysis was conducted to provide insight into
genome characteristics potentially affecting GBDP’s bootstrapping and jackknifing behavior. The HSP
sets from all 155 genome pairs (data set DS1) were analyzed in detail for a well-performing GBDP

method (see Table 1). Three characteristics were assessed for each HSP set: the total number of HSPs,
the average HSP length and the median of the HSP lengths. HSP lengths between closely related
genomes (small intergenomic distance) are rather unevenly distributed. Bootstrap and jackknife
replicates of the same underlying set of HSPs would thus rather strongly differ regarding the lengths of
the selected HSPs, most likely yielding broad distance confidence intervals (see last figure). The small
subplot shows some outliers (same scale) that have been intentionally omitted in the main plot. Green
dots in that subplot refer to genome pairs from Methanococcus maripaludis strains C5, C6 and C7.
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Supplementary Picture 11. Comparison of linear models and data transformations for
DDH prediction. All model fits were based on intergenomic distances calculated by the same,
well-performing GBDP method: BLAST+ (word length=46), no e-value filtering, “coverage” algorithm and
distance formula d6. The model was either inferred from (i) the complete data set DS1 (red curve) or
(ii) the reduced data set [8] DS2 (blue curve). Thus, the distance-DDH pairs marked by blue triangles
occurred only in DS2, those marked by red circles also in DS1. The green vertical line indicates the 50%
probability threshold as calculated by the GLM for binary response data (see Figure 5). A: Linear
models using DDH as response and untransformed distances as predictor variable. B: Linear models
using arcsine-transformed DDH values as response and untransformed distances as predictor variable.
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Supplementary Picture 12. Error ratios of DDH prediction in dependency of the GBDP

correlations and the four model types. Error-ratios of predictions at the 70% boundary were
calculated based on four types of models, linear models (LM) with or without arcsine transformation of
the response variable and generalized linear models (GLMs) with or without log transformation of the
predictor variable. Error ratios were determined for all tested GBDP methods and plotted over their
Kendall correlation coefficients. Loess smoothers (blue curves) with their respective confidence intervals
were added to each subplot. Apparently the error ratios increase with increasing (i.e., worse)
correlations for all four models, but the relationship is much clearer for the log-GLMs than for the other
models. For instance, the confidence bands of the Loess smoother are clearly smaller compared to the
other models. Some selected error-ratios are found in Table 2.


