Supplementary Material

Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs

Mamoon Rashid, Sudipto Saha and G. P. S. Raghava* Institute of Microbial Technology, Sector-39A, Chandigarh, India

Running Title: Subcellular localization of mycobacterial proteins

Address correspondence to: Dr. G. P. S. Raghava, Scientist, Bioinformatics Centre Institute of Microbial Technology Sector 39A, Chandigarh, INDIA, Phone: +91-172-2690557; Fax: +91-172-2690632 E-mail: <u>raghava@imtech.res.in</u>

The data shown in this supplementary material are all produced during the course of study. The performance of BLAST for subcellular location prediction has been evaluated (Table S1). PSSM based SVM modules have been best optimized on Radial kernel with g=2, c=50 and j=1 giving rise to overall accuracy of 86.62%.Linear (c = 50, j = 5) and polynomial (d=1, c=50, j=5) kernels were also optimized to give overall accuracy of 85.3% and 85.3% respectively (Table S2). Performance of various MEME/MAST binary modules has been analyzed. Four different motifs based binary classification modules were developed for cytoplasmic, integral membrane, secretory and membrane attached classes (Table S3 – S6). The decision of assignment of a localization class to protein samples in hybrid module is shown in Table S7. The Table S7 shows seven columns. First column is for ID, 2nd to 5th for hits of MEME/MAST models for cytoplasmic, integral membrane, secretory and last column states final decision. Final decision is taken according to meme models (if any hit is present). In absence of meme hits for any sample, SVM prediction is considered. If hit for a sample comes from more than one meme models the final decision will be the hit with lowest E-value.

Table S1: The comprehensive statistics showing performance of BLAST.

E-	C	Cytoplasmic [340]			Integral membrane [402]				Secretory [50]			Membrane attached [60]				
value	Н	С	Р	Α	Н	С	Р	Α	Н	С	Р	Α	Н	С	Р	Α
0.0001	10	2	20.0	0.6	5	0	0.0	0.0	23	20	86.9	40.0	2	0	0.0	0.0
0.001	14	3	21.4	0.9	7	0	0.0	0.0	23	20	86.9	40.0	3	0	0.0	0.0
0.01	40	22	55.0	6.5	15	5	33.3	1.2	25	20	80.0	40.0	6	1	16.6	1.7
0.1	82	41	50.0	12.1	77	54	70.1	13.4	29	20	68.9	40.0	6	1	16.6	1.7
1	214	100	46.7	29.4	230	166	72.2	41.3	39	20	51.3	40.0	35	3	8.6	5.0
10	336	142	42.3	41.8	384	265	69.0	65.9	48	20	41.6	40.0	58	12	20.7	20.0
100	340	155	45.6	45.6	400	282	70.5	70.2	50	20	40.0	40.0	60	14	23.3	23.3
1000	340	158	46.5	46.5	402	283	70.4	70.4	50	20	40.0	40.0	60	16	26.7	26.7

Where H is Number of hits; C is Number of correct hits; P is percent of correct hit (C/H * 100) and A is percent accuracy (C/total number of proteins in the particular class *100)

Table S2: The performance of PSSM based SVM modules using different kernel functions at optimized parameters. The performance was evaluated by 5-fold cross-validation method.

Sub-cellular	Linear kernel		Polynom	ial kernel	Radial kernel	
Localization	ACC	MCC	ACC	MCC	ACC	MCC
Cytoplasmic	93.5	0.85	93.5	0.85	94.7	0.85
Integral membrane	88.6	0.76	88.6	0.76	87.8	0.8
Secretory	40	0.49	40	0.49	44	0.48
Membrane attached	55	0.58	55	0.58	68.3	0.69
Average	85.3	0.77	85.3	0.77	86.6	0.79

ACC: Accuracy; MCC: Matthews correlation coefficient

Table S3: Performance of cytoplasmic motif based study.

E-value	Sensitivity	Specificity	Accuracy	MCC
10 ⁻³	0.0	100.0	60.1	0.00
10^{-2}	0.0	99.8	60.0	0.00
-1 10 ⁻¹	0.0	99.6	59.9	0.00
10 ⁰	0.3	99.6	60.0	0.00
10	0.9	98.6	59.6	0.00
20	0.9	97.7	59.0	0.00
30	4.4	96.9	60.0	0.03
40	8.5	94.9	60.4	0.06
50	17.1	93.9	63.3	0.18
60	32.4	92.2	68.3	0.32
70	100.0	91.8	95.1	0.90

Table S4: Performance of integral membrane protein motif based study.

E-value	Sensitivity	Specificity	Accuracy	MCC
10 ⁻³	0.2	100	52.9	0.04
10 ⁻²	1.5	100	53.5	0.09
-1 10	2.7	100	54.1	0.12
10 ⁰	8.5	98.9	56.2	0.18
10	22.4	97.1	61.9	0.3
20	31.6	94	64.6	0.33
30	39.1	90.4	66.2	0.35
40	44	86.9	66.7	0.35
50	53.2	84.7	69.8	0.4
60	60.9	83.3	72.8	0.46
70	69.7	81.1	75.7	0.51

Table 55: Performance of secretory proteins motif based study
--

E-value	Sensitivity	Specificity	Accuracy	MCC
10 ⁻³	40.0	99.8	96.2	0.59
10 ⁻²	40.0	99.8	96.2	0.59
-1 10 ⁻¹	40.0	99.8	96.2	0.59
10 ⁰	40.0	99.6	96.1	0.58
10	100.0	97.5	97.7	0.84
20	100.0	95.4	95.7	0.74
30	100.0	93.5	93.9	0.68
40	100.0	91.6	92.1	0.63
50	100.0	90.1	90.7	0.59
60	100.0	88.3	89.0	0.55
70	100.0	86.3	87.1	0.52

 Table S6: Performance of membrane attached proteins motif based study.

E-value	Sensitivity	Specificity	Accuracy	MCC
-3 10	0.0	99.7	92.7	0.00
10 ⁻²	0.0	99.7	92.7	0.00
-1 10	0.0	99.7	92.7	0.00
10 ⁰	11.7	99.0	92.8	0.21
10	91.7	97.3	96.9	0.80
20	100.0	95.5	95.8	0.77
30	100.0	94.2	94.6	0.73
40	100.0	93.6	94.0	0.71
50	100.0	92.0	92.6	0.67
60	100.0	90.9	91.5	0.64
70	100.0	89.8	90.5	0.62

Table S7: hybrid model scheme showing various predictions of some samples and the final prediction.

Seq_ID	Meme_cyto	Meme_imp	Meme_sec	Meme_amla	SVM	Final
>imp_200	imp_200:1000	imp_200:1000	imp_200:1000	imp_200:1000	IMP	IMP
>imp_317	imp_317:1000	imp_317:4.8	imp_317:1000	imp_317:1000	IMP	imp
>imp_323	imp_323:1000	imp_323:4.8	imp_323:1000	imp_323:1000	IMP	imp
>sec_2	sec_2:1000	sec_2:1000	sec_2:1.3e-225	sec_2:1000	SEC	sec
>sec_3	sec_3:1000	sec_3:1000	sec_3:4e-240	sec_3:1000	SEC	sec
>sec_10	sec_10:1000	sec_10:1000	sec_10:2.9e-224	sec_10:1000	SEC	sec
>sec_11	sec_11:1000	sec_11:1000	sec_11:4.2e-225	sec_11:1000	SEC	sec
>sec_12	sec_12:1000	sec_12:1000	sec_12:4.8e-208	sec_12:1000	SEC	sec
>sec_13	sec_13:1000	sec_13:1000	sec_13:1.9e-225	sec_13:1000	SEC	sec
>sec_14	sec_14:1000	sec_14:1000	sec_14:9.6e-238	sec_14:1000	SEC	sec
>sec_15	sec_15:1000	sec_15:1000	sec_15:1.1e-159	sec_15:1000	SEC	sec
>sec_16	sec_16:1000	sec_16:1000	sec_16:2.7e-155	sec_16:1000	SEC	sec
>sec_17	sec_17:1000	sec_17:1000	sec_17:5.6e-167	sec_17:1000	SEC	sec
>amla_1	amla_1:1000	amla_1:1000	amla_1:1000	amla_1:6.5	CYTO	amla
>amla_2	amla_2:1000	amla_2:1000	amla_2:1000	amla_2:6.5	CYTO	amla
>amla_11	amla_11:1000	amla_11:1000	amla_11:1000	amla_11:3.2	AMLA	amla
>amla_13	amla_13:1000	amla_13:1000	amla_13:1000	amla_13:9.7	IMP	amla
>amla_14	amla_14:1000	amla_14:1000	amla_14:1000	amla_14:9.7	IMP	amla

Where Meme_cyto: hits from meme model for cytoplasmic proteins, Meme_imp: hits from meme model for integral proteins, Meme_sec: hits from meme model for secretory proteins, Meme_amla: hits from meme model for membrane attached proteins, SVM: prediction by SVM models, Final: final decision, cyto: cytoplasmic, imp: integral membrane protein, sec: secretory, amla: membrane attached protein, 1000: in case of no hit a default value of 1000 has been given for e.g. imp_200:1000.

Figure S1: Average prediction accuracy with RI >= cut-off value. Percent of predicted sequences having RI >= RI cut-off value are also mentioned. For example, about 72% of sequences having RI >=3 is predicted with about 90 % accuracy, with SVM module using **amino acid composition**, by TBpred server.

Figure S2: Average prediction accuracy with RI >= cut-off value. Percent of predicted sequences having RI >= RI cut-off value are also mentioned. For example, about 60% of sequences having RI >=3 is predicted with 92 % accuracy, with SVM module using **dipeptide composition**, by TBpred server.