
Validating module network learning algorithms using

simulated data: Supplementary information

Precision and F-measure as a function of

the number of modules and experiments

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of modules

P
re

ci
si

on

Figure S1: Precision as a function of the number
of modules for data sets with 10 (magenta), 50
(cyan), 100 (red), 200 (green), and 300 (blue) ex-
periments. The curves are least squares fits of the
data to a linear non-polynomial model of the form
a0+

∑n
k=1 akxk−1e−x/500 with x the number of mod-

ules and n = 3.

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of modules

F
−

m
ea

su
re

Figure S2: F -measure as a function of the num-
ber of modules for data sets with 10 (magenta), 50
(cyan), 100 (red), 200 (green), and 300 (blue) ex-
periments. The curves are least squares fits of the
data to a linear non-polynomial model of the form
a0+

∑n
k=1 akxk−1e−x/500 with x the number of mod-

ules and n = 3.

Module networks Bayesian score

We use the same Bayesian score as in the original
module networks formalism [1, 2]. The data like-
lihood is given by evaluating the module network
joint probability distribution (eq. (2)) on the data
set, assuming independent experiments,

L =

M
∏

m=1

K
∏

k=1

∏

i∈Ak

pk

(

xi,m | {xj,m : j ∈ Πk}
)

,

where xi,m is the log-normalized expression value of
gene i in experiment m.

The Bayesian score is obtained by taking the log
of the marginal probability of the data likelihood
over the parameters of the normal distributions at
the leaves of the regression trees with a normal-
gamma prior. It decomposes as a sum of leaf scores

of the different modules:

S =
∑

k

Sk =
∑

k

∑

`

Sk(E`)

Sk(E`) = log

∫∫

dµdτ p(µ, τ)
∏

m∈E`

∏

i∈Ak

pµ,τ (xi,m),

(S1)

where k runs over the set of modules and ` runs
over the set of leaves of the regression tree of mod-
ule k; E` denotes the experiments that end up at
leaf ` after traversing the regression tree and Ak

denotes the genes assigned to module k; p(µ, τ)
is a normal-gamma distribution over the mean µ

and precision τ of the normal distribution pµ,τ , i.e.,
p(µ, τ) = p(µ | τ)p(τ) where p(τ) ∼ Γ(α0, β0) and
p(µ | τ) ∼ N (µ0, (λ0τ)−1):

1

p(τ) =
βα0

0

Γ(α0)
τα0−1e−β0τ (S2)

p(µ | τ) =
(λ0τ

2π

)1/2
e−

λ0τ

2
(µ−µ0)2 (S3)

pµ,τ (xi,m) =
(τ

2π

)1/2
e−

τ
2
(xi,m−µ)2 (S4)

with α0, β0, λ0 > 0 and −∞ < µ0 < ∞.
Insertion of eqs. (S2)–(S4) into eq. (S1) leads to

an integral that can be solved explicitly as a function
of the sufficient statistics

R(`)
q =

∑

m∈E`

∑

i∈Ak

x
q
i,m , q = 0, 1, 2.

of the leaves of the regression tree. The result is

Sk(E`) = − 1
2R

(`)
0 log(2π) + 1

2 log
(λ0

λ0 + R
(`)
0

)

− log Γ(α0) + log Γ(α0 + 1
2R

(`)
0)

+ α0 log β0 − (α0 + 1
2R

(`)
0) log β1 (S5)

where

β1 = β0 +
1

2

[

R
(`)
2 −

(R
(`)
1)2

R
(`)
0

]

+
λ0

(

R
(`)
1 − µ0R

(`)
0

)2

2(λ0 + R
(`)
0)R

(`)
0

.

Learning module regulation programs
The pseudocode for the regulation program learning
algorithm is given in Figure S3. In its simplest form,
the merge score for two trees Tα1

and Tα2
considers

only the gain in Bayesian score that is obtained by
merging two sets into one:

rα1,α2
= Sk(Eα1

∪ Eα2
) − Sk(Eα1

) − Sk(Eα2
). (S6)

In our computations we used a merge score which is
slightly more complicated and takes into account the
whole substructure of the tree below Tα1

and Tα2
.

Let Tα be a tree with children Tα1
and Tα2

, and
define recursively

Zα = eSk(Eα) + Zα1
Zα2

with initial condition

Zm = eSk({m})

for the trivial tree with one experiment m and no
children. The new merge score is then defined as

rα1,α2
= Sk(Eα1

∪ Eα2
) − ln Zα1

− ln Zα2
. (S7)

A binary tree Tα generates a nested set of parti-
tions Pα (we write this as Pα ∼ Tα) of its experiment
set Eα and to each such partition corresponds a score

Sk(Pα) =
∑

i

Sk(Ei)

where Ei are the subsets of Eα forming the partition
Pα. Since a partition generated by Tα is either the
singleton partition Pα = {Eα}, or a combination of
a partition generated by Tα1

with a partition gener-
ated by Tα2

, we get immediately

Zα =
∑

Pα∼Tα

eSk(Pα),

or

ln Zα = Sk(Eα) + ln
(

1 +
∑

Pα∼Tα

Pα 6={Eα}

eSk(Pα)−Sk(Eα)
)

(S8)
We conclude that the merge score (S7) contains the
score difference (S6) as well as other terms defined
by the structure of the subtrees Tα1

and Tα2
. If two

pairs of trees give the same score difference (S6), the
merge score (S7) will typically favor to merge the
pair with the smallest substructure first (as the num-
ber of terms in the summation in (S8) is smaller).
Hence, using (S7) instead of (S6) leads to more bal-
anced trees.

Since we are building the tree from the bottom
up, computing the partition sums Zα is done along
the way, and using the merge score (S7) instead of
(S6) comes at no computational cost. The whole
process of constructing the tree with a merge score
depending on all the partitions generated by the sub-
trees is very similar to the Bayesian hierarchical clus-
tering method of [3].

Regulator assignment in the presence of

missing values
In real data there are often missing values, so for
some experiments we do not know if a regulator is
above or below a given split value. Using the non-
missing values to define the sets R1 and R2, we

2

compute qi as before. Since regulators with a lot
of missing values lead to more uncertainty, we pe-
nalize those by moving the conditional probabilities
qi closer to the maximum uncertainty value of 1

2 by
defining

q′i = (1 − |R3|
|Eα|) (qi −

1
2) + 1

2 ,

where

R3 = {m ∈ Eα : xr,m is missing}.

Note that when there are no missing values, q′i = qi,
and in the extreme case where there are only missing
values, q′i = 1

2 . For the probability distribution of R,
we distribute the missing values proportionally over
1 and 2,

p′i =
|Ri| +

|Ri|
|R1|+|R2|

|R3|

|Eα|
.

such that p′1+p′2 still sums up to 1. We now minimize
the conditional entropy

H(E | R) = p′1h(q′1) + p′2h(q′2)

corresponding to these modified probability distri-
butions. For the sufficient statistics of the leaves of
the module, we simply ignore the missing values as
there are typically more than enough combined data
points for a reliable computation of those statistics.

The complete regulator assignment algorithm is
given in Supplementary Figure S4

References
1. Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller

D, Friedman N: Module networks: identifying reg-

ulatory modules and their condition-specific reg-

ulators from gene expression data. Nat Genet 2003,

34:166 – 167.

2. Segal E, Pe’er D, Regev A, Koller D, Friedman N: Learn-

ing module networks. Journal of Machine Learning Re-

search 2005, 6:557 – 588.

3. Heller KA, Ghahramani Z: Bayesian hierarchical clus-

tering. In Proceedings of the twenty-second International

Conference on Machine Learning 2005.

/* Find hierarchical tree */

Input: A list treeList of trivial trees
representing single experiments.

while treeList has more than 1 element do
compute rα1,α2

for each pair of trees in
treeList;
construct the joined tree Tα = Tα1

∪ Tα2

for the pair with highest rα1,α2
;

add Tα to treeList and remove Tα1
, Tα2

;

Output: A single tree T0 representing all
experiments.

/* Find optimal regulation program

leaves */

testScore(T0.root);

/* Recursive procedure to cut the

hierarchical tree */

Begin testScore(node)
if Sk(node) < Sk(node.leftChild) +
Sk(node.rightChild) then

testScore(node.leftChild);
testScore(node.rightChild);

else
cut tree below node;

End

Figure S3: Pseudocode for the regulation program
learning method

/* Assign regulators separately for

different regulation tree levels.

*/

/* Level is the distance from a node

to the root. */

for each level l do
create a list nodeList with all nodes at
level l in the trees of all modules;
while nodeList is not empty do

for each node in nodeList do
for each regulator r in the set of
potential regulators that do not
break acyclicity do

compute the entropy for
assigning r to node;

find the node-regulator pair
(bestNode, bestR) with least
entropy;
assign bestR to bestNode;
remove bestNode from nodeList;

Figure S4: Pseudocode for the regulation program
learning method

3

