
Supplemental Methods for An Improved Method for Identifying Functionally-Linked Proteins
Using Phylogenetic Profiles by Shawn Cokus, Sayaka Mizutani, and Matteo Pellegrini

Derivation of p-values

Denote by n ≥ 1 the number of genomes and focus on a pair of genes. Let ai, bi, ci ∈ {0, 1} be 1 iff
genome i ∈ 1..n has the first gene, second gene, and both genes, respectively. When considering runs, it is
useful to have a notional “0th genome” with a0 := b0 := c0 := 0. Let ri, si ∈ {0, 1} be 1 iff genome i ∈ 1..n
begins a run (i.e., genome i has a 1 and genome i − 1 has a 0) in the first and second genes, respectively.
Finally, let ti ∈ {0, 1} be 1 iff genome i ∈ 1..n begins a run in the both-genes profile that is 1 exactly at the
genomes that have both genes. We take r0 := s0 := t0 := 0.

Our statistical null hypothesis model of no co-evolution of genes is as follows. The events “genome i
contains gene j” are mutually independent over all pairs of genomes and genes. The probability that a given
gene is present in genome i ∈ 1..n is taken to be the fraction of all genes that genome i contains, which
we record as the weight wi ∈ (0, 1). A genome’s weight is near 1 when it is closely related to the reference
genome and near 0 when it is very distant.

Let k ∈ 0..n be given and let random variables Ak, Bk, and Ck taking values in 0..k be the number of
genomes that have the first gene, second gene, and both genes, respectively, on restriction to genomes 0..k.
Let random variables Rk, Sk, and Tk taking values in 0..dk/2e be the number of runs in the first gene profile,
second gene profile, and both-genes profile on restriction to genomes 0..k. To obtain the conditional distri-
bution of Cn given An and Bn (the “weighted hypergeometric” distribution), the conditional distribution
of Tn given Cn (the “weighted runs” distribution), and many other conditional distributions, it suffices to
find the joint distribution of An, Bn, Cn, Rn, Sn, and Tn.

The combinatorial language of generating functions is extremely well-suited for statistical models of
phylogenetic profiles, including our present one. Probability distributions are represented as multivariate
polynomials with real coefficients in [0, 1]. While a multivariate polynomial is nothing more than an alter-
nate representation of a multi-dimensional array of numbers, natural mathematical operations upon them
(especially polynomial multiplication) directly correspond to features of the statistical models. Further, dy-
namic programming schemes for efficient computation of actual probabilities are often immediately apparent
when generating functions are expressed in particular forms. Therefore, we desire the coefficients of the
multivariate polynomial Pn in the six variables a, b, c, r, s, and t, where

Pk :=
k∑

a=0

k∑
b=0

k∑
c=0

dk/2e∑
r=0

dk/2e∑
s=0

dk/2e∑
t=0

Pr
(

Ak = a, Bk = b, Ck = c,
Rk = r, Sk = s, Tk = t

)
· aabbccrrsstt

for k ∈ 0..n.

To determine whether a run starts in a given genome, the previous genome is also needed. Thus, it is
helpful to partition Pk = Wk + Xk + Yk + Zk into the four possibilities that the last genome can take:

Wk :=
k∑

a=0

k∑
b=0

k∑
c=0

dk/2e∑
r=0

dk/2e∑
s=0

dk/2e∑
t=0

Pr

Ak = a, Bk = b, Ck = c,
Rk = r, Sk = s, Tk = t,
ak = 0, bk = 0

 · aabbccrrsstt

Xk :=
k∑

a=0

k∑
b=0

k∑
c=0

dk/2e∑
r=0

dk/2e∑
s=0

dk/2e∑
t=0

Pr

Ak = a, Bk = b, Ck = c,
Rk = r, Sk = s, Tk = t,
ak = 0, bk = 1

 · aabbccrrsstt

Yk :=
k∑

a=0

k∑
b=0

k∑
c=0

dk/2e∑
r=0

dk/2e∑
s=0

dk/2e∑
t=0

Pr

Ak = a, Bk = b, Ck = c,
Rk = r, Sk = s, Tk = t,
ak = 1, bk = 0

 · aabbccrrsstt

Zk :=
k∑

a=0

k∑
b=0

k∑
c=0

dk/2e∑
r=0

dk/2e∑
s=0

dk/2e∑
t=0

Pr

Ak = a, Bk = b, Ck = c,
Rk = r, Sk = s, Tk = t,
ak = 1, bk = 1

 · aabbccrrsstt.

Using the initial conditions W0 = 1, X0 = Y0 = Z0 = 0 and the system of recurrence relations below for
successive i ∈ 1..n, one can inductively compute P0, P1, P2, P3, . . . and finally Pn.

— 1 of 4 —

risi ti = 000

risi ti = 000

risi ti = 000

risi ti = 000

risi ti = 010

risi ti = 000

risi ti = 010

risi ti = 000

risi ti = 100

risi ti = 100

risi ti = 000

risi ti = 000

risi ti = 111

risi ti = 101

risi ti = 011

risi ti = 000

type W
ai –1bi –1 = 00
(ci–1 = 0)

type X
ai –1bi –1 = 01
(ci–1 = 0)

type Y
ai –1bi –1 = 10
(ci–1 = 0)

type Z
ai –1bi –1 = 11
(ci–1 = 1)

profile of the two genes at genome i –1
pr

of
ile

 o
f

th
e

tw
o

ge
ne

s
at

 g
en

om
e

i

ty
pe

 W
a i

b i
 =

 0
0

(c
i =

 0
)

ty
pe

 X
a i

b i
 =

 0
1

(c
i =

 0
)

ty
pe

 Y
a i

b i
 =

 1
0

(c
i =

 0
)

ty
pe

 Z
a i

b i
 =

 1
1

(c
i =

 1
)

00
00
00

00
10
00

10
00
00

10
10
10

00
01
00

00
11
00

10
01
00

10
11
10

01
00
00

11
00
00

11
10
10

01
01
01

01
11
01

11
01
01

11
11
11

01
10
00

+ + +] = Wi

+ + +

+ + +

+ + +

Wi –1 Xi –1 Yi –1 Zi –1

Wi –1s Xi –1 Yi –1s Zi –1

Wi –1r Xi –1r Yi –1 Zi –1

Wi –1rst Xi –1rt Yi –1st Zi –1

(1–wi)
2 · [

] = Xi (1–wi)wi b · [

] = Yiwi (1–wi)a · [

] = Zi wi
2 abc · [

For conditional probabilities that do not mention all six variables, it is easy to streamline the recurrence
relations to enable more efficient calculations. One need merely substitute 1 for undesired variables and
simplify. For example, for weighted hypergeometric p-values Pr(Cn ≥ c | An = a,Bn = b) we can substitute
r ← 1, s← 1, and t← 1 to obtain the reduced system

W ′
0 = 1

X ′
0 = Y ′

0 = Z ′
0 = 0

W ′
i = (1− wi)2 ·

(
W ′

i−1 + X ′
i−1 + Y ′

i−1 + Z ′
i−1

)
X ′

i = (1− wi)wib ·
(
W ′

i−1 + X ′
i−1 + Y ′

i−1 + Z ′
i−1

)
Y ′

i = wi(1− wi)a ·
(
W ′

i−1 + X ′
i−1 + Y ′

i−1 + Z ′
i−1

)
Z ′

i = w2
i abc ·

(
W ′

i−1 + X ′
i−1 + Y ′

i−1 + Z ′
i−1

)
P ′

i = W ′
i + X ′

i + Y ′
i + Z ′

i

which simplifies to

P ′
0 = 1

P ′
i =

(
(1− wi)2 + (1− wi)wib + wi(1− wi)a + w2

i abc
)
· P ′

i−1

(†)

so that Pr(An = a,Bn = b, Cn = c) is the coefficient [aabbcc]P ′
n of aabbcc in P ′

n and

Pr(Cn ≥ c | An = a,Bn = b) =
∑n

c′=c Pr(An = a,Bn = b, Cn = c′)∑n
c′=0 Pr(An = a,Bn = b, Cn = c′)

=
∑n

c′=c[a
abbcc′

]P ′
n∑n

c′=0[aabbcc′]P ′
n

.

We remark that when all the weights are the same, i.e., wi = w′ for all i ∈ 1..n for any constant w′ ∈ (0, 1),
weighted hypergeometric p-values reduce to the original unweighted hypergeometric p-values.

— 2 of 4 —

For weighted runs p-values Pr(Tn ≤ t | Cn = c), we substitute a ← 1, b ← 1, r ← 1, and s ← 1 to
obtain the reduced system

W ′′
0 = 1

X ′′
0 = Y ′′

0 = Z ′′
0 = 0

W ′′
i = (1− wi)2 ·

(
W ′′

i−1 + X ′′
i−1 + Y ′′

i−1 + Z ′′
i−1

)
X ′′

i = (1− wi)wi ·
(
W ′′

i−1 + X ′′
i−1 + Y ′′

i−1 + Z ′′
i−1

)
Y ′′

i = wi(1− wi) ·
(
W ′′

i−1 + X ′′
i−1 + Y ′′

i−1 + Z ′′
i−1

)
Z ′′

i = w2
i c ·

(
W ′′

i−1t + X ′′
i−1t + Y ′′

i−1t + Z ′′
i−1

)
P ′′

i = W ′′
i + X ′′

i + Y ′′
i + Z ′′

i

which simplifies under Q′′
i := W ′′

i + X ′′
i + Y ′′

i to

Q′′
0 = 1

Z ′′
0 = 0

Q′′
i = (1− w2

i) ·
(
Q′′

i−1 + Z ′′
i−1

)
Z ′′

i = w2
i c ·

(
Q′′

i−1t + Z ′′
i−1

)
P ′′

i = Q′′
i + Z ′′

i

(‡)

so that Pr(Cn = c, Tn = t) = [cctt]P ′′
n and

Pr(Tn ≤ t | Cn = c) =
∑t

t′=0 Pr(Cn = c, Tn = t′)∑dn/2e
t′=0 Pr(Cn = c, Tn = t′)

=
∑t

t′=0 [cctt′]P ′′
n∑dn/2e

t′=0 [cctt′]P ′′
n

.

Derivations of recurrences customized for any others that are desired, e.g., Pr(Cn ≤ c | Tn = t),
Pr(Cn ≥ c | Rn = r, Sn = s), Pr(Cn ≥ c), or Pr(Tn ≤ t | An = a,Bn = b), proceed similarly.

Calculation of p-values

The easiest implementations use full multi-dimensional rectangular arrays of IEEE 754 double-precision
floating-point values. For example, consider (†). Suppose we store a polynomial in a, b, c as a cubical array
with increasing successive powers 0, 1, 2, . . . of a going front-to-back, of b going top-to-bottom, and of c
going left-to-right. We start with an array consisting of a single element +1.0, i.e., P ′

0.

For successive i ∈ 1..n, replace the array with the entrywise sum of four arrays (corresponding to the
four terms of the first factor of the right-hand side of P ′

i): (1) the current array with every entry multiplied
by (1 − wi)2 and padded by a 1-entry-thick slab of +0.0’s on the back, bottom, and right; (2) the current
array with every entry multiplied by (1 − wi)wi and padded by a 1-entry-thick slab of +0.0’s on the back,
top, and right; (3) the current array with every entry multiplied by wi(1−wi) and padded by a 1-entry-thick
slab of +0.0’s on the front, bottom, and right; and (4) the current array with every entry multiplied by w2

i

and padded by a 1-entry-thick slab of +0.0’s on the front, top, and left. The final array gives P ′
n and is

easily post-processed in a single last pass to obtain a full set of the desired p-values. Time used is Θ(n4)
and space used is Θ(n3) (with small hidden constants). Scoring of a particular gene pair reduces to a single
array lookup.

As another example, consider (‡). We might choose to store a polynomial in c and t as a rectangular
array with increasing successive powers 0, 1, 2, . . . of c going top-to-bottom and of t going left-to-right. We
start with two arrays, each consisting of a single element: Q with +1.0 and Z with +0.0.

For successive i ∈ 1..n, simultaneously update Q and Z as follows: replace Q with the entrywise sum of
the two current arrays after multiplying each element by 1 − w2

i and padding by a single row and column
of +0.0’s on the bottom and right, and replace Z by the following: take the entrywise sum of the current Q
after padding by a single row and column of +0.0’s on the top and left with the current Z after padding by a
single row and column of +0.0’s on the top and right, then multiply every entry by w2

i . Take the entrywise

— 3 of 4 —

sum of the final Q and Z arrays to obtain P ′′
n , which is easily post-processed in a single last pass to obtain a

full set of the desired p-values. Time used is Θ(n3) and space used is Θ(n2) (with small hidden constants).
Again, scoring of a particular gene pair reduces to a single array access.

Many refinements are possible, although not required for a problem as small as n = 214. For example,
by updating coefficients in a reverse lexicographic monomial order, one can work completely in-place and
thus limit storage usage to the size of the final answers plus a very small constant number of temporary
storage locations; no temporary arrays are needed.

Further, when full rectangular multi-dimensional arrays are used, many of the entries will be necessarily
zero and do not need to be stored. To illustrate, Ck actually takes on a more restricted range than 0..k;
in fact, Ck ∈ max(0, Ak + Bk − n)..min(Ak, Bk). 2 GiB of memory holds 268,435,456 IEEE 754 doubles.
As (n + 1)3 last stays within this at n = 644, this is the limit for in-memory computation of weighted
hypergeometric p-values with full rectangular arrays. If one stores only the more restricted range of Ck,
however, n = 1,170 is the in-memory computation limit (when rectangular arrays would be using more
than 11.9 GiB). Runs obey more complicated bounds that are not detailed here, but as only two variables
are needed for our weighted runs p-values, the order of growth of space requirements for computing them is
much less and perfect space-efficiency in computing them is less critical.

The simple access patterns demanded of the coefficients make streaming coefficients from disk storage
or communicating slivers of arrays across machines in a parallel-computing cluster relatively easy should
this be required. Also, with 64-bit computing and large amounts of silicon memory becoming commonplace,
2 GiB is not the barrier it once was and computing p-values for thousands for genomes is not expected to
pose undue difficulty.

A last computational point that must be addressed is numerical accuracy. Note that the probability of
observing a particular pair of gene profiles (an “elementary event”) is

n∏
i=1

(
wi if ai = 1

1− wi if ai = 0

) (
wi if bi = 1

1− wi if bi = 0

)
≥

n∏
i=1

min(wi, 1− wi)2,

which with the particular profiles used here is above 10−242. This is well above IEEE 754 double’s lower
limit of approximately 10−300. As all events are disjoint unions of these elementary events, no event has
a probability that is troublesome to represent. Further, as all quantities in our calculations are positive
and our chains of operations are relatively short (and involve no subtractions), we expect only the last few
bits of our p-values to be incorrect and to have near-full (e.g., 10+ decimal digits) accuracy. As n gets
larger or wi get closer to 0 or 1, the probability of observing particular profiles may become so small that
they underflow to zero in IEEE 754 double precision. One may then need to switch representations (e.g.,
separating exponents) or switch to software-based arbitrary-precision floating-point (e.g., as implemented in
packages such as GNU MP, Mathematica, and Maple).

Note that in our case there are 2214 · 2214 = 2428 elementary events. Hence, brute-force enumeration of
elementary events and adding up their individual probabilities is an infeasible approach to computation of
the p-values we require.

— 4 of 4 —

