
Supplementary Methods

Regulatory sequence analysis

Preparation of already known PWM set

As regulatory motif data, we prepared PWMs. The value fib of a PWM
represents frequency of nucleotide base b at the i-th position in a motif. The
frequencies of bases in each position are normalized so that

∑
b=a,t,g,c fib = 1.

To avoid errors in log calculations, we reassigned 0.001 to fib equal to 0.
we acquired a total of 495 PWMs, which consist of vertebrate 367 PWMs
annotated as “good” in TRANSFAC 10.1 [4], 123 PWMs from JASPAR core
[6], and 5 PWMs from original literature [3, 2]. We then removed extremely
simple or complex PWMs and obtained a set of total 449 PWMs whose
information contents range from 5 to 15. The information content R of a
PWM is defined as follows:

R = 2w −
w∑

i=1

Hi,

where w is the width of the motif, and Hi is the information entropy at the
i-th position defined by

Hi = −
∑

b=a,c,g,t

fib log2 fib.

Since this set includes highly redundant PWMs, they were subjected to clus-
tering to reduce the redundancy.

For clustering, the dissimilarity between two PWMs A and B was calcu-
lated based on the Kullback-Leibler divergence. At every alignment offset,
the PWMs were extended using a column representing the uniform base fre-
quency (fib = 0.25 for all b) so that all positions of two aligned motifs were
matched. For every pair of the extended PWMs, A′ and B′, whose length
are w′, the dissimilarity DA′B′ is calculated by:

DA′B′ =
w′∑
i=1

∑
b=a,t,g,c

(fA′

ib − fB′

ib ) log
fA′

ib

fB′
ib

.

We assumed the lowest score of DA′B′ as the dissimilarity between A and B,
DAB. Note that DAB = DBA holds.

Using the partition around medoids algorithm in the R package with the
dissimilarity criterion, the 449 PWMs are divided into 250 clusters. We used
250 medoids of the clusters as the already known PWM set in the following
analyses.
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Preparation of de novo identified PWM set

In addition to the already known PWM set prepared by the above procedure,
we prepared PWMs overrepresented in promoter sequence of genes with high
or low values in the expression value data. For the top 500 and the bot-
tom 500 genes for expression values in the training data, we obtained their
promoter sequences (the 500bp upstream and the 100bp downstream of the
TSS) and those of their mouse homologs. Then, we searched the two groups
of sequences for motifs overrepresented in either group using the ab initio
motif finder program, DME [5].

Given foreground (FG) and background (BG) sequence sets and the base
composition f of FG ∪ BG, DME iteratively identifies the top motif M ,
ranked according to the ratio LFG,P (M, f)/LBG,Q(M, f) of maximum likeli-
hood scores, where LS,Z(M, f) is the likelihood of M and base composition
f , given sequence set S with values for the missing data Z maximizing the
scoring function:

LF,Z(M, f) =
∏

si∈F

Pr(si|M)ziPr(si|f)(1−zi).

DME searches were performed against two reverse combinations of fore-
ground and background sequences with a variety of parameter settings. The
parameters specify number of motifs output (n), width size (w), granularity
(g), refinement (r), and average information (i), and were set as follows: (n,
w, g, r, i); (30, 8, 0, 0.125, 1.8); (30, 9, 0, 0.125, 1.675); (30, 10, 0.5, 0.125,
1.6); (30, 11, 1.0, 0.125, 1.575); (30, 1.0, 0.5, 0.25, 1.55). Then, for each
identified PWM, its quality was evaluated based on classification error rates
calculated by the MOTIFCLASS program in CREAD package (downloaded
from http://rulai.cshl.edu/cread/). The classification error rates were based
on the maximum scoring subsequence in a given promoter and threshold
set to minimize this error. In accordance with the classification error-rates,
PWMs were ranked and clustered to reduce redundancy. In the ranked motif
list, the first motif in the rank was assumed as the representative of the first
cluster. From the second motif, every motif was visited in the order of de-
creasing rank, and the dissimilarities from the first motif were calculated as
described above. If the dissimilarity is below a threshold (10 in our study),
the motif was assigned to the first cluster. After removing members of the
first cluster from the ranked list, the same procedure was repeated for the
remainder until all motifs formed clusters. We used the highest ranked PWM
in each cluster as a member of a de novo identified PWM set in the following
analyses.
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Visualization of PWMs

For graphical presentations of PWMs, we produced sequence logos using the
open source code of the Weblogo program (downloaded from http://weblogo.berkeley.edu/)
[1].

Bayesian network analysis

The likelihood (deduction of the marginal probability)

The marginal likelihood p(d) is given by

p(d) =
∫ ∞

τ=0

∫ ∞

µ=−∞
p(d|µ, τ)p(µ, τ)dµdτ

=
∫ ∞

τ=0

∫ ∞

µ=−∞

{
M∏

m=1

ϕ(x(m)|µ, τ)

}
ϕ(µ|µ0, λ0τ)g(τ |α0, β0)dµdτ.

If we define

x̄ =
1

M

M∑
m=1

x(m),

λ1 = λ0 + M,

µ1 =
λ0µ0 + Mx̄

λ1

,

α1 = α0 +
M

2
,

β1 = β0 +
1

2

M∑
m=1

(x(m) − x̄)2 +
Mλ0(x̄ − µ0)

2

2λ1

,

some simple algebra can show that

M∑
m=1

(x(m)−µ)2 +λ0(µ−µ0)
2 = λ1(µ−µ1)

2 +
M∑

m=1

(x(m)− x̄)2 +
Mλ0(x̄ − µ0)

2

λ1

,

which means that we can now rewrite the marginal probability as:

p(d) =
λ

1/2
0

(2π)M/2

βα0
0

Γ(α0)

∫∫
(2π)−1/2τ 1/2exp[−0.5λ1τ(µ−µ1)

2]τα1−1exp[−β1τ ] dµ dτ.

Note that quantity inside the integral is proportional to a Normal-Gamma
distribution with parameters {µ1, λ1, α1, β1}∫∫

(2π)−1/2(λ1τ)1/2exp[−0.5λ1τ(µ − µ1)
2]

βα1
1

Γ(α1)
τα1−1exp[−β1τ ] dµ dτ = 1.
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Using this, we can rewrite the marginal probability as:

p(d) =
λ

1/2
0

(2π)M/2
· βα0

0

Γ(α0)
· Γ(α1)

βα1
1 λ

1/2
1

=
1

(2π)M/2
· Γ(α1)

Γ(α0)
· βα0

0

βα1
1

·
(

λ0

λ1

)1/2

.

Search algorithm

It is computationally infeasible to search network structures exhaustively for
the one maximizing the score of p(N)p(D|N) except when the number of
nodes is small. In our analyses, to search combinations of hundreds of parent
node candidates, we took a greedy search strategy. The data D is composed
of M observations (corresponding to genes) for n parent candidate variables
(corresponding to sequence features) and one child variable. Some candidate
variables correspond to sequence features made from an identical PWM with
different threshold values. Because such variables show distributions simi-
lar to each other, we clustered them to one group before structure learning.
Starting from a structure without any edge between the child node and the
parent node candidates, we iteratively added an edge from a parent node
candidate. For each iterative cycle, we calculated the score of p(N)p(D|N)
for every case that the edge from the representative node of each cluster was
added. Next, we chose clusters whose score ranked among the top 20. After
all members belonging to the 20 cluster were scored similarly, the maximizer
of them was added to the structure. The cycle repeated until no more edge
increases the score. To further reduce computational time, we restricted
the search space at and after the second iteration to clusters whose centers
increase the score at the first iterative cycle. After the greedy search, the
combination of parent nodes was optimized. Within the cluster of each se-
lected parent node, the parent node was replaced with another member which
increases p(N)p(D|N), if such a node exists. This step was repeated for the
cluster of every parent node until a round of these steps did not change the
combination of parent nodes.

A pseudocode for this algorithm is as follows:

Problem: maximize the score of p(N)p(D|N)
Inputs: data D composed of M observation for n parent candidate variables
and one child variable, clusters of parent candidate variables
Outputs: a combination of parent nodes N

find parent nodes(data D, clusters of parent candidate variables)
{
do{
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for(each cluster){
calculate p(N)p(D|N) for the case that the representative node is add
if(the score is within top 20){

record the cluster as the top 20 clusters
}

}
for(each member of the top 20 clusters){

calculate p(N)p(D|N) for the case that the node is add
if(the score is the maximum){

record the node as the maximizer
}

}
add the maximizer to N

}until(no more node increases p(N)p(D|N))
return a combination of parent nodes N

}

Supplementary Discussions

Comparison to a previous method

Several studies have reported integrative analyses similar to our analysis. For
example, Rhodes et al. [7] analyzed cancer transcriptional programs based
on gene sets called “signatures”. First they obtained two types of gene sets;
gene sets that show differential expression between different types of cancers
as “expression signatures”, and genes that have a common cis-regulatory
motif as “regulatory signatures”. Significance of the overlap between these
two types of signatures then can be evaluated based on the hypergeometric
distribution. They reported significant pairs of expression and regulatory
signatures as functional transcriptional programs. To compare our method
to another method, we searched for cis-regulatory motif correlating with his-
tological grades according to their method. Because appropriate thresholds
are needed in their method, we prepared signatures using multiple threshold
parameters. To prepare expression signatures, we sorted genes based on dif-
ferential expression between G3 and G1 tumors, and obtained the 1, 3, 10,
and 30 % top-ranked genes. For regulatory signatures, we prepared gene sets
that posses each motif assuming multiple PWM thresholds. For each pair of
two types of signature, we calculated the number of genes in the expression
signature, e, the number of genes in the regulatory signature, r, the size of
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the overlap between two signatures, o, and the total number of genes, t. A
P-value is then calculated as follow:

P =
min(e,r)∑

i=o

(t−r)C(e−i) · rCi

tCe

.

Table 5 shows the 20 top-ranked sequences which show the lowest P-values.
Similarly to our method, the binding motifs of E2F, ELK1, NRF1, and NFY
show significant P-values, when some threshold values were applied (Note
that multiple testing corrections are furthermore necessary in this approach).
However, not all threshold values lead to significant results, suggesting op-
timization of the parameters is critical. On the other hand, our method
does not need such threshold optimization. Furthermore, while their method
analyzes motifs individually, our method can analyze multiple motifs simul-
taneously as a combination of motifs.

Prediction based on the MAP (maximum a

posteriori) value

The MAP (maximum a posteriori) value is defined as follows:

θ̂MAP = arg max
θ

(p(θ|D,N)).

To predict meta-expression values in the test data, we use the MAP value
of µk. When a combination of parent nodes N is specified, Data D can be
divided into q groups according to parent patterns. µk is a parameter speci-
fying the mean of the expression values whose parent pattern belongs to the
kth group. In our model, µ1k corresponds to the MAP value of µk. Using
the training data, we calculated µ1k based on the parent patterns of the 4
significant sequence features. We then predict meta-expression values of the
test data from their parent patterns and the MAP value of µk. Figures 1 and
2 demonstrate correlations between predicted observed and predicted values
for histological grades and prognosis. Significance tests for Pearson’s corre-
lation shows highly significant P values of < 2.2 × 10−16 and 6.439 × 10−15,
respectively. These result confirmed that the binding motifs of E2F, ELK1,
NRF1, and NFY are strongly associated with breast cancer malignancy.
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Supplementary Tables and
Figures

Table 1: Dependency of differential expression between G1 and G3 breast
tumors on sequence features. The training and test data were divided
into 16 groups based on patterns of 4 sequence features, V$ELK1 02(20)
V$E2F1 Q4 01(10), V$NRF1 Q6(10) and JSP$NF Y(10). For each group,
the count of genes, the mean and the standard deviation (SD) of the differ-
ential expression values between G1 and G3 breast tumors are displayed.

count mean SD count mean SD
0 0 0 0 6028 -0.125 0.924 2013 -0.13 0.927
0 0 0 1 735 -0.00952 1.06 229 0.075 1.14
0 0 1 0 717 0.043 1.01 256 0.0977 0.981
0 0 1 1 119 0.217 1.17 38 0.162 1.22
0 1 0 0 1781 0.0857 0.997 578 0.0283 0.973
0 1 0 1 299 0.292 1.09 109 0.149 1.02
0 1 1 0 426 0.207 0.973 118 0.264 1.04
0 1 1 1 64 0.587 1.18 37 0.222 0.884
1 0 0 0 597 0.0312 1.05 197 0.00691 1.02
1 0 0 1 175 0.19 1.16 65 0.359 1.33
1 0 1 0 196 0.32 1.09 60 0.119 1.12
1 0 1 1 70 0.448 1.06 28 0.413 0.888
1 1 0 0 343 0.233 1.12 112 0.389 1.07
1 1 0 1 85 0.507 1.1 34 0.233 1.12
1 1 1 0 137 0.346 1.13 53 0.62 0.985
1 1 1 1 34 0.629 1.24 15 0.897 1.21

In training data In test data V$E2F1_Q4_01
(10)

V$ELK1_02
(20)

V$NRF1_Q6
(10)

JSP$NF_Y
(10)

8



Table 2: Dependency of the correlation value with breast cancer prognosis
on sequence features. The training and test data were divided into 16 groups
based on patterns of 4 sequence features, V$ELK1 02(5) V$E2F1 Q4 01(10),
V$NRF1 Q6(15) and JSP$NF Y(10). For each group, the count of genes, the
mean and the standard deviation (SD) of the correlation values with breast
cancer prognosis are displayed.

count mean SD count mean SD
0 0 0 0 6854 -0.121 0.972 2246 -0.108 0.973
0 0 0 1 861 0.0754 1.03 303 0.0469 1
0 0 1 0 1475 0.0725 0.992 536 0.0927 1.02
0 0 1 1 293 0.306 1.03 90 0.267 1.08
0 1 0 0 895 0.176 0.994 284 0.194 0.959
0 1 0 1 151 0.246 1.04 63 0.168 1.02
0 1 1 0 383 0.299 1.02 102 0.183 1.03
0 1 1 1 70 0.357 0.925 21 0.193 1.23
1 0 0 0 300 0.122 0.997 101 0.169 1.05
1 0 0 1 111 0.227 1.09 31 0.642 1.01
1 0 1 0 177 0.344 0.942 58 0.202 0.963
1 0 1 1 54 0.665 1 30 0.0128 0.994
1 1 0 0 86 0.382 1.08 31 0.489 0.805
1 1 0 1 28 0.552 0.761 11 0.165 0.939
1 1 1 0 61 0.413 0.941 23 0.0902 0.97
1 1 1 1 16 0.256 0.819 3 -0.0887 0.394

In training data In test dataV$E2F1_Q4_01
(5)

V$ELK1_02
(10)

V$NRF1_Q6
(15)

JSP$NF_Y
(10)
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Table 3: Bootstrap analysis for motifs associated with histological grades.
IDs in each row represent motifs selected in each trial in the bootstrap sample.
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Table 4: Bootstrap analysis for motifs associated with prognosis. IDs in each
row represent motifs selected in each trial in the bootstrap sample.
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Table 5: Motif search based on signatures. Regulatory signatures were pre-
pared based on sequence features in our method. Expression signatures are
composed of the 1, 3, 10, and 30 % most upregulated in G3 tumor compared
to G1 tumors. For each overlap between two types of signatures, P-values
were calculated using the hypergeometric distribution.
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Table 6: Motif associated with histological grades identified based on only
half of the patient data.

Motif ID
a

Reproducibility
b

P value for

training data

P value for

test data

a

b

c d

e

e
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Figure 1: Prediction of differential expression values between G3 and G1
tumor. Differential expression values in the test data were predicted from
4 sequence features (V$ELK1 02(20) V$E2F1 Q4 01(10), V$NRF1 Q6(10),
and JSP$NF Y(10)) and the MAP value of µk learned from the training
data. Correlation between observed and predicted values scores a Spearman
correlation coefficient of 0.1396 and a P value of < 2.2 × 10−16.
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Figure 2: Prediction of prognosis correlation values. Prognosis corre-
lation values in the test data were predicted from 4 sequence features
(V$ELK1 02(5) V$E2F1 Q4 01(10), V$NRF1 Q6(15), and JSP$NF Y(10))
and the MAP value of µk learned from the training data. Correlation be-
tween observed and predicted values scores a Spearman correlation coefficient
of 0.1355 and a P value of < 2.2 × 10−16.
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