Additional File 1: GRAPH-DISTANCE DISTRIBUTION OF THE BOLTZMANN ENSEMBLE OF RNA SECONDARY STRUCTURES

April 27, 2014

1 Appendix A: Proof of the $E[d_G(v, w)] = \sum_d d \times \frac{Z^{v,w}[d]}{Z}$

Proof: $E[d_G(v, w)] = \sum_d d \times \frac{Z^{v, w}[d]}{Z}$

$$E[d_G(v,w)] = \sum_G d_G(v,w) \times Pr[G|\xi] = \sum_d \sum_{\substack{d \in G \text{ with } d_G(v,w)=d}} d \times \frac{e^{-f(G)/RT}}{Z}$$
$$= \sum_d d \times \frac{\sum_G \text{ with } d_G(v,w)=d}{Z} = \sum_d d \times \frac{Z^{v,w}[d]}{Z}$$

2 Appendix B: The conditional probability for *i* to be single-stranded can be determined from the partition function for RNA folding.

Theorem 2.1 The expected distance $E[d_{i,j}^G]$ can be calculated as:

$$E[d_{i,j}^G] = (a + E[d_{i+1,j}^G]) \cdot \frac{1 \cdot Q_{i+1,j}}{Q_{i,j}} + \sum_{i < k \le j} (b + E[d_{k+1,j}^G]) \cdot \frac{Q_{i,k}^b \cdot Q_{k+1,j}}{Q_{i,j}}$$
(1)

Let G be a structure. For simplicity of notation, we write $G = \bullet G'$ if the first position is unpaired, and $G = (\ldots)_j G'$ is the first base is paired to some position j, and G' is the substructure of G starting from position j + 1. Alternatively, we may use the notation $(i, j) \in G$ for the case where the position i and j are base paired in G.

The expected length $E[d_G(i, j)]$ can be calculated as: follows:

$$E[d_G(i,j)] = \sum_{G \text{ struct. of } \xi[i\dots j]} d_G(i,j) Pr[G|\xi[i\dots j]]$$

$$= \sum_{G=\bullet G'} (a + d_{G'}(i,j)) Pr[G|\xi[i\dots j]] + \sum_{i < k \le j} \sum_{G=(\dots)_k G'} (b + d_{G'}(i,j)) Pr[G|\xi[i\dots j]]$$

$$\stackrel{def.}{=} EL_{sg} + \sum_{i < k < j} EL_{bp(k)}$$

Now EL_{sg} can be simplified as follows:

$$EL_{sg} = \sum_{G=\bullet G'} (a + d_{G'}(i,j)) Pr[G|\xi[i\dots j]]$$

= $\left(\sum_{G=\bullet G'} a \cdot Pr[G|\xi[i\dots j]]\right) + \left(\sum_{G=\bullet G'} d_{G'}(i,j) \cdot Pr[G|\xi[i\dots j]]\right)$
= $a \cdot Pr[G=\bullet G'|\xi[i\dots j]] + \left(\sum_{G=\bullet G'} d_{G'}(i,j) \cdot Pr[G|\xi[i\dots j]]\right),$

where $Pr[G = \bullet G'|\xi[i \dots j]]$ can be calculated as the probability of the first position to be single-stranded in the sequence $\xi[i \dots j]$, i.e.,

$$Pr[G = \bullet G'|\xi[i \dots j]] = \frac{1 \cdot Q_{i+1,j}}{Q_{i,j}}$$

We are also able to push the second term since

$$\sum_{G=\bullet G'} d_{G'}(i,j) \cdot \Pr[G|\xi[i\dots j]] = \sum_{G'} d_{G'}(i,j) \cdot \Pr[\bullet G'|\xi[i\dots j]]$$

Now we know that for every G' we have that the Boltzmann weighted energy of G' is part of the partition function of $Q_{i+1,j}$. Thus we get

$$= \sum_{G'} d_{G'}(i,j) \cdot \frac{\exp(-E(\bullet G')/kT)}{Q_{i,j}}$$

= $\sum_{G'} d_{G'}(i,j) \cdot \frac{\exp(-E(G')/kT)}{Q_{i+1,j}} \frac{Q_{i+1,j}}{Q_{i,j}}$
= $\frac{Q_{i+1,j}}{Q_{i,j}} \sum_{G'} d_{G'}(i,j) \cdot \frac{\exp(-E(G')/kT)}{Q_{i+1,j}}$
= $\Pr[G = \bullet G'|\xi[i\dots j]] \sum_{G'} d_{G'}(i,j) \cdot \Pr[G'|\xi[i+1\dots j]]$
= $\Pr[G = \bullet G'|\xi[i\dots j]] \cdot E[d_G(i+1,j)]$

Overall we get

$$EL_{sg} = (a + E[d_G(i+1,j)]) \cdot Pr[G = \bullet G'|\xi[i \dots j]]$$

For the term $EL_{bp(k)}$, we have a similar reduction:

$$EL_{bp(k)} = \sum_{G = (...)_k G'} (b + d_{G'}(i, j)) Pr[G|\xi[i ... j]]$$

= $\left(\sum_{G = (...)_k G'} b \cdot Pr[G|\xi[i ... j]]\right) + \left(\sum_{G = (...)_k G'} d_{G'}(i, j) Pr[G|\xi[i ... j]]\right)$
= $(b \cdot Pr[G = (...)_k G'|\xi[i ... j]]) + \left(\sum_{G = (...)_k G'} d_{G'}(i, j) Pr[G|\xi[i ... j]]\right)$,

where $Pr[G = (...)_k G' | \xi[i \dots j]] = \frac{Q_{ik}^b \cdot Q_{k+1,j}}{Q_{i,j}}.$

$$\sum_{G=(...)_{k}G'} d_{G'}(i,j) Pr[G|\xi[i...j]] = \sum_{G'} \sum_{G''=(G''')_{k}} d_{G'}(i,j) Pr[G''G'|\xi[i...j]]$$

$$= \sum_{G'} \sum_{G''=(G''')_{k}} d_{G'}(i,j) \frac{\exp(E(G'')/kT) \exp(G'/kT)}{Q_{ij}}$$

$$= \sum_{G'} \sum_{G''=(G''')_{k}} d_{G'}(i,j) \frac{\exp(E(G'')/kT) \exp(G'/kT)}{Q_{ij}}$$

$$= \sum_{G'} d_{G'}(i,j) \frac{\left(\sum_{G''=(G''')_{k}} \exp(E(G'')/kT)\right) \exp(G'/kT)}{Q_{ij}}$$

Now we can again simply extend by $Q_{k+1,j}$, getting

$$= \sum_{G'} d_{G'}(i,j) \frac{Q_{i,k}^{b} \cdot Q_{k+1,j} \cdot \exp(G'/kT)}{Q_{ij} \cdot Q_{k+1,j}}$$

$$= \sum_{G'} d_{G'}(i,j) \frac{Q_{i,k}^{b} \cdot Q_{k+1,j}}{Q_{ij}} \cdot \frac{\exp(G'/kT)}{Q_{k+1,j}}$$

$$= Pr[G = (\dots)_{k}G'|\xi[i\dots j]] \sum_{G'} d_{G'}(i,j) Pr[G'|\xi[k+1\dots j]]$$

$$= Pr[G = (\dots)_{k}G'|\xi[i\dots j]] \cdot E[d_{G}(k+1,j)]$$

Overall we get

Now

$$EL_{bp(k)} = (b + E[d_G(k+1,j)]) \cdot Pr[G = (\ldots)_k G'|\xi[i\ldots j]]$$

and thus the second summand.

Appendix C: Notations

Notations	Definitions
x	RNA sequence
x[ij]	subsequence $x_i, x_{i+1}, \ldots, x_j$
G	secondary structure viewed as a outerplanar graph $G(V, E)$
V	vertex set of G
E	edge set of G
B	set of elements in E which are base pairs
B_k	set of base pairs enclosing k
$\{i, j\} \in B$	$\{i, j\}$ forms a base pair in G
$d_{v,w} = d$	distance between v and w in G is exactly d
$d_{v.w}^{I}$	inside distance between v and w in G
$d_{v,w}^O$	outside distance between v and w in G
n	length of the RNA sequence x
a	edge weight of a backbone edge in G
b	edge weight of a base pair edge in G
D	number of distances considered
C_b	2b/lcd(a,b) + 1

Table 1: Basic notations

Table 2: Notations of partition functions. The (time) complexities are estimated under the assumption that positions of the start/end nucleotides v and w are given. [†]The complexity of $Z_{p,q}^{v,w}[d_O, d_I]$ is estimated under the assumption that the paritions $Z_{i,j}^{B,v}[d_\ell, d_r]$ for all i, j, d_ℓ and d_r have been pre-computated. ^{††}The dominant complexity results from computating the partition function $Z_{i,j}^{B,v}[d_\ell, d_r]$.

Notation	Interval	Restrictions	Complexity	eqn.
Q	[1, n]	_	$O(n^4)$	[1]
$Z_{i,j}^{I}[d]$	[i, j]	$d_{i,j} = d$	$O(n^3D)$	1
$Z_{i,j}^{I'}[d]$	[i, j]	$d_{i+1,j-1} = d$	$O(n^3D)$	2
$Z_0^{v,w}[d]$	[1, n]	$d_{v,w} = d \&\& B_v \cap B_w = \emptyset$	$O(n^3D^2)$	4
$Z_{p,q}^{v,w}[d_O, d_I]$	[p,q]	$\{p,q\} \in B, d_{v,w}^{I} = d_{I}, d_{v,w}^{O} = d_{O}$	$O(n^3D^4)^\dagger$	8
$Z^{v,w}[d]$	[1,n]	$d_{v,w} = d$	$O(n^4 D^2 c_b^2)$	9
$Z_{i,j}^{B,v}[d_\ell, d_r]$	[i,j]	$\{i, j\} \in B, d_{v,i} = d_\ell, d_{v,j} = d_r$	$O(n^4 D^2 c_b^2)^{\dagger\dagger}$	10

References

 McCaskill, J.S.: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29(6-7), 1105–19 (1990)