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Proof: E[dG(v, w)] =
∑

d d×
Zv,w[d]
Z

E[dG(v, w)] =
∑
G

dG(v, w)× Pr[G|ξ] =
∑
d

∑
G with dG(v,w)=d

d× e−f(G)/RT

Z

=
∑
d

d×
∑

G with dG(v,w)=d e
−f(G)/RT

Z
=
∑
d

d× Zv,w[d]

Z

2 Appendix B: The conditional probability

for i to be single-stranded can be deter-

mined from the partition function for RNA

folding.

Theorem 2.1 The expected distance E[dGi,j] can be calculated as:

E[dGi,j] = (a+ E[dGi+1,j]) ·
1 ·Qi+1,j

Qi,j

+
∑
i<k≤j

(b+ E[dGk+1,j]) ·
Qb
i,k ·Qk+1,j

Qi,j

(1)
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Let G be a structure. For simplicity of notation, we write G = •G′ if the
first position is unpaired, and G = (. . .)jG

′ is the first base is paired to some
position j, and G′ is the substructure of G starting from position j + 1.
Alternatively, we may use the notation (i, j) ∈ G for the case where the
position i and j are base paired in G.

The expected length E[dG(i, j)] can be calculated as: follows:

E[dG(i, j)] =
∑

G struct. of ξ[i...j]

dG(i, j)Pr[G|ξ[i . . . j]]

=
∑
G=•G′

(a+ dG′(i, j))Pr[G|ξ[i . . . j]] +
∑
i<k≤j

∑
G=(...)kG′

(b+ dG′(i, j))Pr[G|ξ[i . . . j]]

def.
= ELsg +

∑
i<k<j

ELbp(k)

Now ELsg can be simplified as follows:

ELsg =
∑
G=•G′

(a+ dG′(i, j))Pr[G|ξ[i . . . j]]

=

( ∑
G=•G′

a · Pr[G|ξ[i . . . j]]

)
+

( ∑
G=•G′

dG′(i, j) · Pr[G|ξ[i . . . j]]

)

= a · Pr[G = •G′|ξ[i . . . j]] +

( ∑
G=•G′

dG′(i, j) · Pr[G|ξ[i . . . j]]

)
,

where Pr[G = •G′|ξ[i . . . j]] can be calculated as the probability of the first
position to be single-stranded in the sequence ξ[i . . . j], i.e.,

Pr[G = •G′|ξ[i . . . j]] =
1 ·Qi+1,j

Qi,j

We are also able to push the second term since∑
G=•G′

dG′(i, j) · Pr[G|ξ[i . . . j]] =
∑
G′

dG′(i, j) · Pr[•G′|ξ[i . . . j]]
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Now we know that for every G′ we have that the Boltzmann weighted energy
of G′ is part of the partition function of Qi+1,j. Thus we get

=
∑
G′

dG′(i, j) · exp(−E(•G′)/kT )

Qi,j

=
∑
G′

dG′(i, j) · exp(−E(G′)/kT )

Qi+1,j

Qi+1,j

Qi,j

=
Qi+1,j

Qi,j

∑
G′

dG′(i, j) · exp(−E(G′)/kT )

Qi+1,j

= Pr[G = •G′|ξ[i . . . j]]
∑
G′

dG′(i, j) · Pr[G′|ξ[i+ 1 . . . j]]

= Pr[G = •G′|ξ[i . . . j]] · E[dG(i+ 1, j)]

Overall we get

ELsg = (a+ E[dG(i+ 1, j)]) · Pr[G = •G′|ξ[i . . . j]]

For the term ELbp(k), we have a similar reduction:

ELbp(k) =
∑

G=(...)kG′

(b+ dG′(i, j))Pr[G|ξ[i . . . j]]

=

 ∑
G=(...)kG′

b · Pr[G|ξ[i . . . j]]

+

 ∑
G=(...)kG′

dG′(i, j)Pr[G|ξ[i . . . j]]


= (b · Pr[G = (. . .)kG

′|ξ[i . . . j]]) +

 ∑
G=(...)kG′

dG′(i, j)Pr[G|ξ[i . . . j]]

 ,

where Pr[G = (. . .)kG
′|ξ[i . . . j]] =

Qb
ik·Qk+1,j

Qi,j
.
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Now∑
G=(...)kG′

dG′(i, j)Pr[G|ξ[i . . . j]] =
∑
G′

∑
G′′=(G′′′)k

dG′(i, j)Pr[G′′G′|ξ[i . . . j]]

=
∑
G′

∑
G′′=(G′′′)k

dG′(i, j)
exp(E(G′′)/kT ) exp(G′/kT )

Qij

=
∑
G′

∑
G′′=(G′′′)k

dG′(i, j)
exp(E(G′′)/kT ) exp(G′/kT )

Qij

=
∑
G′

dG′(i, j)

(∑
G′′=(G′′′)k

exp(E(G′′)/kT )
)

exp(G′/kT )

Qij

=
∑
G′

dG′(i, j)
Qb
i,k exp(G′/kT )

Qij

Now we can again simply extend by Qk+1,j, getting

=
∑
G′

dG′(i, j)
Qb
i,k ·Qk+1,j · exp(G′/kT )

Qij ·Qk+1,j

=
∑
G′

dG′(i, j)
Qb
i,k ·Qk+1,j

Qij

· exp(G′/kT )

Qk+1,j

= Pr[G = (. . .)kG
′|ξ[i . . . j]]

∑
G′

dG′(i, j)Pr[G′|ξ[k + 1 . . . j]]

= Pr[G = (. . .)kG
′|ξ[i . . . j]] · E[dG(k + 1, j)]

Overall we get

ELbp(k) = (b+ E[dG(k + 1, j)]) · Pr[G = (. . .)kG
′|ξ[i . . . j]]

and thus the second summand.
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Appendix C: Notations

Table 1: Basic notations
Notations Definitions
x RNA sequence
x[i..j] subsequence xi, xi+1, . . . , xj
G secondary structure viewed as a outerplanar graph G(V,E)
V vertex set of G
E edge set of G
B set of elements in E which are base pairs
Bk set of base pairs enclosing k
{i, j} ∈ B {i, j} forms a base pair in G
dv,w = d distance between v and w in G is exactly d
dIv,w inside distance between v and w in G
dOv,w outside distance between v and w in G
n length of the RNA sequence x
a edge weight of a backbone edge in G
b edge weight of a base pair edge in G
D number of distances considered
cb 2b/lcd(a, b) + 1

5



Table 2: Notations of partition functions. The (time) complexities are
estimated under the assumption that positions of the start/end nucleotides
v and w are given. †The complexity of Zv,w

p,q [dO, dI ] is estimated under the

assumption that the paritions ZB,v
i,j [d`, dr] for all i, j, d` and dr have been

pre-computated. ††The dominant complexity results from computating the
partition function ZB,v

i,j [d`, dr].

Notation Interval Restrictions Complexity eqn.
Q [1, n] – O(n4) [1]
ZI
i,j[d] [i, j] di,j = d O(n3D) 1

ZI′
i,j[d] [i, j] di+1,j−1 = d O(n3D) 2

Zv,w
0 [d] [1, n] dv,w = d && Bv ∩Bw = ∅ O(n3D2) 4

Zv,w
p,q [dO, dI ] [p, q] {p, q} ∈ B, dIv,w = dI , d

O
v,w = dO O(n3D4)† 8

Zv,w[d] [1, n] dv,w = d O(n4D2c2b) 9

ZB,v
i,j [d`, dr] [i, j] {i, j} ∈ B, dv,i = d`, dv,j = dr O(n4D2c2b)

†† 10
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