Benchmarking of Protein Descriptor Sets inProteochemometric Modeling (Part 2):Modeling Performance of 13 Amino AcidDescriptor Sets

Additional File 1

Gerard J.P. van Westen^{1*}, Remco F. Swier¹, Isidro Cortes-Ciriano², Jörg K. Wegner³, John P. Overington⁴, Adriaan P. IJzerman¹, Herman W.T. van Vlijmen^{1,3}, and Andreas Bender^{1,5}

¹ Division of Medicinal Chemistry, Leiden / Amsterdam Center for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands

² Unité de Bioinformatique Structurale, Institut Pasteur and CNRS URA 2185, Structural Biology and Chemistry Department, 25-28, rue du Dr. Roux, 75 724 Paris, France
³ Tibotec BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium

⁴ ChEMBL Group, European Molecular Biology Laboratory European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, CB10 1SD, Hinxton, United Kingdom

⁵ Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom

Table of Contents:

Supporting Table S1. Model training values ACE inhibitor set.	3
Supporting Table S2. Receptors used in the GPCR set.	4
Supporting Table S3. Physicochemical classifiers used as compound descriptors	5
Supporting figure S1. PCA analysis of the 58 ACE inhibiting peptides (I)	6
Supporting figure S2. PCA analysis of the 58 ACE inhibiting peptides (II)	7
Supporting figure S3. PCA analysis of the 58 ACE inhibiting peptides (III)	8
Supporting figure S4. GPCRs in 70-30 validation	9
Supporting figure S5. GPCRs in LOSO valiation.	10
Supporting figure S6. PCA analysis of the GPCR target space (I)	11
Supporting figure S7. PCA analysis of the GPCR target space (II)	12
Supporting figure S8. PCA analysis of the GPCR target space (III).	13
Supporting figure S9. RT mutants in 70-30 validation	14
Supporting figure S10 RT mutants in LOSO validation	15
Supporting figure S11. PCA analysis of the NNRTI target space (I)	16
Supporting figure S12. PCA analysis of the NNRTI target space (II)	17
Supporting figure S13. PCA analysis of the NNRTI target space (III)	18
Supporting figure S14. PCA analysis of the PI target space (I)	19
Supporting figure S15. PCA analysis of the PI target space (II)	20
Supporting figure S16. PCA analysis of the PI target space (III).	21
Supporting Figure S17. The GPCR Set	22
Supporting figure S18. QSAR experiments	23
Supporting figure S19. ACE inhibitor 10 fold y-scrambling	24
Supporting figure S20. GPCR 10 fold y-scrambling.	25
Supporting figure S21. NNRTI 10-fold y-scrambling	26
Supporting figure S22. PI 10-fold y-scrambling	27

Descriptor Set	CV RMSE	Q ²	Published R ²	Published Q ²	Published RMSE
BLOSUM	0.52 (±0.06)	0.74 (±0.09)	n/a	n/a	n/a
FASGAI	0.47 (±0.04)	0.80 (±0.05)	0.76	0.73	0.50
MSWHIM	0.49 (±0.04)	0.77 (±0.06)	0.71	0.64	0.54
ProtFP (PCA3)	0.52 (±0.04)	0.76 (±0.05)	n/a	n/a	n/a
ProtFP (PCA5)	0.53 (±0.04)	0.73 (±0.07)	n/a	n/a	n/a
ProtFP (PCA8)	0.53 (±0.05)	0.73 (±0.09)	n/a	n/a	n/a
ProtFP (Feature)	0.69 (±0.06)	0.52 (±0.10)	n/a	n/a	n/a
ST-scales	0.52 (±0.05)	0.74 (±0.08)	0.86	0.77	0.40
T-scales	0.47 (±0.04)	0.78 (±0.06)	0.85	0.79	0.46
VHSE	0.48 (±0.04)	0.78 (±0.06)	0.77	0.75	0.48
Z-Scales (3)	0.47 (±0.04)	0.80 (±0.06)	0.77	0.72	n/a
Z-scales (5)	0.46 (±0.04)	0.80 (±0.05)	n/a	n/a	n/a
Z-scales (Binned)	0.46 (±0.04)	0.80 (±0.05)	n/a	n/a	n/a
Z-Scales (3) and ProtFP (Feature)	0.49 (±0.04)	0.78 (±0.07)	n/a	n/a	n/a
Z-Scales (3) and Z-Scales (Avg)	0.51 (±0.04)	0.76 (±0.06)	n/a	n/a	n/a
Z-Scales (Binned) and ProtFP (PCA3)	0.47 (±0.03)	0.79 (±0.05)	n/a	n/a	n/a

Supporting Table S1. Model training values ACE inhibitor set.

Experiments were performed 10 times and the stddev is given in parentheses. Also shown are the published values obtained from literature if available. CV RMSE is cross validated RMSE

Receptor	Family	Actives	Inactives
5HT1A	Serotonin Receptor	100	100
5HT1B		100	99
5HT1D		100	90
5HT2A		100	100
5HT2B		100	100
5HT2C		100	100
5HT4		100	75
5HT5A		35	78
5HT6		100	100
5HT7		100	100
ACM1		100	100
ACM2	Muscarinic Acetylcholine Receptor	100	100
ACM3		100	100
ACM4		79	100
ACM5		46	100
ADA1A		100	100
ADA1B		100	100
ADA1D	Alpha Adrenergic	100	100
ADA2A	Receptor	100	100
ADA2B		76	100
ADA2C		100	100
ADRB1		71	100
ADRB2	Beta Adrenergic Receptor	100	100
ADRB3		66	100
DRD1		100	100
DRD2		100	100
DRD3	Dopamine Receptor	100	100
DRD4		100	100
DRD5		53	78
HRH1		100	100
HRH3	Histamine Receptor	100	100
HRH4		100	100

Supporting Table S2. Receptors used in the GPCR set.

Decorintor	Binvalue					
Descriptor		-	+	++		
LogD	< - 0.50	>= -0.50 & < 3.40	>= 3.40 & =< 7.50	> 7.50		
Molecular Solubility	< -9	>= -9 & < -6.4	>= -6.4 & =< -4	> -4		
Number of Atoms	< 20	n/a	>= 20 & =< 40	> 40		
Number of Hydrogens	< 16	>= 16 & < 24	>= 24 & =< 40	>40		
Positive Atoms	< 1	n/a	>= 1 & =< 2	> 2		
Negative Atoms	< 1	n/a	>= 1 & =< 2	> 2		
Hydrogenbond Acceptors	< 3	>= 3 & < 5	>= 5 & =< 8	> 8		
Hydrogenbond Donors	< 2	2	>= 3 & =< 4	> 4		
Molecular Weight	< 300	>= 300 & < 500	>= 500 & =< 650	> 650		
Molecular Surface Area	< 200	>= 200 & < 350	>= 350 & =< 550	> 550		
Polar Surface Area	< 100	>= 100 & < 250	>= 250 & =< 500	> 500		
Molecular Volume	< 200	>= 200 & <400	>= 400 & =< 700	> 700		
Number of Bonds	< 20	>= 20 & < 30	>= 30 & =< 50	> 50		
Number of Ringbonds	< 7	>= 7 & < 18	>= 18 & =< 32	> 32		
Number of Aromatic Bonds	< 7	>= 7 & < 12	>= 12 & =< 18	> 18		
Number of Bridgebonds	< 1	n/a	>= 1 & =< 8	> 8		
Number of Rotatable Bonds	< 5	>= 5 & < 7	>= 7 & =< 10	> 10		
Number of Rings	< 4	4	>= 4 & =< 6	> 6		
Number of Chains	< 5	>= 5 & < 7	>= 7 & =< 11	> 11		
Number of Ring Assemblies	< 3	>= 3 & < 4	>= 4 & =< 6	> 6		
Number of Chain Assemblies	< 3	>= 3 & < 4	>= 4 & =< 7	> 7		
Number of Aromatic Rings	< 3	>= 3 & < 4	>= 4 & =< 6	> 6		

Supporting Table S3. Physicochemical classifiers used as compound descriptors.

The chemical descriptors were binned after their distribution in the data set was studied.

In four cases only three bins were used as the distribution would lead to sparsely filled bins, here - was omitted.

Supporting figure S1. PCA analysis of the 58 ACE inhibiting peptides (I). Data points are colored by activity (green pKi = 2 and red pKi = 6).

Supporting figure S2. PCA analysis of the 58 ACE inhibiting peptides (II). Data points are colored by activity (green pKi = 2 and red pKi = 6).

Supporting figure S3. PCA analysis of the 58 ACE inhibiting peptides (III). Data points are colored by activity (green pKi = 2 and red pKi = 6).

Supporting figure S4. GPCRs in 70-30 validation. Best performing (ACM4; A, B) and worst performing (histamine H3; C, D) GPCRs in the 70-30 validation.

Supporting figure S5. GPCRs in LOSO valiation. Best performing (ACM 4; A, B) and worst performing (histamine H4; C, D) GPCRs in the LOSO validation.

Supporting figure S6. PCA analysis of the GPCR target space (I). Data points are colored by receptor subfamily.

Supporting figure S7. PCA analysis of the GPCR target space (II). Data points are colored by receptor subfamily.

Supporting figure S8. PCA analysis of the GPCR target space (III). Data points are colored by receptor subfamily.

Supporting figure S9. RT mutants in 70-30 validation. Best performing (Sequence 12 and 9; A, B) and worst performing (Sequence 2 and 6; C, D) mutants in the 70-30 validation.

Supporting figure S10 RT mutants in LOSO validation. Best performing (sequence 3/12; A, B) and worst performing (sequence 6; C, D) mutants in the LOSO validation.

Supporting figure S11. PCA analysis of the NNRTI target space (I). Data points are colored by mutant.

Supporting figure S12. PCA analysis of the NNRTI target space (II). Data points are colored by mutant.

Supporting figure S13. PCA analysis of the NNRTI target space (III). Data points are colored by mutant.

Supporting figure S14. PCA analysis of the PI target space (I). Data points are colored by average resistance for a mutant.

Supporting figure S15. PCA analysis of the PI target space (II). Data points are colored by average resistance for a mutant.

Supporting figure S16. PCA analysis of the PI target space (III). Data points are colored by average resistance for a mutant.

Supporting Figure S17. The GPCR Set was constructed on the monoamine receptor family (highlighted).

Supporting figure S18. QSAR experiments. Performance of dedicated QSAR models trained on the different descriptor sets.

Supporting figure S19. ACE inhibitor 10 fold y-scrambling. Performance of the different descriptor sets on y-scrambled 70-30 ACE inhibitor set.

Supporting figure S20. GPCR 10 fold y-scrambling. Performance of the different descriptor sets on y-scrambled GPCR set.

Supporting figure S21. NNRTI 10-fold y-scrambling. Performance of the different descriptor sets on y-scrambled NNRTI set.

Supporting figure S22. PI 10-fold y-scrambling. Performance of the different descriptor sets on y-scrambled PI set.