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1 Introduction

Illumina SNP genotyping microarrays (SNP arrays) consist of a range of olignucleotide probes designed

to target and interrogate the allelic content at a large number (100,000-1,000,0000) of SNPs across the

genome. SNP genotyping data consists of a pair of probe measurements (X,Y ) whose intensity are

proportional to the number of A or B alleles at that SNP. At each probe location from which it is

necessary to derive the underlying genotype g = (z, x) where z ∈ {0, . . . , x} is the number of B alleles

and x is the total copy number, e.g. (1, 2) is equivalent to an AB genotype. For humans, x is typically

assumed to be equal to two as since the human genome is diploid, therefore g ∈ {AA,AB,BB}.

The statistical problem is to make a prediction of g given (X,Y ) and many such methods have been

developed to achieve this based on clustering using mixture models, regression methods and neural

networks. Typically, most genotype calling methods have very high accuracy (> 99%) due to the excellent

signal-to-noise ratio of the SNP arrays.

In the presence of copy number variation, x can no longer be assumed to be equal to two, consequently

the number of possible genotypes increases beyond the three diploid genotypes, e.g. g = (1, 4) = AAAB.

Furthermore, the high density of SNP arrays means, copy number alterations tend to be span multiple

consecutive probes introducing potential correlation between neighbouring probe measurements.

It is often easier when considering copy number variation to transform SNP data into a different repre-

sentation. These probe measurements called the Log R Ratio and the B Allele Frequency respectively

and are defined (approximately) as follows:

R = X + Y, (1)

r = log(R/Rref ), (2)

b =
Y

X + Y
+ bref , (3)

where rref and bref are constants that adjust for probe-specific biases.

The Log R Ratio (r) measurement given by a particular probe is directly related to the number of copies

of DNA captured by the probe (whether they harbour the A or B allele). The B allele frequency (b) is

the relative ratio of the number of copies of the DNA capture target DNA sequences containing the B

allele to the total DNA copy number.

We use a linear two-component mixture model for the observed Log R Ratio r given by the following
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mixture:

ri = π0rxi,n + (1− π0)rxi,t (4)

where π0 is the proportion of normal cells in the sample, (xi,n, xi,t) denote the copy numbers for the ith

probe of the normal and tumour DNA components and rx corresponds to the expected Log R Ratio for

copy number x. Similarly, for the B allele frequency,

bi =
π0zi,n + (1− π0)zi,t
π0xi,n + (1− π0)xi,t

(5)

where (zi,n, zi,t) denote the number of B alleles in the normal and tumour genotypes.

If the tumour contains J tumour cell types, we can model the observed Log R Ratio and the B allele

frequency as a weighted mixture of the J cell types,

ri =
J∑
j=1

wjrxi,j , (6)

bi =

∑J
j=1 wjzi,j∑J
j=1 wjxi,j

, (7)

where wj is the proportion of the tumour containing the j-th tumour cell type and (zi,j , xi,j) denotes

the number of B alleles and the copy number at the i-th probe for the j-th cell type.

It is possible to proceed by performing inference to determine the proportion of each tumour cell type in

the sample and the genotypes for each cell type. In general the full inference problem is arguably over-

ambitious as it is typical to have access to only first observation sequence consisting on N measurements

and there are 2JN+J unknowns to be inferred where the number of cell types J is itself an unknown. We

can tackle a more tractable problem by making a simplifying assumption. At each locus, we will assume

that the tumour cells either possess one (unknown) tumour genotype or retain the normal genotype,

zi,j ∈ {zi,n, zi,t} and xi,j ∈ {xi,n, xi,t}. This leads to a two-component mixture model involving only

4N +N unknown parameters,

ri = πirxi,n
+ (1− πi)rxi,t

, (8)

bi =
πizi,n + (1− πi)zi,t
πixi,n + (1− πi)xi,t

, (9)

where πi =
∑
j∈Ni

wj and Ni = {j : zi,j = zi,n, xi,j = xi,n} is the set of tumour cell types with the

normal genotype at the i-th probe. This simplification allows us to avoid the difficult problem of inferring

the number of tumour subtypes although we are restricted to scenarios where at any SNP there can only
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be one dominant tumour genotype.

We can combine the stromal contamination and the simplified intra-tumour heterogeneity models to

obtain the following relationship,

ri = [π0 + (1− π0)πi]rxi,n
+ [(1− π0)(1− πi)]rxi,t

, (10)

bi =
[π0 + (1− π0)πi]zi,n + [(1− π0)(1− πi)]zi,t
[π0 + (1− π0)πi]xi,n + [(1− π0)(1− πi)]xi,t

(11)

where πi is the proportion of tumour cells retaining the normal genotype at the i-th probe location.

2 Statistical model

2.1 Observation model

Let x = {xi}ni=1 where xi denotes the tumour alteration at the i-th probe location and (xi,n, xi,t)

corresponds to the normal and tumour copy numbers. Furthermore, let z = {zi}ni=1 where zi is an

indicator for the normal-tumour genotype combination at the i-th probe where (zi,n, zi,t) denotes the

number of B alleles in the normal and tumour genotype respectively. The combination of (zi,n, xi,n)

and (zi,t, xi,t) fully define the normal and tumour genotypes. The tumour state and the allowable

combinations of normal-tumour genotypes for each tumour state are shown in Table 1. Furthermore,

each genotype is associated with one of three genotype classes: HomAA, HetAB and HomBB. We shall

model the noise associated with these three classes of genotype separately.

Furthermore, let π0 denote the normal DNA fraction of the tumour sample due to stromal contamination

and π = {πi}ni=1 denote the proportion of tumour cells having the normal genotype at each probe. The

data y = {yi}ni=1 consists of a set of two-dimensional vectors yi = [ri, bi]′ whose elements correspond to

the Log R Ratio and B allele frequency respectively.

Given (x, z, π, π0) the data is assumed to be distributed according to a K-component mixture of Student

t-distributions,

yi|xi, zi, ki,m, δ,Σ ∼

 St(yi;m(xi, zi, πi) + δliki
,Σli

ki
), ki > 0,

St(yi; 0,Ση), ki = 0.
(12)

where ki indicates the mixture component assignment of the i-th data point, St(y; δlk,Σ
l
k, ν) is the
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probability density function of the Student t-distribution with mean δlk, covariance matrix Σl
k and ν

degrees of freedom associated with the k-th mixture component and the l-th genotype class. Note

that the genotype class is uniquely defined given (zi, xi) and we introduce the label li for notational

convenience. An outlier class is used (ki = 0) which assumes the data yi is distributed according to a

Student t-distribution with a large variance Ση.

Given the tumour alteration state xi, the conditional distribution zi|xi is given by a Multinomial distri-

bution,

zi|xi = j, q ∼ Mn(qj), (13)

where qj are a vector of genotype probabilities associated with the j-th tumour state. We set default

values for the elements of qj as 1/3 for normal-tumour genotypes involving only homozygotes (HomA and

HomB) and 1/6 for normal-tumour genotypes involving heterozygotes (HetAB). When performing paired

normal-tumour analysis, we use the normal genotype probabilities instead, splitting the probability of

heterozygote normal genotypes between tumour genotypes having a normal AB genotype.

Similarly, given the mixture weights wl of the l-th genotype class, the mixture component assignments

are considered to be drawn from a Multinomial distribution,

ki|wl ∼ Mn(wl). (14)

The elements of the mean vectors m(xi, zi, ui) = [mr(xi, πi),mb(zi, xi, πi)]′ are given, based on Equation

8 and 9, by the following:

mr(xi, πi) = [πi(1− π0) + π0]rxi,n
+ (1− πi)(1− π0)rxi,t

+ β0 + β1gi, (15)

where gi is the local GC content at the ith probe location. Similarly,

mb(zi, xi, πi) =
[πi(1− π0) + π0]zi,n + (1− πi)(1− π0)zi,t
[πi(1− π0) + π0]xi,n + (1− πi)(1− π0)xi,t

. (16)

For copy number (CN) probes targeting monomorphic loci, we use a alternative likelihood based on the
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Log R Ratio only:

yi|xi, zi, ki,m, δ,Σ ∼

 St(ri;mr(xi, πi), σ2
cnv), ki > 0,

St(ri; 0,Ση), ki = 0.
(17)

where σ2
cnv is the variance associated with CN probes.

2.2 Prior distributions

We use standard Dirichlet priors on the mixture weights of the form:

wl ∼ Dir(αw), (18)

where we typically use set all the elements of the hyperparameter vector αw to 1 correspondingly to a

uniform prior.

The prior distributions on the mixture centres and covariance matrices are given by standard conjugate

Normal-Inverse Wishart distributions,

δlk|τ,Σl
k ∼ N(δlk|0, τΣl

k), (19)

Σl
k|γ,Σ0 ∼ IW(Σl

k|γ,Σ0), (20)

where τ is a concentration parameter and IW(·|γ,Λ) denotes the Inverse-Wishart distribution with

parameter γ and covariance matrix ∆.

A normal prior is assumed for the local GC content regression parameters:

β|λβ ∼ N(β|0, λβI). (21)

A beta prior is assumed for the stromal contamination content,

π0|απ0 , βπ0 ∼ Be(π0|απ0 , βπ0), (22)

whilst the intra-tumour heterogeneity levels are assumed to be independent at each probe location,

πi|απ, βπ ∼ Be(πi|απ, βπ), i = 1, . . . , n. (23)
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Although it is a trivial extension to include inference on this parameter For the purposes of this paper

we shall assume that r to be known. This often true in practice since it is possible to perform control

experiments involving certain DNA cell lines that contain variable, but known numbers of X chromo-

somes. Data obtained from these samples can be used to estimate the parameters accurately and reduce

the degrees of freedom required for the tumour analysis model.

The tumour states are assumed to form an inhomogeneous Markov chain with transition matrix,

p(xi = j|xi−1) =

 1− ρ, j = k,

ρ, j 6= k,
(24)

where

ρ =
1
2

[
1− exp

{
1

2L
(si − si−1)

}]
,

and si represents the physical position of the i-th probe and L is a characteristic length parameter.

3 Posterior Inference

Conditional on a value for the stromal contamination π0, we compute maximum a posteriori (MAP)

estimates for the model parameters θ = {η,w, δ,Σ,β} using a expectation-conditional maximisation

(ECM) algorithm. We apply the ECM algorithm for a discrete set of values of π0 between 0 and 1 and

find the combination (π0, θ) that has maximum likelihood.

As the mixture model involves Student t-distributions, we utilise the representation of the Student t-

distribution as a scale mixtures of Normal distributions, treating the scaling variables as latent variables

in the ECM algorithm,

St(y;m,Σ, ν) =
∫ ∞

0

N(y;m, uΣ)IG(u; ν/2, ν/2)du (25)

where St(y;m,Σ, ν) is the probability density function of the Student t-distribution with mean m,

covariance Σ and ν degrees of freedom, N(y;m,Σ) is the probability density function of the Normal

distribution with mean m and covariance Σ and IG(·) is the probability density function of the inverse-

Gamma distribution with parameters (ν/2, ν/2).

The ECM algorithm obtains updated parameter estimates θ′ by maximising the expected complete data
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log-likelihood conditonal on the current estimate θ̂:

θ′ = arg max
θ

Ex,z,k,u,π[log p(y,x, z,k,u,π, θ)|p(x, z,k,u,π|y, θ̂)], (26)

which, under certain regularity conditions, each iteration is guaranteed to increase the likelihood (or

posterior probability in this instance).

3.1 Conditonal distributions

In our model, the complete data-likelihood can be decomposed into the following form:

p(y,x, z,k,u,π, θ) ∝ p(y|x, z,k,u,π, θ)p(k|z,x)p(z|x)p(x)p(u)p(θ), (27)

= p(θ)p(x)
n∏
i=1

p(yi|xi, zi, ki, ui, πi, θ)p(πi)p(ui)p(ki|zi, xi)p(zi|xi), (28)

= p(θ)p(x)
n∏
i=1

qxi
zi
wliki

St(yi;m(xi, zi, πi) + δliki
,Σli

ki
, ν)p(πi). (29)

The conditional distribution of the latent variables (u,π,k, z,x) on the current parameter estimates θ̂

can be written as:

p(πi, ui, ki, zi|xi,y, θ̂) = p(ui|πi, ki, zi, xi,y, θ̂)p(πi|ki, zi, xi,y, θ̂)

× p(ki|zi, xi,y, θ̂)p(zi|xi,y, θ̂)p(xi|y, θ̂). (30)

The marginal distribution of the tumour states p(x|y, θ̂) is obtained by integrating over the other latent

variables:

p(x|y, θ̂) =
∑
z,k

∫
u

∫
π

p(x, z,k,u,π|y, θ̂)dπdu, (31)

∝ p(x)
n∏
i=1

h(yi;xi, θ̂), (32)

where

h(yi;xi, θ) =
∑
zi

∑
ki

q̂xi
zi
ŵliki

F (yi;m(xi, zi) + δ̂liki
, Σ̂li

ki
, ν)p(πi), (33)

F (yi;m(xi, zi) + δ̂liki
, Σ̂li

ki
, ν) =

∫ 1

0

St(yi;m(xi, zi, πi) + δ̂liki
, Σ̂li

ki
, ν)dui (34)
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Since x is a Markov chain, the marginal probabilities p(xi|y, θ̂) can be obtained via the forward-backward

algorithm.

Conditional on (xi,y, θ̂) the distribution of the remaining latent variables are given by,

p(zi|xi,y, θ̂) =

∑
ki
q̂xi
zi
ŵlki

F (yi;m(zi, xi) + δ̂lk,Σ
l
k, ν)∑

ki

∑
zi
q̂xi
zi ŵ

l
ki
F (yi;m(zi, xi) + δ̂lk, Σ̂

l
k, ν)

, (35)

p(ki|zi, xi,y, θ̂) =
ŵlkF (yi;m(zi, xi) + δ̂lk, Σ̂

l
k, ν)∑

ki
ŵlkF (yi;m(zi, xi) + δ̂lk, Σ̂

l
k, ν)

, (36)

p(πi|ki, zi, xi,y, θ̂) =
St(yi;m(zi, xi, πi) + δ̂lk, Σ̂

l
k, ν)

F (yi;m(zi, xi) + δ̂lk, Σ̂
l
k, ν)

, (37)

p(ui|πi, ki, zi, xi,y, θ̂) =
ν + 2

ν + (yi −m(zi, xi, πi)− δ̂liki
)′(Σ̂li

ki
)−1(yi −m(zi, xi, πi)− δ̂liki

)
. (38)

3.2 ECM Updates

In order to simplify notation, we define ui =
∫∞
0
uip(ui|πi, ki, zi, xi,yi, θ̂)dui, this is the expected value

of the scaling variable on the covariance matrix. The integral can be solved analytically.

The ECM update for the outlier rate and mixture weights are given by:

ν =
∑3
l=1W

l
0 + αν − 1∑3

l=1

∑K
k=0

[
W l
k + αν + βν − 2

] , (39)

wlj =
W l
j + αw − 1∑K

k=1

[
W l
k + αw − 1

] , (40)

where S(l) are the set of genotypes in the l-th genotype class and

W l
j =

n∑
i=1

∑
xi

∑
zi∈S(l)

∫ 1

0

uip(πi, ki = j, zi, xi|y, θ̂)dπi. (41)

The ECM update for the mixture centres and covariances are given by:

δlj =
Dl
j

W l
j + τ

, (42)

Σl
j =

Λlj + τ [δlj ][δ
l
j ]
′ + γΣ0

W l
j + γ − 2

, (43)
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where

Dl
j =

n∑
i=1

∑
xi

∑
zi∈S(l)

∫ 1

0

ui[yi −m(zi, xi, πi)]p(πi, ki = j, zi, xi|y, θ̂)dπi, (44)

Λlj =
n∑
i=1

∑
xi

∑
zi∈S(l)

∫ 1

0

ui[yi −m(zi, xi, πi)][yi −m(zi, xi, πi)]T p(πi, ki = j, zi, xi|y, θ̂)dπi, (45)

The ECM updates for β are obtained by solving the following linear equations:

n∑
i=1

∑
xi

∑
zi

∑
ki

∫ 1

0

uiψ(πi, ki, zi, xi)p(πi, ui, ki, zi, xi|y, θ̂)dπi = λββ0, (46)

n∑
i=1

∑
xi

∑
zi

∑
ki

∫ 1

0

giuiψ(πi, ki, zi, xi)p(πi, ui, ki, zi, xi|y, θ̂)dπi = λββ1, (47)

where

ψ(πi, ki, zi, xi) = 2(Σ−1
11 )liki

[ri − r(πi, xi)− β0 − β1gi]− [(Σ−1
12 )liki

+ (Σ−1
21 )liki

][bi − b(πi, zi, xi)] (48)

Note that, in our implementation, the integrals over the intra-tumour heterogeneity coefficients πi are

calculated numerically using quadrature on a grid of 10 points.

4 Normalisation of paired normal-tumour data

One of the major challenges in removing array-specific noise from tumour data is that the noise is

confounded by the presence of tumour-specific genomic aberrations. However, when data for paired

normal and tumour samples are acquired on the same SNP array (such as the multi-sample format

Illumina Duo or Quad arrays), we can treat the normal sample as a “noise” template and use it to

remove array-specific noise from the tumour sample.

Let (xi, yi) represent the Log R Ratio of the i-th probe for the normal (x) and tumour (y) sample in a

window of n probes in the neighbourhood of the j-th probe. We represent the relationship between the

Log R Ratios of the normal and tumour samples in the window using the following linear model:

yi = Xiβj + εi, i = 1, ..., n, (49)

where Xi = [1 xi] is the i-th row of the n × 2 design matrix, βj is a 2 × 1 column vector of probe-
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specific regression coefficients and εi is independent, identically distributed noise which follows a Student

t-distribution with ν degrees of freedom and variance σ2.

We can derive a maximum likelihood estimator for the regression coefficients using an expectation-

maximisation algorithm which iterates between the following two operations:

βj = (XTWX)−1XTWy, (50)

σ2 =
1
n

(y −Xβj)TW (y −Xβj). (51)

The diagonal elements of the n× n weight matrix W are given by,

E(1/Vi|yi,βj , σ2, ν) =
1

νσ2 + (yi −Xiβj)2
, i = 1, . . . , n. (52)

The corrected Log R Ratio value for the j-th probe of the tumour is given by:

ỹj = yj − βj,1xj . (53)

It is necessary to replace extreme values of the Log R Ratio x for the normal samples with neighbourhood

averages in order to avoid artefacts in the corrected Log R Ratios for the tumours ỹ. Furthermore, instead

of performing the regression for every probe and using overlapping windows, we can apply the analysis

using non-overlapping windows and use the regression coefficients of each window to obtain corrected

Log R Ratios for every probe in the window. This can give considerable computational speed-up with

little difference in output quality.

5 Generating pseudo-paired normal-tumour datasets from non-

matching normal and tumour samples

Matched normal DNA samples for cancer cell lines are often unavailable and limits our ability to generate

normal-cancer cell line mixtures in order to test methods, such as OncoSNP. Ideally, we would like to

use readily obtainable unmatched normal DNA but the lack of “relatedness” will give rise to many

inconsistencies between the genotypes of the normal and cancer cell line which will prove problematic.

In the following we propose a two-stage filtering method to identify and select those SNPs where such

13



inconsistencies arise so that they maybe remove from the data acquired from mixtures of non-matched

normal-cancer cell lines. The result is pseudo-matched mixed normal-cancer cell line datasets that can

be used for testing algorithmic performance. We begin by assuming that we have genotypes available for

the non-matching normal DNA sample and pure cancer cell lines. For the cancer cell line, an accurate

genotype classification is not required, we only need to know whether the SNP is homozygous for allele

A or B or heterozygous and contains at least one contribution from each allele.

Filter Stage I: Finding Genotype mismatch. As the normal and cancer cell line are not matched,

there will be many thousands of SNPs where the genotypes are incompatible. For example, the genotype

in the cancer cell line might be homozygous A but the non-matching normal sample could have a BB

genotype. This is not possible without a somatic mutation involving a nucleotide substitution and,

whilst such mutations can occur in cancer genomes, the probability that a mutation occurs and is also

coincident with a SNP targetted by the SNP array is extremely small. Table 2 shows all the possible

matching and non-matching normal-cancer genotype combinations. The first filtering stage identifies all

SNPs with incompatible normal-cancer genotypes and discounts those SNP from consideration in the

mixed normal-cancer cell line samples.

Normal
AA AB BB

C
an

ce
r Hom. A X X Ö

Het. Ö X Ö

Hom. B Ö X X

Table 2: Matching (X) and non-matching (Ö) normal-cancer genotype combinations.

Filter Stage II: Identifying mismatched autozygosity patterns. Genome-wide differences in the

autozygosity patterns between the non-matching normal and cancer cell line can also lead to artefacts in

the mixed samples. This is because runs of homozygous genotypes in the cancer cell line which are due

to autozygosity are actually loss-of-heterozygosity (LOH) events relative to the non-matching normal

sample which may possess heterozygous genotypes in these regions. The differences in autozygosity

patterns therefore lead to an inflated number of pseudo-somatic LOH events. In order to reduce the

number of these false LOH events, we need to identify autozygosity

We assume that, at each SNP, the (unobserved) state (xi) of the i-th SNP can be classified as either

a normal, autozygosity or LOH region. The states are assumed to show a dependence structure which

we model using a three-state Markov model with transition matrix π and state-conditional emission

probabilities for the observations are given by φ.

We use an expectation-maximisation algorithm to learn the HMM parameters. We initialise the transition
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State, x Description φ(AA|x) φ(AB|x) φ(BB|x) φ(NC|x)
1 Normal (1− ν)/3 (1− ν)/3 (1− ν)/3 ν
2 Autozygosity (1− ν)/2 0 (1− ν)/2 ν
3 LOH (1− ν)/2 0 (1− ν)/2 ν

Table 3: Initial values for the state-conditional emission probabilities.

matrix π to the following,

π =


1− ρ0 ρ0/2 ρ0/2

ρa/2 1− ρa ρa/2

ρl/2 ρl/2 1− ρl

 (54)

where (ρ0 = 0.001, ρa = 0.01, ρl = 0.001) are the transition probabilities out of the normal, autozygosity

and LOH states respectively. The state-conditional emission probabilities are initialised to the values

given in Table 3 with ν = 0.01.

Figure 1 shows the effects of each filtering stage. The use of the genotype mismatch filter removes SNP

which exhibit hard genotype inconsistencies between the cancer cell line and the non-matching normal

sample. The autozygosity filter then removes the SNPs in autozygosity regions in the cancer cell lines.

The result is a normal-cancer cell line mixture series that mimics a real mixture series using matched

cell lines.
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