
Methods

Julien Dorier∗1 , Isaac Crespo1 , Anne Niknejad1 , Robin Liechti1 , Martin Ebeling2 and Ioannis
Xenarios∗1

1Vital-IT, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
2Pharmaceutical Sciences / Translational Technologies and Bionformatics, Roche Innovation Center Basel, 124 Grenzacherstrasse,

4070 Basel, Switzerland

Email: Julien Dorier ∗- julien.dorier@isb-sib.ch; Isaac Crespo - isaac.crespo@isb-sib.ch; Anne Niknejad - Anne.Niknejad@isb-sib.ch;

Robin Liechti - Robin.Liechti@isb-sib.ch; Martin Ebeling - martin.ebeling@roche.com; Ioannis Xenarios ∗- ioannis.xenarios@isb-sib.ch;

∗Corresponding author

Description of the network optimization method
Evaluation of attractor reachability graphs
To evaluate the attractor reachability graph of a network, we use two methods.

• boolSim, a software developed by Garg and coauthors [1], which uses an implicit method based on
reduced ordered binary decision diagrams to evaluate the attractors’ reachability graph of a network.
This method is exact and exhaustively finds all attractors but quickly becomes too computationally
expensive for large networks. In this work, it is used only to compare the resulting model networks to
the original gold standard network (score sall).

• The second method is a simple algorithm based on a stochastic exploration of the state transition
graph. It has the advantage of being faster and scaling better than boolSim with system size, at the
cost of completeness since there is no guarantee to find all attractors.

The stochastic method is based on the following algorithm used to find the attractors of a network with
perturbation P , starting from a specified set of initial states. In addition to the network, the perturbation
and the set of initial states, this algorithm takes as input a number of paths Npaths, a maximal number of
iterations Nmax and a number of iterations Nstored used to estimate the approximate state transition graph
G̃. We describe the algorithm for asynchronous updates, but it can be trivially generalized to synchronous
updates:

1. Randomly choose one network state xinit from the set of initial states. Set x = xinit and clear the
approximate state transition graph G̃.

2. Perform (Nmax −Nstored) iterations of a random walk to reach a state closer to an attractor. At each
iteration of the random walk, evaluate all successors {x′0, x′1, · · · } of state x using asynchronous updates
and the constraints given by the perturbation P (nodes states fixed to 0 or 1). If the set of successor
states is empty, then x is a steady state: add an edge x→ x to the approximate state transition graph
G̃ and stop the exploration of this path and go to step (4). Otherwise, randomly choose the next state
x ∈ {x′0, x′1, · · · } (with uniform probability) and continue the random walk.

3. Perform a depth first search of the state transition graph, starting from the last state obtained during
the random walk (denoted xroot). At each iteration, store the current state x and all transitions to
successor states {x → x′0, x → x′1, · · · } as edges in the approximate state transition graph G̃. If the
set of successor states is empty, then x is a steady state: add an edge x→ x to the approximate state
transition graph G̃ and stop the exploration of this path and go to step (4). Stop the depth first search

1

and go to (4) whenever all states downstream of xroot were discovered or if the number of iterations
reaches Nstored.

4. The resulting graph G̃ approximates the exact state transition graph in the limit of long term evolution
of the network. Attractors of the network are obtained as the set of terminal strongly connected
components [2] of G̃ that contain at least one feedback loop. This constraint on the presence of
feedback loops is used to distinguish between a strongly connected component with a single node
without feedback loops, which corresponds to an unfinished path (not necessarily an attractor), and a
single node with feedback loop which corresponds to a steady state. If an attractor was found, keep the
information on the initial state xinit which is necessary to recover the reachability from initial states
to attractors.

5. Store attractors found and the corresponding initial state xinit. Repeat this procedure Npaths times
from step (1). Output all attractors found, together with information on reachability from inital states
to attractors.

The attractor reachability graph of the network can be easily found by applying this algorithm to all transi-
tions from perturbation Pn to perturbation Pm, using attractors found with perturbation Pn as initial state,
and evaluating attractors and reachability from initial states for the network with perturbation Pm. If a
perturbation Pn does not have any incoming transition from other perturbations, the initial states are taken
as the set of all network states compatible with perturbation Pn and with the constraint that network nodes
without regulators are fixed to state 0.

The advantage of this method is that it will output only exact attractors of the network. The disadvantage
is that not all attractors will necessarily be found. As a consequence, when fT (see below and in main text)
is evaluated using the approximate attractor reachability graph obtained with this method, it will be larger
than or equal to the exact fT .

In this work, we used Npaths = 100, Nmax = 10Nnodes and Nstored = Nnodes with Nnodes the number of nodes
in the network.

Fitness function
For each network, we define a multi-dimensional fitness function

F = (fT ,−Ness.nodes, Nnodes,−Nedges)

Its components are defined as:

1. fT measures how well a given model network reproduces experiments from the training set. In the
following, the training set is assumed to be given in the form of a graph, with each node defined by a
perturbation P of the system (any combination of nodes with states fixed to 0 or 1) and a corresponding
observation O (a list of node states measured at equilibrium after the perturbation). The set of
nodes is denoted as {(P0, O0), (P1, O1), · · · }, where Pn and On are the perturbation and observation
corresponding to node n. Edges in the training set graph correspond to transitions between stable
phenotypes. An edge (Pn, On) → (Pm, Om) means that under perturbation Pn, the system stabilized
into a phenotype characterized by observation On and after perturbation by Pm, the system stabilized
into a phenotype characterized by observation Om. Given a network and a training set graph, fT is
evaluated as follows:

• Using the stochastic search described above, evaluate the attractor reachability graph of the
network for all perturbations and transitions given in the training set graph. More precisely, for
each node (Pn, On) of the training set graph, the attractor reachability graph contains one node
per attractor found after perturbation Pn. For clarity, we denote by {An,0, An,1, · · · } the set of
attractors of the network obtained with perturbation Pn. For each edge (Pn, On) → (Pm, Om)
in the training set graph, the attractor reachability graph contains edges connecting attractors
{An,0, An,1, · · · } to attractors {Am,0, Am,1, · · · }. That is, an edge An,k → Am,p will be in the

2

attractor reachability graph if and only if at least one state in attractor An,k obtained with
perturbation Pn will stabilize into attractor Am,p after perturbation Pm.

• For each attractor An,k obtained with perturbation Pn, measure its Manhattan distance to the
observed phenotype On as

dn,k =

Nn∑
i=1

|x(n,k)i − x̃(n)i |

where the sum runs over all Nn nodes appearing in observation On, x̃
(n)
i is the state of the node i

in observation On, x
(n,k)
i is the average state of the network node i in attractor An,k (if attractor

An,k contains more than one state, x
(n,k)
i is the average node state over all states in An,k). If a

node appears in observation On but is not in the network, it is considered as isolated and its state

is set to x
(n,k)
i = 0. An illustration is given in Figure S1.

• Next, we want to consider all subgraphs of the attractor reachability graph which have the same
structure as the training set graph. More precisely, we consider all subgraphs g satisfying the
following conditions:

– For each node (Pn, On) of the training set graph, the subgraph has exactly one node (chosen
among the nodes {An,0, An,1, · · · })

– For each edge (Pn, On) → (Pm, Om) in the training set graph, the subgraph has exactly
one edge (chosen among the edges of the attractor reachability graph connecting nodes
{An,0, An,1, · · · } to nodes {Am,0, Am,1, · · · }.

Note that this is not an isomorphism, since one node or edge from the attractor reachability graph
may correspond to more than one node or edge in the training set graph. For each subgraph g
satisfying these conditions, evaluate the total distance to the training set as the sum of distances
dn,k over all nodes (attractors) in the subgraph:

dg =
∑

(n,k)∈V

dn,k

where V denotes the set of nodes in g. An illustration is given in Figure S2. Among all possible
subgraphs, find the one with minimal total distance to the training set:

d = min
g
dg

For the following, we denote by gbest the subgraph that minimizes dg.

• Finally, fT is obtained by normalizing this minimal total distance d by the total number of
observations in the training set

fT =
d

Nobs

with
Nobs =

∑
n

Nn

With this normalization, fT is between 0 (best) and 1 (worst) and can be interpreted as the fraction
of observations in the training set that are not reproduced correctly by the network.

Notes:

• Our choice of using only subgraphs of the attractor reachability graph with the same structure as
the training set graph has some important consequences. Firstly, if observation On obtained with
perturbation Pn is linked to observation Om obtained with perturbation Pm in the training set
graph (edge (Pn, On) → (Pm, Om)), the attractor associated to On with perturbation Pn must
stabilize into the attractor associated to Om after perturbation Pm. This reachability condition is
strictly enforced, i.e. two attractors which are not connected in the attractor reachability graph

3

will not be considered for the evaluation of fT , even if they are closer to their corresponding
observations On and Om (smaller distances dn,k and dm,p). Secondly, one node (Pn, On) in the
training set graph must correspond to exactly one attractor of the network after perturbation Pn,
that is if a node (Pn, On) in the training set graph has two outgoing edges (Pn, On)→ (Pm1

, Om1
)

and (Pn, On)→ (Pm2
, Om2

), then the same attractor of the network obtained with perturbation
Pn and associated to On must stabilize into the attractor associated to Om1

after perturbation
Pm1 and into the attractor associated to Om2 after perturbation Pm2 .

• Since the attractor reachability graph of the network is obtained by a stochastic search, it may
result in an incomplete graph. That is, for a node (Pn, On) of the training set graph, the stochastic
search may not be able to find any attractor. Similarly, for one edge (Pn, On)→ (Pm, Om) in the
training set graph, the stochastic search may not be able to find any transition from attractors
obtained with perturbation Pn to attractors obtained with Pm. If the attractor reachability graph
is incomplete, it may not be possible to find any subgraph with same structure as the training set
graph. In this case, fT is flagged as invalid.

2. Ness.nodes is the number of essential nodes which are in the network. The set of essential nodes is a
predefined set of nodes that should be included in the final model network.

3. Nnode is the number of nodes in the network.

4. Nedges is the number of edges in the network.

Multi-dimensional fitness functions are compared using lexicographical ordering:

F = (f1, f2, .., fn) < F ′ = (f ′1, f
′
2, .., f

′
n)

⇔ ∃i ∈ {1, · · · , n} s.t. fj = f ′j ∀j < i and fi < f ′i .

Genetic algorithm
The genetic algorithm is implemented as summarized here, with details provided in the following paragraphs:

1. Start with a population of Nr empty model networks, also called replicas in the following (unless
specified otherwise, we used Nr = 50).

2. Create a new generation of replicas, starting from an empty population:

• Add the n1 best replicas from the last generation (we used n1 = 0.1Nr).

• Randomly choose n2 replicas with probability linearly decreasing from the best to the worst
replica. Mutate each of these replicas and add them to the new generation (we used n2 = Nr).

• Randomly choose n3 pairs of replicas, with each replica chosen with probability linearly decreasing
from best to worst replica. For each pair, generate two new replicas by cross-over and add them
to the new generation (we used n3 = 0.3Nr).

Note that this new generation has n1 + n2 + 2n3 replicas.

3. Evaluate the fitness function for each replica. If a replica has an invalid fT (due to a problem with the
stochastic method used to estimate the attractor reachability graph), it is removed from the population.
Sort the replicas by increasing fitness function, and keep only the first Nr replicas.

4. If the best value of the fitness function did not improve during the last 10 iterations, output the best
replica and stop. Otherwise, go to step 2.

Note that the PKN can contain interactions combining multiple input nodes in a Boolean expression with
AND and NOT Boolean operators (e.g. gene1 AND NOT gene2 → gene3). In the following, each of these
Boolean expressions is considered as one entity (hyperedge) like any other edge and they are added to or
removed from the network as a whole.

4

Mutation:

Replicas can undergo three types of mutation:

• Addition/removal of edges (priority p0 = 10): randomly remove up to 5 edges from the replica and
add up to 5 edges taken from one of the these lists:

– Edges in PKN but not in replica (probability 0.8).

– Edges in PKN but not in replica and connecting at least an essential node not yet connected
to the network (probability 0.2). This mutation should help to increase the number of essential
nodes.

• Addition of paths (priority p1 = 5): Create a list of possible paths in the following way. For each
attractor appearing in the subgraph gbest (see description of fT evaluation), split the network nodes
in two groups G1 and G2 by comparing each node state (average over all states in the attractor) to
the state expected from the training set. Group G1 contains nodes that behaves as expected or do
not appear in the training set while group G2 contains the nodes that do not behave as expected. For
each pair of nodes (n1, n2) ∈ G1 × G2, add (n1, n2, s) to the list of possible paths, with s = 1 if n2
state is lower (respectively higher) than expected and n1 state is higher (respectively lower) than 0.5
and s = −1 if n2 state is lower (respectively higher) than expected and n1 state is lower (respectively
higher) than 0.5.

Randomly choose one element (n1, n2, s) in the list of possible paths (with uniform probability dis-
tribution). Randomly choose one path (with uniform probability distribution) among all elementary
paths in the PKN connecting n1 to n2 with sign s and length smaller than or equal to the length of the
shortest path from n1 to n2 in the PKN + 4. Add this path to the network. To search for elementary
paths in the PKN, we use a slightly modified version of the algorithm proposed by Klamt and von
Kamp [3] (Supplementary Information: algorithm 4).

• Remove node (priority p2 = 1): Randomly remove one non-essential node from the network.

The type of mutation is randomly chosen with probability pi/
∑

j pj . After the mutation, isolated nodes
(neither incoming nor outgoing edges) are removed from the network.

Cross-over:

Given two replicas, each edge appearing in at least one of the replicas is exchanged between the replicas with
probability 0.5. When edges are exchanged, nodes are added if needed.

Evaluation of the network optimization method
Comparing a model network to the gold standard
To compare predictions of a model network and the gold standard network, a score (sall) is defined in the
following way:

1. Starting from each attractor of the gold standard network, we use boolSim [1] to evaluate the attractors
reached by both the model network and the gold standard network after all single node perturbation
of essential nodes (node state fixed to 0, node state fixed to 1 as well as unperturbed network). For an

initial attractor a of the gold standard network and a single node perturbation p, we denote by y
(a,p)
i

and ỹ
(a,p)
i the average states of node i in the attractors reached by the model network and the gold

standard network respectively. If the attractor reached by the model or the gold standard network

contains more than one state, y
(n,k)
i or ỹ

(a,p)
i contain the average node state over all states in the

attractor. If more than one attractor is reached, y
(a,p)
i or ỹ

(a,p)
i contain the average over all reached

attractors.

5

2. For a given initial attractor a and perturbation p, we measure the Manhattan distance between the
average states reached by the gold standard network and the model network:

∆a,p =
∑
i

|y(a,p)i − ỹ(a,p)i |

where the sum runs over all essential nodes. If a node is missing in the model network, it is considered

as isolated and its state is set to y
(a,p)
i = 0.

3. The total distance ∆ between gold standard and model network predictions is then obtained as the
sum of the distances obtained for all initial attractors and all perturbations:

∆ =
∑
a

∑
p

∆a,p

This distance can then be transformed into a score

sall = 1− ∆

M ·Ness.nodes · (2Ness.nodes + 1)

where M is the number of attractors of the unperturbed gold standard network, Ness.nodes is the
number of essential nodes and (2Ness.nodes + 1) is the number of single node perturbations (Ness.nodes

perturbations with node state fixed to 0, Ness.nodes perturbations with node state fixed to 1 and 1
perturbation corresponding to unperturbed network).

Using this normalization, the resulting score sall is between 0 (worst) and 1 (best). The score sall is
interpreted as a measure of the predictive power of the model network.

Combined predictions: variance and error
In the main paper, we summarize the predictions of multiple model networks by measuring their averages
and variances, and we compare variances with errors. In this section, we will define these quantities more
precisely. As in the previous section, we consider the average states reached by model networks and the
gold standard network after all single node perturbations of essential nodes, starting from each attractor
of the gold standard network. The same notations as above are used, except that since we have multiple
model networks, the average state of node i in the attractors reached by n-th model network is denoted by

y
(n,a,p)
i . Note that exact attractor reachability graphs are used here (evaluated with boolSim). For each

initial attractor a, perturbation p and node i, we measure the average (µ
(a,p)
i) and sample variance (v

(a,p)
i)

of all model network predictions as:

µ
(a,p)
i =

1

Nm

∑
n

y
(n,a,p)
i

v
(a,p)
i =

1

Nm − 1

∑
n

(
y
(n,a,p)
i − µ(a,p)

i

)
where Nm is the number of model networks. The corresponding prediction error is defined as the absolute

difference between average prediction of the model networks (µ
(a,p)
i) and average state reached by the gold

standard network (ỹ
(a,p)
i):

ε
(a,p)
i =

∣∣∣µ(a,p)
i − ỹ(a,p)i

∣∣∣
Figure 10 in the main text presents the distribution of all 21112 points (ε

(a,p)
i , v

(a,p)
i) obtained with all 4

initial attractors a, 29 perturbations p (14 nodes fixed to 0, 14 nodes fixed to 1, unperturbed network), 14
essential nodes i, and 13 input data sets (training set and PKN).

6

References
1. Garg A, Di Cara A, Xenarios I, Mendoza L, De Micheli G: Synchronous versus asynchronous mod-

eling of gene regulatory networks. Bioinformatics 2008, 24(17):1917–1925.

2. Weisstein EW: Strongly Connected Component. From MathWorld—A Wolfram Web Re-
source[http://mathworld.wolfram.com/StronglyConnectedComponent.html]. [Visited on 28/1/2016].

3. Klamt S, von Kamp A: Computing paths and cycles in biological interaction graphs. BMC
Bioinformatics 2009, 10:181.

7

Figure S1: Sample model network (a) and training set graph (b) used to illustrate the evaluation of the
first fitness function component fT . (c) Asynchronous attractor reachability graph of the model network,
with perturbations and transitions corresponding to the training set graph. (d) Each attractor with multiple
states (A0,2, A1,2, A2,1, A3,1 and , A4,1) is replaced by the average over all its states. Distances dn,k between
each attractor and the corresponding observation from the training set are shown in blue.

8

Figure S2: (a) and (b): Sample subgraphs (blue) of the attractor reachability graph with the same
structure as the training set graph. The total distance to training set dg is given in blue for each subgraph.
With dg = 2.5, this subgraph minimizes the total distance to the training set. Therefore in this example
fT = dg/Nobs = 2.5/12. (c) and (d): Sample subgraphs (red) of the attractor reachability graph which
do not have the same structure as the reachability graph. Subgraph (c) is not valid for two reasons: (i)
Node (P4, O4) from the training set graph does not have a corresponding node in the subgraph. (ii) Edge
(P1, O1) → (P3, O3) from the training set graph does not have a corresponding edge in the subgraph.
Subgraph (d) is not valid for two reasons: (i) Node (P0, O0) from the training set graph has two (instead of
one) corresponding nodes in the subgraph (A0,0 and A0,1). (ii) Edge (P0, O0)→ (P2, O2) from the training
set graph has two (instead of one) corresponding edges in the subgraph (A0,0 → A2,0 and A0,1 → A2,0).

9

