
Comparison with related methods

Julien Dorier∗1 , Isaac Crespo1 , Anne Niknejad1 , Robin Liechti1 , Martin Ebeling2 and Ioannis
Xenarios∗1

1Vital-IT, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
2Pharmaceutical Sciences / Translational Technologies and Bionformatics, Roche Innovation Center Basel, 124 Grenzacherstrasse,

4070 Basel, Switzerland

Email: Julien Dorier ∗- julien.dorier@isb-sib.ch; Isaac Crespo - isaac.crespo@isb-sib.ch; Anne Niknejad - Anne.Niknejad@isb-sib.ch;

Robin Liechti - Robin.Liechti@isb-sib.ch; Martin Ebeling - martin.ebeling@roche.com; Ioannis Xenarios ∗- ioannis.xenarios@isb-sib.ch;

∗Corresponding author

In the following we compare the performance of optimusqual (our implementation of the network optimization
method) with related software that use a training set based on stable phenotypes (like optimusqual), and
for which a fair comparison is possible: lpNet [1, 2], XPRED [3] and PRUNET [4]. Before presenting and
discussing the results of the comparison, we start by specifying the conditions and input files used for each
software.

All comparisons were performed using PKN 1 (Additional file 3) and training set 1 (Additional file 4) as
input. However, since lpNet, XPRED and PRUNET cannot use information on transitions between steady
states, we generated a training set containing only the information on stable phenotypes (steady states). For
optimusqual, the full training set 1 was used, including transitions between steady states.

lpNet∗

Training set 1 contains information on steady states obtained under various perturbations combining the
simultaneous knock-out (node always set to 0) and/or over-expression (node always set to 1) of multiple
nodes. Although lpNet understands the notion of perturbations, only node knock-out is implemented and
node over-expression is not possible. To overcome this problem, self-feedback loops on each of the nodes
that are over-expressed in training set 1 (TNF and FASL) were added to the input PKN. Since both TNF
and FASL are input nodes (without incoming edges), this simple workaround allow the networks to sustain
a continuous activation of these nodes, effectively mimicking over-expression. Contrarily to optimusqual,
where prior knowledge consists in a list of allowed edges, lpNet uses prior knowledge in the form of a list of
edges that are either mandatory or forbidden. To allow lpNet to use the prior knowledge given in PKN 1,
we converted it to a list of forbidden edges formed by all possible edges that were not in PKN 1.

For a given set of input parameters, lpNet produced always the same network. Therefore, only one run of
lpNet is needed once input parameters have been chosen. However, an important penalty parameter (λ)
controlling the introduction of slack variables in the model must be specified. To determine the optimal
value for this parameter, we used leave-one-out cross-validation†, as suggested in the lpNet documentation.

∗version 2.2 with R 3.2.2.
†using loocv(), with delta=0.5, times=5, active mu=0, inactive mu=1, active sd=0.01 and inactive sd=0.01.

1



PRUNET

The notion of perturbation is not implemented in PRUNET. Therefore, to allow PRUNET to use all in-
formation contained in the training set, we had to modify the input PKN. To allow PRUNET to mimic
over-expression of TNF and FASL, two self-feedback loops on TNF and FASL were added to the input
PKN. To allow knock-out of CASP3, CASP8, NFkB, RIP1 and cIAP, dummy nodes were added to the
PKN (CASP3 KO, CASP8 KO, NFkB KO, RIP1 KO and cIAP KO), each with a self-feedback loop and
inhibiting the corresponding node:

CASP3 KO → CASP3 KO
CASP3 KO a CASP3
CASP8 KO → CASP8 KO
CASP8 KO a CASP8

NFkB KO → NFkB KO
NFkB KO a NFkB
RIP1 KO → RIP1 KO
RIP1 KO a RIP1
cIAP KO → cIAP KO
cIAP KO a cIAP

This trick allows PRUNET to mimic the knock-out of one node (e.g. CASP3), by choosing a state with
the corresponding KO dummy node in its active state (e.g. CASP3 KO=1). States of these dummy nodes
were also added to the training set, with a state 1 for all phenotypes obtained with a knock-out of the
corresponding node, and a state 0 in all other phenotypes.

Similarly to optimusqual, PRUNET is based on a evolutionary algorithms and require starting multiple runs
and keeping only a fraction of the resulting networks (10% in this work) to increase the probability of finding
good solutions. To evaluate PRUNET, we started 100 independent runs and kept the best network obtained
with each run. Among these 100 resulting networks, only the 10 best networks (according to PRUNET
internal scoring) were kept as model networks. For each run, we used a population of 85 networks (which
corresponds to the maximum number of networks evaluated by optimusqual with 50 replicas) and 1000
iterations. This number of iteration is significantly larger than the number of iteration used in optimusqual
(175 iterations in average, with standard deviation 45), but it was required to allow PRUNET to find
sufficiently good solutions.

XPRED

We used almost the same inputs and settings as PRUNET. The only difference was the number of iterations
that was decreased to 500. Using more iterations did not improve the convergence.

Optimusqual

We used the networks obtained in section “Network optimization: applied example” in the main text (50
models networks out of 500 runs).

Results and discussion
Running times

Table S1 presents a comparison of running times (wall time) measurements performed on an Intel Xeon
X5550 @ 2.67GHz, 12Gb RAM, 64bits Linux OS (CentOS 7). First line of table S1 reports the average
running time measured per run for each software. For lpNet, only cross-validation runs are reported. It is
worth noting here that once the parameter λ is known, a network can be obtained with one run of lpNet
without cross-validation with an average running time of 3.2 ± 0.7 minutes. For one run, and considering only
cross-validation run for lpNet, optimusqual is about two order of magnitude faster than the other software
with 10 minutes per run, while PRUNET, XPRED and lpNet take on average 36 hours, 64 hours and 48
hours respectively. However, one run is not sufficient to generate one network. For evolutionary algorithms

2



based methods (optimusqual, XPRED and PRUNET), we keep only the 10% best networks. About 10 runs
are therefore required to produce one network. For lpNet, several runs of cross-validation are needed, each
with a different value of the parameter λ, to determine its optimal value. For this specific problem, lpNet
proposes a list of 94 values for λ. Based on these considerations, the second line of table S1 presents the
average running time required to obtain one network. Our software optimusqual is the fastest, with less than
2 hours for 10 runs, while PRUNET and XPRED require about 15 days and 27 days respectively, and about
6 months are needed with lpNet. Given the large running time required by lpNet, testing all 94 values of λ
proposed by lpNet is probably not necessary. A set of 10 different λ values may be sufficient to obtain an
estimation of λ. In this case, the average running time taken by lpNet to obtain one network decreases to
about 20 days.

Optimality

In addition to measuring its running time, it is important to check if a software can find optimal solutions, i.e.
to check whether networks found by the software can reproduce the training set. To measure the difference
between steady states of the networks and the training set, we used fT (defined in Additional file 1) applied
to the training set used as input for XPRED, PRUNET and lpNet (training set 1 without information on
transition between steady states). With this definion, fT ranges from 0 (best) to 1 (worst) and can be
interpreted as the average difference (per node) between observations in the training set and steady states
of the network. In particular, fT = 0 can be only obtained if for all pairs of perturbation/observation (P,O)
in the training set, the network perturbed with P has at least one steady state whose nodes states exactly
correspond to the observation O.

A comparison of fT measured on model networks obtained with all software is shown in Figure S3. Model
networks obtained with optimusqual all have steady states that perfectly match the training set (fT ' 0).
The network obtained with lpNet is almost optimal, with fT ' 0.0087, which corresponds to 6 out of 686
node states (49 steady states in training set, each with 14 nodes) that do not correspond to the observations
contained in the training set. With a median fT ' 0.069 and a best value of fT ' 0.048, the model networks
obtained with PRUNET are not as good as those obtained with optimusqual and lpNet. Finally, the model
networks obtained with XPRED have the highest values of fT with a median fT ' 0.089 and a best value
of fT ' 0.054.

Predictive power

Figure S4 presents the distribution of sall scores (defined in Additional file 1) of model networks as a
function of the software used to generate the model networks. With a median sall ' 0.97, optimusqual
shows a significantly higher predictive power than than the networks obtained with lpNet (sall ' 0.92),
PRUNET (median sall ' 0.87) and XPRED (median sall ' 0.85).

Attractor reachability graphs

In contrast to other related methods, the training set used as input in optimusqual can include information
not only on equilibrium properties (steady states), but also on the dynamical behaviour of the system
(transitions between steady states upon perturbation). To illustrate the notion of dynamical behaviour,
we considered the response to TNF perturbation starting from unperturbed network and evaluated the
corresponding attractor reachability graphs for the gold standard network and the best network obtained
with each software (according to the software). Figure S5 presents the attractor reachability graph obtained
with the original gold-standard network. Note that part of the information contained in this graph is included
in the training set: node states shown in blue are in the training set used as input for all software while
transitions shown in blue were in training set used by optimusqual.

The attractor reachability graph for the best network obtained with optimusqual is shown in Figure S6.
Interestingly, although no information on steady states 2, 3 and 4 of the unperturbed network was included
in the training set, the attractor reachability graph of the best network obtained with optimusqual is almost

3



exactly correct, with only wrong node state in one steady state (in red, CASP8 in unperturbed steady state
4). In particular, it recovered the three additional unperturbed steady states (steady states 2, 3 and 4), as
well as the correct transitions from these steady states to those obtained after TNF perturbation. Therefore,
in this specific example, optimusqual was able to correctly recover not only the static properties (steady
states), but also the dynamical behaviour of the original gold-standard model (transitions between steady
states upon TNF perturbation).

The network obtained with lpNet recovers the steady states that were part of the training set (unperturbed
steady state 1 and all steady states with TNF perturbation in Figure S7) with only one error (in red, CASP8
in unperturbed steady state 4). However, if fails to recover one steady state of the unperturbed network
(steady state 2). More importantly, the dynamical behaviour is significantly different from the original gold
standard model and several transitions are missing (dashed grey). In particular, this network predicts that
starting from physiological condition (steady state 1, unperturbed network), TNF exposure will trigger only
survival (Steady state 1 with TNF perturbation), while the original gold standard model predicts that TNF
can trigger either survival (Survival=1, steady state 1 with TNF perturbation) or cell death by apoptosis
(Apoptosis=1, steady state 2 with TNF perturbation) or by necrosis (NonACD=1, steady state 3 with TNF
perturbation).

Figure S8 presents the attractor reachability graph for the best network obtained with PRUNET. All steady
states are recovered, although with errors (shown in red). Several of these errors appear on nodes that
are not in the training set (e.g. RIP1ub, TNFR, XIAP). Indeed, contrarily to optimusqual and lpNet,
which try to reduce networks sizes during optimization, PRUNET generates model networks that contain all
nodes appearing in the PKN, even if they are not in the training set. Another error is the presence of two
spurious steady states, one in each condition (in red). The dynamical behaviour is also problematic: several
transitions between steady states are missing (dashed grey), while others were added (red). In particular,
starting from physiological condition (steady state 1, unperturbed network), this network predicts that TNF
exposure will trigger either survival (Steady state 1 with TNF perturbation) or a state corresponding neither
to survival, nor cell death (steady state 4 with TNF perturbation). This behaviour is not in agreement with
the gold standard model behaviour (survival, apoptosis or necrosis).

The attractor reachability graph for the best network obtained with XPRED is shown in Figure S9. All
steady states that were part of the training set (unperturbed steady state 1 and steady states 1, 2 and 3
with TNF perturbation) are recovered, although with errors (shown in red). Similarly to PRUNET, XPRED
generates model networks that contain all nodes appearing in the PKN. As a consequence, a majority of
errors are found on nodes that are not in the training set. In addition to these errors, one steady state of
the unperturbed networks is not recovered (steady state 2), and a spurious steady state is predicted after
TNF perturbation. Finally, the dynamical behaviour is significantly different from the original gold standard
model, with several missing transitions (dashed grey). In particular, this network predicts only survival after
TNF perturbation (starting from physiological condition), while the original gold standard model predicts
that TNF can trigger either survival or cell death by apoptosis or by necrosis.

Conclusion
Contrarily to lpNet, XPRED and PRUNET, which all solve a similar optimization problem with a training
set containing only information on steady states, optimusqual solves a different optimization problem with
a training set that can contain not only information on steady states, but also on transitions between them
upon perturbation. The use of transitions in the training set strongly increases the complexity of this
optimization problem and prevents its reformulation as a linear optimization problem, as it is done in lpNet.
However, thanks to the use of a heuristic algorithm, optimusqual is faster than all other tested software
and finds better solutions, i.e. networks that can better reproduce the training set (as measured by fT ).
More importantly, networks found by optimusqual have a higher predictive power (as measured by sall). As
illustrated with the response to TNF perturbation, networks found by optimusqual better reproduce both
the equilibrium properties (steady states) and dynamical behaviour (transitions between steady states upon
perturbation) of the underlying biological system.

4



References
1. Knapp B, Kaderali L: Reconstruction of cellular signal transduction networks using perturba-

tion assays and linear programming. PloS one 2013, 8(7):e69220.

2. Matos MRA, Knapp B, Kaderali L: lpNet: a linear programming approach to reconstruct signal
transduction networks. Bioinformatics 2015, 31(19):3231–3233.

3. Crespo I, Krishna A, Le Béchec A, del Sol A: Predicting missing expression values in gene regula-
tory networks using a discrete logic modeling optimization guided by network stable states.
Nucleic acids research 2013, 41:e8.

4. Rodriguez A, Crespo I, Androsova G, del Sol A: Discrete Logic Modelling Optimization to Con-
textualize Prior Knowledge Networks Using PRUNET. PLOS ONE 2015, 10(6):e0127216.

5



optimusqual lpNet PRUNET XPRED

Time per run 10 ± 0.3 2910 ± 90 2160 ± 80 3860 ± 40
Time per network 100 ± 3 273540 ± 8000 21600 ± 1300 38600 ± 400

Table S1: Average running time (wall time) in minutes. For lpNet, time per run corresponds was measured
on cross-validation runs. Time per network denote the time needed to obtain one network, i.e. 10 runs for
methods based on evolutionary algorithms (optimusqual, XPRED and PRUNET), and 94 cross-validation
runs for lpNet.

Figure S3: Comparison between steady states and training set measured by fT for model networks obtained
with all software (lower is better).

6



Figure S4: Predictive power sall of model networks obtained with all software (higher is better).

Figure S5: Attractor reachability graph of the gold-standard network for the response to TNF perturbation.
States shown in blue are part of the training set used as input for all software. Transitions shown in blue
are part of the training set used as input with optimusqual.

7



Figure S6: Attractor reachability graph of the best model network obtained with optimusqual. Errors in
node states are shown in red. Missing node state values correspond to nodes of the gold-standard network
that are not in the model network.

Figure S7: Attractor reachability graph of the model network obtained with lpNet. Errors in node states
are shown in red. Missing transitions are shown in dashed grey. Missing steady state (steady state 2 of
unperturbed network) is shown in light grey with empty background. Missing node state values correspond
to nodes of the gold-standard network that are not in the model network.

8



Figure S8: Attractor reachability graph of the best model network obtained with PRUNET. Errors in
node states are shown in red. Missing transitions are shown in dashed grey. Additional steady states and
transitions are shown in red.

Figure S9: Attractor reachability graph of the best model network obtained with XPRED. Errors in node
states are shown in red. Missing steady state (steady state 2 of unperturbed network) is shown in light grey
with empty background. Missing transitions are shown in dashed grey. An additional steady state obtained
with TNF perturbation (steady state 4) is shown in red.

9


