
PeCaX

01.11.2021

Contents

1 Introduction 1

2 Components 1
2.1 Clinical Annotation Pipeline . 2

2.1.1 Input & Parameters . 2
2.2 Network Generation . 2
2.3 Interactive Graphical User Interface . 3

2.3.1 ClinVAP Report . 3
2.3.2 Interactive Network Visualization . 5

2.4 Data Management . 5

3 Implementation & Availability 5
3.1 Demo-Version . 5
3.2 Usage with Docker . 5

3.2.1 Requirements . 6
3.2.2 Availability . 6
3.2.3 Implementation . 6

4 Software Availability 13

5 Use case 14

6 Performance 14

1 Introduction

PeCaX, Personalized Cancer and Network Explorer, is a visual analytics tool for the identification of patient specific
cancer mechanisms by providing a complete mutational profile from variants to networks. It employs ClinVAP to
perform clinical variant annotation which focuses on processing, filtering and prioritization of the variants to find
the disrupted genes that are involved in carcinogenesis and to identify actionable variants from the mutational
landscape of a patient. In addition PeCaX creates networks showing the connections between the driver genes and
the genes in their neighbourhood using pathway resources (SBML4j). Its interactive visualisation (BioGraphVisart)
supports easy network exploration and node grouping by related pathways.

2 Components

The application consists of four major components: the clinical variant annotation pipeline, the network generation,
the interactive graphical user interface (GUI), and the data management.

1

2.1 Clinical Annotation Pipeline

Clinical Variant Annotation Pipeline (ClinVAP) generates concise case reports from long list of somatic mutations
given inn VCF-format by first annotating them functionally and clinically, then by prioritizing and filtering them
based on their variant effect together with clinical actionability (for more detail see https://doi.org/10.1093/

bioinformatics/btz924).
The functional annotation includes the prediction of the mutation effect on protein level and the priorization

of the variants based on their effect or importance. The functional variant annotation is done with the Ensemble
Variant Effect Predictor in offline mode to ensure data privacy. VEP plugins SIFT and PolyPhen are used to
predict variant effect on protein. Variants are filtered based on passing quality measures of the NGS pipeline used
to generate VCF files, their predicted effects by VEP, SIFT and PolyPhen. The remaining variants are passed to
the reporting application.

The clinical annotation includes the selection of clinically relevant variants or mutated genes together with the
targeting therapeutics mechanistically or with the clinical evidence. The ClinVAP uses background knowledgebases
developed in-house for the clinical annotation. It is created by integrating publicly available databases to contain
information of driver gene annotation, clinically relevant known pharmacogenomics effects information, adverse
effect information, mechanistic drug targets. The database is queried with observed variants to identify therapeutics
with known effects directly on the variants, and with the gene name to identify driver genes and the therapeutics with
known effect on the disrupted genes. It also enables users to filter results more providing the diagnosis information
as ICD10 code format. It provides one more layer of prioritization by selecting the results associated with the
provided cancer type. Evidence level is also calculated for the results to show the significance of the associations
between reported targets and drugs and their observed effect.

After completing variant and clinical annotation, the ClinVAP Report is shown in the GUI and it can be
downloaded as JSON or PDF formats.

2.1.1 Input & Parameters

The GUI to start an analysis is shown in Fig. 1. A mandatory Variant Call Format (VCF) file containing somatic
variant (SNV) will be analysed and annotated with ClinVAP. The results will be structured in a report (.json-
format) and displayed in interactive tables (ClinVAP Report) once the pipeline is finished. An example file can
be found here: https://raw.githubusercontent.com/KohlbacherLab/PeCaX-docker/main/test_files/lung.

vcf. Please make sure the file you upload matches the standard VCF-format as given in the example.
In addition to the SNV information, CNV information can be analyzed and annotated. They can be given

in an optional .tsv-file. The file has to have the same column names as in the example file here: https://raw.

githubusercontent.com/KohlbacherLab/PeCaX-docker/main/test_files/lung.tsv. Please make sure the file
you upload matches the standard TSV-format as given in the example.

The human genome assembly version that was used in the original NGS pipeline while calling the variants needs
to be given. The default value is GRCh37, alternatively GRCh38 can be selected.

ClinVAP can analyse the SNV information according to a diagnosis. This should be entered as an ICD10 code.
The diagnosis can be used as filter:

• sort: Option to sort results based on their diagnosis similarity score.

• filter: Option to only get the results of a certain cancer type given as diagnosis.

• sort, filter, prioritize: Option to get sorted results for evidence level A, B and C, filtered results for evdence
level D and E.

2.2 Network Generation

For the genes in the ClinVAP report, PeCaX creates networks of those genes, their neighbouring genes and targeting
drugs with SBML4j. SBML4j is a service for persisting biological models and pathways in SBML format in a graph
database. It is written in Java as a Spring Boot Application and the data is stored in a neo4j graph database
instance.

The biological models are integrated into one unified knowledge graph from which network mappings are created.
There are four types of network mappings available depending on the given models, regulatory, signalling, protein-
protein-interaction and metabolic mappings. Those mappings can then be explored, annotated and searched in. A

2

https://doi.org/10.1093/bioinformatics/btz924
https://doi.org/10.1093/bioinformatics/btz924
https://raw.githubusercontent.com/KohlbacherLab/PeCaX-docker/main/test_files/lung.vcf
https://raw.githubusercontent.com/KohlbacherLab/PeCaX-docker/main/test_files/lung.vcf
https://raw.githubusercontent.com/KohlbacherLab/PeCaX-docker/main/test_files/lung.tsv
https://raw.githubusercontent.com/KohlbacherLab/PeCaX-docker/main/test_files/lung.tsv

Figure 1: Interface to start the analysis. A new analysis can be configured and submitted by uploading a VCF-file
and selecting the correct assembly. The upload of a TSV-file, selction of a diagnosis by its ICD10 code and filtering
with it are optional.

user can run graph algorithms on the mappings and retrieve the created subgraphs in the GraphML format. A
client can annotate a mapping with arbitrary data on nodes and relationships.

A REST interface is provided to interact with the pathways as well as with the network mappings. Communica-
tion with the REST API is JSON based and networks are provided in the GraphML format. The full documentation
of the API can be found at Swaggerhub https://app.swaggerhub.com/apis-docs/tiede/sbml4j/1.1.7.

SBML4j also offers methods to filter a network by type of node or relationship and individual entities. For one
or multiple named nodes (i.e. genes) a network context can be calculated which is stored as a separate network.
This enables a user to get a representation of the network surroundings of a gene of interest or get the up- and/or
downstream genes in the given models across standard pathway boundaries. With multiple supplied nodes the same
query will calculate a minimal network containing all the given genes, provided they have a known network context.

PeCaX sends the list of genes of every table generated by ClinVAP to SBML4j to generate a minimal network.
All genes that are provided in this way are annotated with a boolean value, indicating that those genes are present
in the table and to differentiate these genes from those that are added by the algorithm performed by SBML4j.
Additionally the type of driver gene is added to the respective nodes in the network if they are known.

The SBML4j database used in PeCaX is built from 61 cancer-related pathways from the KEGG pathway
database. The pathways are integrated with each other and a models-spanning network mapping is created which
is used as the basis for the presented networks. To not miss any interaction from using one specific network
mapping type, all interactions and relations are included for this base-network. This network additionally enriched
with drug-target information gathered from the list of approved drugs that are freely available from Drugbank
(https://drugbank.ca).

2.3 Interactive Graphical User Interface

2.3.1 ClinVAP Report

The results of the annotation and analysis with ClinVAP are represented in interactive tables. If information from
external sources is available for a gene in the table, the related web links are listed next to the gene name in
a drop-down menu. Next to each table, the related gene network is displayed, if applicable. Each table can be
downloaded as as PDF-file. Fig. 2 shows example tables on the left. The tables contain information about:

• Somatic Mutations in Known Driver Genes: List of cancer driver genes along with the mutations observed
in the patient. Consequence column provides the predicted effects of the variants on the protein sequence.

3

https://app.swaggerhub.com/apis-docs/tiede/sbml4j/1.1.7

Figure 2: Screenshot of two tables (left) and related networks (right).

Tumor type column gives the list of cohorts in which the gene is identified as driver. VAF (variant allele
frequency) column shows the proportion of the variant allele to the coverage of that loci. Reference column
represents the driver gene sources that catalogued the corresponding gene as driver. Driver gene information
is obtained from Vogelstein et. al, Uniprot, TSGene, IntoGen and COSMIC.

• Somatic Mutations with Known Pharmacogenetic Effect: List of drugs with the evidence of targeting the
observed variant of the mutated gene, and the documented drug response for the given mutational profile.
Evidence level letter represents: A = validated association, B = clinical evidence, C = case study, D =
preclinical evidence, E = inferential association. Evidence level number represents the matching type between
the observed variant and the database result: 1 = same variant, 2 = different variant, same consequence,
3 = different variant, different consequence, same gene. The information is obtained from CIViC, CGI and
DrugBank.

• Somatic Mutations in Pharmaceutical Target proteins: Pharmacogenomics Summary of Drugs Targeting
Affected Genes Therapies that have evidence of targeting the affected gene. Evidence level letter represents:
A = validated association, B = clinical evidence, C = case study, D = preclinical evidence, E = inferential
association. Evidence level number represents the matching type between the observed variant and the
database result: 1 = same variant, 2 = different variant, same consequence, 3 = different variant, different
consequence, same gene. The information is obtained from CIViC, CGI and DrugBank.

• Summary of Cancer Drugs Targeting Affected Genes:: List of cancer drugs targeting the mutated gene.
Information is obtained from DrugBank, Therapeutic Target Database, IUPHAR, and Santos et al.

• Adverse Effects: List of drugs with known adverse effects on observed variant and disrupted genes.

• References: The publications of the reference IDs given in the tables.

• Appendix: All the somatic variants of the patient with their dbSNP and COSMIC IDs.

4

Figure 3: Interface to restore previous jobs by uploading the according JSON-file or entering the job id.

2.3.2 Interactive Network Visualization

PeCaX integrates the web-based tool BioGraphVisart for the interactive network visualization. BioGraphVisart
receives the network from SBML4j as a GraphML-file via REST API calls and displays it. Fig. 2 shows example
networks on the right.

The nodes of the network represent the genes and related drugs targeting those genes. If multiple drugs have the
same gene as target, they are collapsed into one squared node, which can be extended by clicking on it. The nodes
are coloured according to the information if they are stored in the related table. For the table Somatic Mutations
in Known Driver Genes the driver genes in the network are additionally annotated with information of what driver
type they are of, which is displayed when the mouse is moved over a node.

The edges between nodes represent the interaction(s) between two genes or a drug and a gene. The type of
interaction can be seen in the interaction legend or by moving the mouse over an edge of interest. Multiple edges
between two nodes are by default collapsed into one. This can be disabled in the interactions legend.

The most common KEGG Pathways for the displayed genes can be calculated and the according genes can be
grouped by them, highlighted by coloured squares.

The network can be downloaded in the file formats PNG, SVG for presentations or GraphML for further
investigation. BioGraphVisart can also be used as standalone application with port 3000.

2.4 Data Management

For each uploaded VCF file a new database entry is created containing information about the user-selected project
name, a unique job ID, parameters set for the clinical variant annotation, IDs of the networks generated and stored
in SBML4j, and the information contained in the tables displayed on the front end.

The results of a completed job can be accessed by the job id again (Fig. 3). In addition, the report of a analysed
vcf-file can be downloaded as a json-file. This file can be loaded again and the contained tables are displayed.

3 Implementation & Availability

3.1 Demo-Version

A demo-version of PeCaX is available at https://pecax.informatik.uni-tuebingen.de. It offers nine different
vcf-files, seven with an additional tsv-file. Since real patient data is highly sensitive and it is illegal to make it
public, we compiled example datasets from the publicly available data source Cancer Genome Interpreter (CGI)
biomarkers dataset. We separated the biomarkers based on the cancer type they were observed with. Then, we
created individual VCF files for SNVs and TSV files for CNVs using the information given in the biomarkers data file
for specific cancer types. This demo-version provides all functionality of the full version of PeCaX and demonstrates
the accessibility by multiple users using a local installation on a server with a publicly accessible address.

3.2 Usage with Docker

The application consists of eight Docker images for the clinical annotation pipeline, the network database, the
network visualization, and data management.

5

https://pecax.informatik.uni-tuebingen.de

The images and related volumes are orchestrated via docker-compose. Volumes created by docker compose are
prefixed with the folder name where the docker-compose.yaml file resides that created the services (i.e. pecax-
docker). They are briefly described here:

• sbml4j neo4j vol : used to store the data needed for the network database (config, logs, plugins, database).

• sbml4j service vol : used to store log files generated by the sbml4j service.

• arangodb data container : database directory to store the collection data (username, jobid, json, network
uuids)

• arangodb apps data container : apps directory to store any extensions

3.2.1 Requirements

• Docker Engine release 1.13.0+

• Compose release 1.10.0+

• 55 GB of physical empty space on Docker Disk Image

• Availability of the ports 3000, 3030, and 8080, i.e. not being used by other application.

3.2.2 Availability

All images are publicly available on Docker Hub https://hub.docker.com/orgs/pecax/repositories. The ap-
plication orchestrates eight images via docker-compose which are:

• Main image, pecax : Orchestrates the file transfers between the services and offers the GUI.

• Data management image, arangodb: stores the job collections in an ArangoDB database

• clinvap api flask :

• clinvap api nginx :

• clinvap api file deploy :

• clinvap api nextflow :

• sbml4j : Creates networks based on input-gene lists and annotation data. Provides networks in GraphML
format.

• neo4j : Database for storing the networks and calculating the gene-neighbourhoods using the APOC (https://neo4j.com/developer/neo4j-
apoc/) plugin.

• Network visualization image, biographvisart : Process a GraphML file from SBML4j and visualize it interac-
tively.

3.2.3 Implementation

To run the pipeline for the first time, please follow the steps described next.

1. Clone the Git repository via:

git clone https://github.com/KohlbacherLab/PeCaX-docker.git

This will also download local folders that are used in the following ways:

• The local folder db backups is used by the sbml4j.sh script to store the network database backups. See
instructions below for details.

• The local folder scripts is used by the sbml4j.sh script to store the scripts needed for setting up the
database volume.

6

https://hub.docker.com/orgs/pecax/repositories

• The local folder conf is used by the sbml4j.sh script to store the configuration file needed for the neo4j
database. Any change you make to this configuration file will only be activated on recreating the volumes
for the sbml4j service and database.

2. Change to the cloned directory

cd PeCaX-docker

3. Setting up ClinVAP

Download the assembly:

• For human genome assembly GRCh37, use:

docker-compose up vep_files_GRCh37

Afterwards, to free up space, remove the downloaded image:

docker rmi bilges/clinvap_file_deploy:vP_GRCh37

• If your analysis requires GRCh38, use:

docker-compose up vep_files_GRCh38

docker rmi bilges/clinvap_file_deploy:vP_GRCh38

The assemblies can be served in parallel and need to be downloaded only once as long as the volume pecax-
docker clinvap downloads is not removed.

4. Setting up SBML4j

4.1 Preparation

4.1.1 Accessibilty of the SBML4j Service in the PeCaX ecosystem:
For security reasons the SBML4j service is not exposed to the host machine, so to be able to directly
interact with SBML4j you will need to temporarily change the docker-compose.yaml file. In the
service block ”sbml4j” you need to change

expose:

- "8080"

to

ports:

- "8080:8080"

Once you are finished with creating and setting up your desired network database you are advised
to revert this change.

4.1.2 Communicating with the SBML4j service
The following instructions provide examples for the communication with the REST interface of
SBML4j using CURL and Python. Alternatively you can use a tool of your choice to issue GET and
POST http requests to the SBML4j service, like Postman. You can find the API definition for initial-
ising the requests in your tool of choice at https://github.com/kohlbacherlab/sbml4j-compose/
api_doc/sbml4j.yaml

Please note, that file-names, argument values and UUIDs used are only exemplary and need to
replaced with the actual values from your installation. Also note, that the ” character in the examples
below is used to signify line breaks to make the blocks more readable and might need to be removed
before executing the snippets, depending on your system.
To use the Python code examples you need to install the pysbml4j Python package:

pip install pysbml4j

7

https://github.com/kohlbacherlab/sbml4j-compose/api_doc/sbml4j.yaml
https://github.com/kohlbacherlab/sbml4j-compose/api_doc/sbml4j.yaml

Then use it in your Python environment of choice with:

import pysbml4j

client = pysbml4j.Sbml4j()

If you are not running the service on you local system, you need to configure pysbml4j accordingly:

import pysbml4j

from pysbml4j import Configuration

client = pysbml4j.Sbml4j(

Configuration("http://mysbml4jhost:8080"))

We will need to store uuids of pathways created from the uploaded SBML models. In the python
examples below we will use the following list variable for this:

pathwayUUIDs = []

For more details see the pysbml4j documentation at https://github.com/kohlbacherlab/pysbml4j.

4.2 Initialize the docker volumes needed using the provided script

To initialize the volumes used for the network database and the SBML4j service use the sbml4j.sh script.
Inside the main directory (default: PeCaX-docker) run:

./sbml4j.sh -i

to install all prerequisites for the SBML4j service and its database. If your working directory (where
you run the docker-compose commands) is named differently from PeCaX-docker (case insensitive) your
volumes will get this directory name (in lower case format) as prefix.

If you need to change the prefix (because you intend run the docker-compose command in a different
folder than this script), you need to add the option

-p my_prefix

to the above call to make sure that the volumes are prefixed with the correct name. In case you forgot,
you can remove the previously created volumes and rerun the above command with the additional -p
option.

4.3 Selecting a source

The demo version of PeCaX accessible at https://pecax.informatik.uni-tuebingen.de uses a selec-
tion of 61 pathway maps from the KEGG pathway database. If you want to recreate this version of PeCaX
in your local environment, follow steps 3 and 4 below to download and translate the KEGG pathways used.
If you want to use different source models head over to https://github.com/kohlbacherlab/sbml4j to
learn about the necessary details to look for when using SBML models with SBML4j for non-metabolic
network-mappings.

4.4 Get the KEGG pathway files

List 1 shows the pathway identifiers of the KEGG pathways used in this publication. KEGG provides
their own markup language files for their pathways. You can download these kgml files directly from
their website (kegg.jp) or through their API. Make sure you understand the license requirements before
starting the download (see https://www.kegg.jp/kegg/rest/ for details).

4.5 Translate pathway files

In order for SBML4j to be able to process the KEGG pathway models they need to be translated to the
SBML format. We used the KEGGtranslator version 2.5 [1] for this. Please find more info on KEGGtrans-
lator here: http://www.cogsys.cs.uni-tuebingen.de/software/KEGGtranslator/. Go to http://

www.cogsys.cs.uni-tuebingen.de/software/KEGGtranslator/downloads/index.htm and download
the version 2.5 executable jar file, which you can run using your local java runtime installation. We used
the following command line options for translating the pathway maps in addition to providing input and
output directories for the kgml and sbml files respectively:

8

https://github.com/kohlbacherlab/pysbml4j
https://pecax.informatik.uni-tuebingen.de
https://github.com/kohlbacherlab/sbml4j
https://www.kegg.jp/kegg/rest/
http://www.cogsys.cs.uni-tuebingen.de/software/KEGGtranslator/
http://www.cogsys.cs.uni-tuebingen.de/software/KEGGtranslator/downloads/index.htm
http://www.cogsys.cs.uni-tuebingen.de/software/KEGGtranslator/downloads/index.htm

--format SBML_CORE_AND_QUAL

--remove-white-gene-nodes TRUE

--autocomplete-reactions TRUE

--gene-names FIRST_NAME

--add-layout-extension FALSE

--use-groups-extension FALSE

--remove-pathway-references TRUE

4.6 Upload models to SBML4j

You need a running SBML4j service for the next steps to complete. To get that run:

docker-compose up sbml4j

Once you see the message

Started Sbml4jApplication in x.xxx seconds

the service is up an running and you can issue http request to the exposed API. By issuing a POST
request to the /sbml endpoint one or multiple SBML formatted xml files can be uploaded to SBML4j.
For best performance we recommend uploading the model files one by one or in small chunks of 5 models
or less. Choose the same organism, source and version parameters for all pathway maps to ensure proper
integration in the next step. For details on the RESTful interface visit https://app.swaggerhub.com/
apis-docs/tiede/sbml4j/1.1.7

An exemplary curl command for uploading SBML models to a local service is shown below (you can
upload multiple files at once by providing multiple -F files=@ parameters to the curl command, but can
also just use one at a time) :

curl -v \

-F files=@/absolute/path/to/sbml/model/file1.xml \

-F files=@/absolute/path/to/sbml/model/file2.xml \

-F "organism"="hsa" \

-F "source"="KEGG" \

-F "version"="97.0" \

-o response.file \

http://localhost:8080/sbml4j/sbml

We redirect the response of the service here into the file ’response.file’ using the ’-o’ option. This file will
then contain a json-formatted response containing basic information about the uploaded model(s). Be
sure to at least save the provided ’uuid’ (or ’UUID’, they are identical) for each model as we will need
those later.

Using the pysbml4j package uploading SBML models with python is as easy as:

resp = client.uploadSBML(

[/absolute/path/to/sbml/model/file1.xml,

/absolute/path/to/sbml/model/file2.xml],

"hsa",

"KEGG",

"97.0")

print("The UUID of pathway in file1.xml is {}, of file2.xml it is {}"

.format(resp[0].get("uuid"), resp[1].get("uuid")))

pathwayUUIDs.add(resp[0].get("uuid"))

pathwayUUIDs.add(resp[1].get("uuid"))

Please note that the files provided need to be in a list, even when uploading only a single file as is shown
here:

resp = client.uploadSBML([/absolute/path/to/sbml/model/onlyfile.xml], "hsa", "KEGG",

"97.0")

4.7 Create pathway collection

A network mapping always refers to one pathway instance in the database. In order to build network
mappings for multiple KEGG pathways we combine all entities, relations and reactions in a collection

9

https://app.swaggerhub.com/apis-docs/tiede/sbml4j/1.1.7
https://app.swaggerhub.com/apis-docs/tiede/sbml4j/1.1.7

pathway element which can be used subsequently to generate network mappings. The endpoint /path-
wayCollection accepts a POST request with a JSON formatted body containing the elements: name,
description and sourcePathwayUUIDs. Name and description are used as pathwayIdString and pathway-
Description respectively. The field sourcePathwayUUIDs has to be an array of character strings, each
string being one UUID of a pathway that shall be added to the collection element.

curl -v \

-H "Content-Type: application/json" \

-d ’{"name":"BMC_Collection", \

"description": "This is the Collection for the BMC Publication",\

"sourcePathwayUUIDs":["909520db-8ca9-40df-bffe-af9e48e93c48", \

"9d959b42-f1da-4061-960b-4b58e1ba3c16"]}’ \

-o response.pwcoll \

http://localhost:8080/sbml4j/pathwayCollection

A simple python call making use of pysbml4j can look like this:

collUUID = client.createPathwayCollection("KEGG61-97.0",

"Collection pathway for all 61 KEGG pathways", pathwayUUIDs)

print(collUUID)

The endpoint returns the UUID of the created collection pathway, which can be used in the following
calls to create the network mappings.

4.8 Create network mappings

To create the network mappings from a pathway a POST request to the /mapping endpoint has to be
issued. The UUID of the pathway is part of the URL as can be seen here:

curl -v \

-d "mappingType"="PATHWAYMAPPING" \

-d "networkname"="PWM-KEGG-BMC" \

-o response.mapping \

http://localhost:8080/sbml4j/mapping/b6da7dc5-4dc4-4991-85c0-5ab75e2bf929

resp = client.mapPathway(collUUID, "PATHWAYMAPPING", "PWM-KEGG_BMC")

print("The created mapping has the uuid:{}".format(resp.get("uuid")))

The last part of the url (b6da7dc5-4dc4-4991-85c0-5ab75e2bf929) is the collUUID generated in the pre-
vious step. Be sure to fill in the UUID of your installation when creating the pathway collection. The
UUIDs are generated by SBML4j and will differ every time you run this procedure.

The artifical mapping type ’PATHWAYMAPPING’ can be used to not restrict the elements or relations
being mapped and will map every entity, relation and reaction into a network mapping instance. Such a
network mapping has been used for PeCaX to allow for the most broad view on the network context of
the genes of interest.

4.9 Prepare the Drugbank csv file

You can find the drugtarget information used in PeCaX at: https://go.drugbank.com/releases/

latest#protein-identifiers. You will need a free account on drugbank.ca to gain access to this
file, which is released under the ’Creative Common’s Attribution-NonCommercial 4.0 International
License.’ You will have to agree to these terms and conditions to continue with the next steps de-
scribed here. We used the ’Drug target identifiers’ file for all approved drug groups to get a broad
view on available and possible drugs and the genes and geneproducts they target. This was com-
bined with the DrugBank Vocabulary to map the DrugBankID of drugs to their name, availavle at:
https://go.drugbank.com/releases/latest#open-data. In order to reproduce the results found in
the publication two preprocessing steps need to be performed:

Filter out all rows that are not targeting genes in Humans (column ’Species’). Consolidate rows with the
same ’ID’ into one row, combining the elements in the ’Drug IDs’ of all those rows into one. Combine it
with the DrugBank Vocabulary Here we provide an exemplary R script to perform Step 2 above:

crea t e a csv con ta in ing one entry per drug t a r g e t i n g a human gene

10

https://go.drugbank.com/releases/latest#protein-identifiers
https://go.drugbank.com/releases/latest#protein-identifiers
https://go.drugbank.com/releases/latest#open-data

load genes wi th a s s o c i a t e d drugs
genes <− read . csv (” a l l . csv ” , header=TRUE, s t r ing sAsFac to r s = FALSE)
genes <− genes [order (genes$Name) ,]

load d i c t i ona r y f o r drugbank id and drug name
drugbank vocabulary <− read . csv (”drugbank vocabulary . csv ” , header=TRUE,

s t r i ng sAsFac to r s = FALSE)

crea t e new dataframe
f i l t e r e d genes <− data . frame (matrix (ncol = 2 , nrow = 0))
colnames (f i l t e r e d genes) <− c (”Gene .Name” , ”Drug . IDs”)

i <− 1
j <− 2

drug ids <− genes [i , ”Drug . IDs”]

f i l t e r f o r human genes and only have one entry per gene
while (j<=nrow(genes) && i <= (nrow(genes)−1)) {

gene1 <− genes [i , ”Gene .Name”]
gene2 <− genes [j , ”Gene .Name”]
s p e c i e s 1 <− genes [i , ” Spec i e s ”]
s p e c i e s 2 <− genes [j , ” Spec i e s ”]
i f (gene1 == gene2 && s p e c i e s 1 == ”Humans” &&

s p e c i e s 2 == ”Humans”){
drug ids <− paste (drugids , as . character (genes [j , ”Drug . IDs”]) ,

sep=” ; ”)
j <− j+1

}
else {

i f (s p e c i e s 1 == ”Humans” && (i s .na(genes [i , ”Gene .Name”]) |
nchar (genes [i , ”Gene .Name”]) > 0)){
f i l t e r e d genes [nrow(f i l t e r e d genes) + 1 ,] =
l i s t (genes [i , ”Gene .Name”] , drug ids)

}
i <− j
j <− j+1

drug ids <− genes [i , ”Drug . IDs”]
}

}

merge drug common names and drug i n f o s wi th a s s o c i a t e d genes
drugcsv <− data . frame (matrix (ncol = 8 , nrow = 0))
colnames (drugcsv) <− c (colnames (drugbank vocabulary) , ”Gene .Name”)
for (row in 1 :nrow(f i l t e r e d genes)){

gene <− f i l t e r e d genes [row , ”Gene .Name”]
drug ids <− unlist (s tr sp l i t (f i l t e r e d genes [row , ”Drug . IDs”] , ” ; ”))
for (drug in drug ids){

drug <− gsub (”\\ s ” , ”” , drug)
drugcsv [nrow(drugcsv) + 1 ,] = c (

drugbank vocabulary [drugbank vocabulary$DrugBank . ID==drug ,] ,
gene)

}
}

11

save new csv
write . csv (drugcsv , ”drug genes approved . csv ” , row .names = FALSE)

4.10 Add the Drugbank csv file to the network mappings

Using the csv upload functionality of SBML4j arbitrary data can be annotated onto network nodes. The
endpoint expects a ’type’ parameter, giving a character string describing the type of annotation that is
added, in our example the term ’Drugtarget’ is used, as the csv marks every gene symbol given as a drug
target for the provided list of ’Drug IDs’.

Please note, that since there can be multiple Drugs targeting the same gene or gene-product, the
annotation-names will include a numbering scheme in addition to the column names given in the csv file.

Make sure to set the ’networkname’ to ”PeCaX-Base” (case-sensitive). SBML4j for PeCaX is configured
to use the network with this name as basis for calculating the networks by default. If you want to use a
different name, make sure to also change the appropriate config parameter in the ’docker-compose.yaml’
file.

You can use the curl command to upload a csv file and annotate the created network mapping with the
contained data:

curl -v \

-F upload=@drug_genes_approved.csv \

-F "type"="Drugtarget" \

-F "networkname"="PeCaX-Base" \

-o response.drugbank \

http://localhost:8080/sbml4j/networks/a68645cb-f3bb-49d3-b05f-7f6f05debba3/csv

The uuid in the url (here a68645cb-f3bb-49d3-b05f-7f6f05debba3 as example) is the uuid of the PATH-
WAYMAPPING created in Step 7. Create network mappings and can be found in the response.mapping
file created in that section using the curl command. Be sure to replace the uuid shown here with your
own uuid as it is specific to your database.

The python package also offers this functionality:

net = client.getNetworkByName("PWM-KEGG-BMC")

net.addCsvData("drug_genes_approved.csv", "Drugtarget", networkname="PeCaX-Base")

Now your installation of PeCaX should contain the same base network-database that can be found in
the demo-version at https://pecax.informatik.uni-tuebingen.de

4.11 Save the network database to reset your networks in PeCaX in the future

Before backing up the network database you need to stop the service with

docker-compose down

Then you can use the provided script to backup the database:

./sbml4j.sh -b pecax-base

This will create two ’.dump’ files in the db backups folder containing the database backup you just
created. For security reason it is advised to reset the port setting for the sbml4j service as described in
step 4.1.1. Make sure to backup your database dumps at a save location for later reference.

5. Start PeCaX services via

docker-compose up pecax

6. In Browser of your choice open localhost:3030. We recommend using full screen to enjoy the full experience.

7. Exit and terminate PeCaX pressing ctrl+c and enter

docker-compose down

12

https://pecax.informatik.uni-tuebingen.de

Restoring the state of the database The networks are stored in a docker volume and are thus persisted between
individual PeCaX sessions. If you however delete or prune your docker volumes, while the service is not running,
the network volume will be deleted and you will have to restore the database. Before restoring the network database
you need to stop the service with

docker-compose down

Then you can revert your database back to the previously saved state by using:

./sbml4j.sh -r pecax-base

4 Software Availability

The source code of PeCaX is open source under MIT license and available on https://github.com/KohlbacherLab/
PeCaX-docker. If you would like to contribute, you may

• open an issue on GitHub,

• fork the repository, make changes and submit a pull request for us to review the changes and merge your
contribution.

Please contact us on mirjam.figaschewski@uni-tuebingen.de for further information/help.

Listing 1: KEGG Pathway Maps used in the demo version

hsa03320 PPAR s i g n a l i n g pathway
hsa04010 MAPK s i g n a l i n g pathway
hsa04012 ErbB s i g n a l i n g pathway
hsa04014 Ras s i g n a l i n g pathway
hsa04015 Rap1 s i g n a l i n g pathway
hsa04020 Calcium s i g n a l i n g pathway
hsa04022 cGMP−PKG s i g n a l i n g pathway
hsa04024 cAMP s i g n a l i n g pathway
hsa04060 Cytokine−cytok ine r e c ep to r i n t e r a c t i o n
hsa04064 NF−kappa B s i g n a l i n g pathway
hsa04066 HIF−1 s i g n a l i n g pathway
hsa04068 FoxO s i g n a l i n g pathway
hsa04070 Pho spha t i dy l i n o s i t o l s i g n a l i n g system
hsa04071 Sph ingo l i p id s i g n a l i n g pathway
hsa04072 Phosphol ipase D s i g n a l i n g pathway
hsa04080 Neuroact ive l igand−r e c ep to r i n t e r a c t i o n
hsa04110 Ce l l c y c l e
hsa04115 p53 s i g n a l i n g pathway
hsa04150 mTOR s i g n a l i n g pathway
hsa04151 PI3K−Akt s i g n a l i n g pathway
hsa04152 AMPK s i g n a l i n g pathway
hsa04210 Apoptos is
hsa04218 Ce l l u l a r s ene scence
hsa04310 Wnt s i g n a l i n g pathway
hsa04330 Notch s i g n a l i n g pathway
hsa04340 Hedgehog s i g n a l i n g pathway
hsa04350 TGF−beta s i g n a l i n g pathway
hsa04370 VEGF s i g n a l i n g pathway
hsa04371 Apel in s i g n a l i n g pathway
hsa04390 Hippo s i g n a l i n g pathway
hsa04510 Focal adhes ion
hsa04512 ECM−r e c ep to r i n t e r a c t i o n
hsa04520 Adherens junc t i on
hsa04630 JAK−STAT s i g n a l i n g pathway

13

https://github.com/KohlbacherLab/PeCaX-docker
https://github.com/KohlbacherLab/PeCaX-docker
mailto:mirjam.figaschewski@uni-tuebingen.de

hsa04915 Estrogen s i g n a l i n g pathway
hsa05200 Pathways in cancer
hsa05202 Tran s c r i p t i ona l m i s r egu l a t i on in cancer
hsa05203 Vi ra l c a r c i n o g en e s i s
hsa05204 Chemical c a r c i n o g en e s i s
hsa05205 Proteog lycans in cancer
hsa05206 MicroRNAs in cancer
hsa05210 Co l o r e c t a l cancer
hsa05211 Renal c e l l carcinoma
hsa05212 Pancreat i c cancer
hsa05213 Endometrial cancer
hsa05214 Glioma
hsa05215 Prostate cancer
hsa05216 Thyroid cancer
hsa05217 Basal c e l l carcinoma
hsa05218 Melanoma
hsa05219 Bladder cancer
hsa05220 Chronic myeloid leukemia
hsa05221 Acute myeloid leukemia
hsa05222 Small c e l l lung cancer
hsa05223 Non−smal l c e l l lung cancer
hsa05224 Breast cancer
hsa05225 Hepa to c e l l u l a r carcinoma
hsa05226 Gast r i c cancer
hsa05230 Centra l carbon metabolism in cancer
hsa05231 Chol ine metabolism in cancer
hsa05235 PD−L1 expr e s s i on and PD−1 checkpo int pathway in cancer

5 Use case

For the preparation of an MTB case, the user logs in with the project ID which is the MTB date. Afterwards,
the user uploads a VCF file with SNVs and and a TSV-file with CNV information. The assembly is not changed
by the user if the default option was used in the NGS-pipeline. It is known, that the patient of interest has the
diagnosis with ICD10 code c341 and the user decides to filter the clinical variant annotation by it. The users starts
the pipeline. The user waits for the pipeline to finish. Once finished, the results are displayed in tables and the
networks are shown next to them. Afterwards, the user looks into the somatic mutations in known driver genes.
The user looks up a gene in UniProt and Ensembl opened in extra windows. OnkoKB is visited for the associated
mutation in an extra window. Information of interest is quoted and saved by the user. The user filters the table
for a specific tumor type. The table is reduced to the genes with the selected tumor type. Afterwards, the user
searches the gene in the network. The user inspects the neighborhood of the gene of interest. The user inspects a
drug, that is targeting a neighbored gene inhibiting the gene of interest, on DrugBank in an extra window. The
user makes notes and saves them. The user highlights a specific KEGG pathway and the genes are grouped by it.
The user zooms into a part of interest and downloads it. Then the user highlights the gene row and examines the
other tables with focus on this gene. The user looks into the reference given for a somatic mutation with known
pharmacogenetic effect in an extra window and saves notes made. The user saves the tables in PDF and shares the
PDF and saved images and/or the log-in ID and job ID with the clinicians participating in the MTB.

6 Performance

The performance was evaluated on a MacBook Pro with a 3.1 GHz Dual-Core Intel Core i5 processor and 16 GB
2133 MHz LPDDR3 memory with a local installation of PeCaX. Table 1 contains detailed information on the
processing time of an analysis from submitting the data until the full report is displayed.

14

Data Clinical Annotation Network generation Overall
1 2 3 1 2 3 1 2 3

any cancer type.vcf 36 42 43 122 140 130 158 182 173
breast adenocarcinoma.vcf 43 46 43 23 20 20 66 66 63
chronic myeloid leukemia.vcf 42 50 53 10 9 9 52 59 62
colorectal adenocarcinoma.vcf 42 42 42 48 48 50 90 90 92
cutaneous melanoma.vcf 42 42 53 63 48 55 105 90 108
lung adenocarcinoma.vcf 43 42 42 65 69 73 108 111 115
lung.vcf 42 52 42 22 28 30 64 80 72
non small cell lung.vcf 42 42 52 16 20 25 58 62 77
thyroid carcinom.vcf 42 52 62 17 17 20 59 69 82
any cancer type.vcf + .tsv 381 374 382 248 291 349 629 665 731
breast adenocarcinoma.vcf + .tsv 283 289 296 63 82 88 346 371 384
colorectal adenocarcinoma.vcf + .tsv 254 268 137 73 81 81 327 349 218
cutaneous melanoma.vcf + .tsv 194 166 183 183 221 208 377 387 391
lung adenocarcinoma.vcf + .tsv 182 183 180 64 110 95 246 293 275
lung.vcf + .tsv 208 163 172 86 133 136 294 296 308
non small cell lung.vcf + .tsv 85 112 82 21 38 33 106 150 115

Table 1: Processing time [s] for the steps of clinical annotation from the time of job submission until the report
is displayed, network generation from receiving the genes until the networks are displayed, and overall time from
submitting a job until the full report is displayed. Data was analyzed three times.

15

	Introduction
	Components
	Clinical Annotation Pipeline
	Input & Parameters

	Network Generation
	Interactive Graphical User Interface
	ClinVAP Report
	Interactive Network Visualization

	Data Management

	Implementation & Availability
	Demo-Version
	Usage with Docker
	Requirements
	Availability
	Implementation

	Software Availability
	Use case
	Performance

