Bayesian compositional regression with microbiome
features via variational inference
Supplementary Material

DARREN A. V. SCOTT! and ALEX LEWIN!

L London School of Hygiene and Tropical Medicine, London, UK



Contents

M2 CAVIUpdates|. . . . . o oo

(1.3 Pseudo Updates| . . . . . . ... ... ...

14 BEULBON .00 0000

[2

RJMCMC moves and model proposals|

2.1 Birth-death and swap moves| . . . . . . ..

B_Proofs

o

[3.1 Proot: Simplification of the constraint matrix| . . . . ... ... ... ...

[3.2  Proot: Eigenvalues of the constraint matrix|

igures

25

29

37

38

40

41

41

43

44

46

50



1 CAVI-MC Updates

This section contains all of the variation inference updates for the CAVI-MC.

1.1 Parametrisation

The full prior parametrisation is defined below. The likelihood and first level parameters
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The hyperparameters are:
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The prior parametrisation is defined above, where the indexes s, j, g assign unique vari-

ables per index where as a, A, 7 and b assign single parameters. The design matrix X

contains the continuous covariates, W contains the categorical covariates as dummy vari-

ables with reference to an intercept and Z contains the log microbiome data.

By imposing a constraint on ¢ we introduce a covariance between the elements ¢; which



we capture within the mean field family. The joint posterior is

p(y,9) =p(y|") {Hp Bslw, 7s) % Hp Vs|w) } X {Hp(Cng) Xp(xg\g)}
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Define the mean-field approximation distribution as

q(9) =q(a) x {H Q(ﬁs,%)} x {H q<cg,xg>} x q(8,1,€) x q(w) x q(k) x q(0)x
q(0%) x q(wa) x q(w) x q(v) x q(ba) % q(bw) x q(by) % q(v) x q(T)

with f(9)") as the j-th moment of f(+9) with respect to ¢(9), E,[f(9)].

By defining a block in the mean field approximation as a multivariate density ¢(0,¢),
this allows us to incorporate correlation between the elements in 6 (and the corresponding
elements in &) related to the compositional explanatory variables and the correlation

between 0; and {;. Now the expectation is with respect to the vector.



1.2 CAVI Updates

The CAVI update is proportional to
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By exponentiating and completing the square we have

with updates
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where cst is a constant with respect to s and 5. The spike-and-slab prior forces the

latent selection variables into the likelihood component
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and thus by calling
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The index g denotes the categorical factor groupings g = 1, ..., G and m, is the dimension
of the vector ;. As the categorical factors are coded with reference to the intercept, m,

is always 1 less than the levels in the categorical factor.
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where cst is a constant with respect to ¢, and x,. The spike-and-slab prior forces the



latent selection variables into the likelihood component
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and thus by calling
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and the vector pg, and matrix X,
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Unlike in the 5, updates for the free variational parameters, these are still function of the

vector §&. On completing the square we have
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We can then identify the singular multivariate normal density
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We can identify the singular multivariate normal density (1.40) which is a function of
& and v. The € and 9 component ([1.41)) contains terms which do not have a conjugate
update. The first term
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or

q(0]&,v) = SMVN(T¢ug,, TeXp, Te)(0) (1.44)

and
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with parameters

a, = %{ ;(%)(”} + tu (1.48)
b = %{ > (B + } + (b)) (1.49)

For v we have
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T
A%) + (—a, — 1) logv — bvv_l] + cst

clogo(— o { om0} —an 1) o ({060} + 00))

thus
q(v) = Inv — Gamma(a}, b)) (1.50)
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log ¢(w) Z(”ys)(l) logw + Z(l — )M log(1 — w) + (a, — 1) logw + (b, — 1) log(1 — w)

o (aw +) () - 1) logw + (bw,s +p— Y ()" - 1) log(1 — w).

which implies that

q(w) = Beta(a,, b;,) (1.54)
with parameters
ah = au+ 3 () (1.55)
b, =bs+p—> (1) (1.56)
where
(@)W = a}/ (af, +0;) = a/ (au + bu +p) (1.57)

(logw)™ = W(a;) — W(ag, +b})

w
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w

where W(-) is the digamma function.
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Thus we have

q(wq) = Inv — Gamma(al, b})

with parameters

where
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thus
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with parameters

ay = Gy + Qp
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with parameters
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with parameters
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where

*

(e =1L (1.85)
T
(logo=)W = T(v*) —log 7" (1.86)
The update for g(k) is
log q(k) « |log Hp & k) + logp(k) | + cst

[(ijlog +Z 1 — &) log( 1—/@) [Zgﬁu] a; — 1) log(x)+

+ (b; — 1) log(1 — li)] + cst

As the update for £ from the construction of the MCMC and the SMVN is

=E,|$1] 3¢ # 1}] =@ (1.87)

the update can be solved in closed form, using the MCMC marginal expectations.

logq(k) = (Z(Sj)(l) +a; — 1) log(x (d Z )WY 4 b; — 1) log(1 — k) + cst

J

q(k) = Beta(a,b’) (1.88)
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with parameters

ay = a, + Z(fj)m
J

b= bt d— Y (E)"
J
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K

where W(+) is the digamma function.

The update for ¢(p) is

log q(0) = E_, [log p(x,|0) + log p(0)] + cst
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xE_, [Xg log(o) + (1 — Xg> log(1 — 0) + (a, — 1) log(o) + (b, — 1) log(1 — 0)]

& ((Xg>(1) +a, — 1)log(o) + (1 — (Xg)(l) + b, — 1) log(1 — o)

q(0) = Beta(ay, b)

e
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with parameters

(y = g+ Z(Xg)(l)
9
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g
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where

1.3 Pseudo Updates

The pseudo updates are derived in full. The prior parametrisation is

1 1 ’ .
p(|A;,T;) = WGXP(—EQ?) 50(Qj)1 K
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(7T = 1,y) = Nuag. 0d,),  a(]T; =0,y) = 60(2;)) (1.104)

which gives us the update

-1

o = [1ZilP*(0™) + Eg[AFHT; = 1]]

(0—2)“( D1, =Y Zi()! ZX (B =" W <1>>]

k#j

The terms in the ¢(Y;), using A; = 0 when T; = 0, are proportional to

1 1
P15 = 1) oxexp (5 logad, + (log ) — (an +3/2)Ey(log A5 = 1) + 2y o2+

2
+ aalog(ba) — log(T'(an)) — baAE,[A T, = 1])

p(T; = 0) <(log(1 — r))™

Which after normalisation is

(1) =

1 1
L+ exp {5 log(73) + (log(1 — 1))™ — (log k)" + S E, (log A4[T; = 1)+

1
— 5t 005 — aalog(ba) + log(T'(aa)) + (as + 1)Eq(log A;|T; = 1)+

-1
+0aB[AF T = 1]}]
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Note that now

() = pa (1) (1.105)

()@ = (a7, + 4 ) (T)) . (1.106)

The approximating ¢ density for A;, which is proportional to A; but conditional on T

is

log (A1) o By, )| logp( 5, Ay) + log p(2]T,)]
1 1
x Eq—a,,-1)) 5 log A]-_lTj - §Q§T]~A;1 + T;(aa +1)log Aj_l—f—

— BATGAT (1= T,)60(A,)]

_ 1 _
X Eq(—A]-,—T]-) (lOg AJ 1)T] <§ +an + 1) - Ag 1T] (293 + bA) (1 - Tj>(50<A])
which gives us
N R ¥ (1-75)
A1) ~ [1G(Alaa, 3] [00(A)] (1.107)
Under ¢
q(A;]T; =1,y) ~ IG(Ajlai,. br,),  a(Aj]T; = 0,y),~ do(4;)
with updates
. 1
Ir; =5 +aa (1.108)
* 1 2
1
= 5( —i—uQ])—l—bA (1.109)
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This gives

Eq(A7YYT; =1) = ajx,;/bh (1.110)

E,(log Aj|T; = 1) = log<b*Aj) — U(ah)

The auxiliary parameters create an alternative DAG which is updated via a “separate
branch” of pseudo updates which helps us to approximate the model in order to guide the
MCMC step. These updates are refined at each iteration by the full VI updates which
account for the constraint. The “sparsity” parameter x and the hyperparameters aa, ba

which are set to ay, by, provide a link back to the constrained model.

q(B,v)

»
|

q(6,9,$)

q(x)

v
|
|

Figure S1: Diagram depicting the order and structure of the CAVI updates. Although the
CAVI-MC permits any order, the pseudo updates for the auxiliary parameters help guide
the MCMC and are performed directly before the ¢(6,1,€&) MC update. The pseudo
updates for an unconstrained model are in the dashed box and branch off prior to the
joint ¢(0,,&) update. The q approximating densities ¢(A;|T; = 1) are then used to
guide the MCMC step.
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1.4 ELBO

The objective of VI is to find the candidate from a family of densities D which best

approximates, the one closest in KL divergence, to exact conditional

q"(¥) = arg min KL(q(9)|[p(d|y))
q*(9)eD

This objective is not computable as it requires computing marginal likelihood. If we

expand the expression

KL(q(9)[|p(Fy)) = Eq(9)[log ¢(9)] — Eq)[log p(9,y)] + log p(y)

we can identify the elements which are a function of the parameters in the model. As the
KL cannot be computed, an alternative objective that is equivalent to the KL up to an

added constant is the evidence lower bound (ELBO).

L(q) = Equpllogp(9,y)] —log q(9) (1.111)

This function is the negative KL divergence plus the marginal likelihood, and is optimised
at each iteration of the CAVI in order to monitor its convergence. The computational

details are:

L(q) = Eqo)[log p(y, )] — Eqs)[log q(9)]

=A(y|") + B*(alwa) + Y B(Ba,vs|w,w) + B(6,%, £|r) + > B(Cy, xglv, 0)+

g

+ C(w) + C(k) + C(0) + D(w) + D*(wy) + D(v)+

+ F(o?7,v) + G(v) + H(by) + H*(by) + H(by).
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The functions are

A(ylB,8.¢,0°) =E,[log p(yl8,6,¢, 0%)]
n n _ 1 2
:Eq —5 10g<27T) + 5 10g(0' 2) — 27‘2 ||U||

_ 2
W (@) |u|®
2

n n
=—3 log(27) + B log(c?)

where ||u||? is defined in ([1.82).

— 5w (@) (1.112)

B(Bs,7s|w, w) =Ey[log p(Bs|vs, w)] + Ey[log p(vs|w)] — Eq[log q(Bs, vs)]

1 1 1
- M _z= - -1\ | _ a2
=(7s) [ 5 log(2m) + 2(logw ) ] E, [Zw%ﬂs] +

+ (1= (7))o (Bs) + (1) P (log w) ™ + (1 = (7)) (log (1 — w)) P+
+ %(%)(” {log(%) + log 02,3] +E, [ﬁv (55 — 28455 + ué,sﬂ +

- (1 - (,78)(1))60(/85) - (75)(1) log(’ys)(l) - (1 - (75)(1)) 10g<1 - (,78)(1))

(1.113)
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Simplifying using E, {ﬁ% (ﬁf — 2Bspp,s + ,uzg,s>] = — (7)1 /2

_(Vs)(l) —1\(1) (1) 2 1)
B(Bs, vs|w, w) = 5 (logw™)"" +2(logw)"™” + 1 +log oy, + 1 — 2log(7s) |+
1)
-0 o+ w4 (1114)

- ()0 [<log<1 —0)® 4 log(1 - mﬂ))}

B(Cy, Xglvs 0) = Eqllog p(Cgl g, v)] + Eqllog p(xgl0)] — Eqllog q(Cy, X))
—(xy) { - % log(2m) + %(IOg U—l)u)] - E, {%ng;fgg} + (1.115)
+ (1 - (X9>(1)>50(Cg) + (Xg)(l)(log Q)m + (1 - (Xg>(1))(10g(1 - Q))(1)+

(xg) ™ {mg log(27) + log det<z<g>] — (1= (xg)™)d0(¢y) — () log (xg) "

—~

DO | —

+

+E, Bxg(Cg —be,) 8 (G ucg)l — (1= (xg) ™) log(1 = (xo)")

Simplifying using E, [Xg (szg?cg) } = mg(Xg)(l)

. 1) 1
X _
B(¢y, xg|v, 0) :% (mg(logv 1)(1) — )0 (tr(3e¢,) + ug;ugg) + log det(X¢,) + my+

+ 2(log 0)M — 2 log((xg)(l))> + (1.116)

+ (1= (o)) <log(1 — (xg)") + (log(1 — 9))”)
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B(0,€,9]) =Eyo) | o p(01.€) + logp(]€) +10g p(€)| — Buogy(o) | lo5 (6, %,€)
(1.117)

The approximating density is only known up to a constant of proportionality but this is

sufficient for the ELBO calculations.

P(8.€.9))] = (40"~ 1)log(2m) — (log(det” (TeD (3 Te) -+

Eqw>[10 (
SOL(TeDTe 09 + 3 2(6) M log )™ + 31— (€))log )

J
= (ay + 1)(&log(1) D = by > (&7 )W + (ay log(by) — log(T(ay)) Y ()M
J J J
The ¢ expectations (&;log(t;))® and (&5 @ can be found using the law of iterative
expectations but these will cancel. The free parameters are a function of £ so when we
take an expectation we have

1
5(Mg;Tg(ngeng)JrTweg)(1)+

(log(det (TeX Te))) ™ — —(log(det (TeD(te) Te))) M+

+ Zf (log k)™ + Z (1= &) (log(1 — k)W — Z(aw +1) (& log(v;)) M+

Eq(ﬁ)[long £, WY)] o Eq() [log(SMVN(H))} +

+ (ay log(by) —log(I'(ay)) Y (&)™ = by Z &Yy (1.118)

J
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o) | log(SMVN(9))] = - %((dg(l) 1) log(2r) — %(mg(det*(ngng)))(lm

1
- 5{(9§(T525T§)+95)(1) — 2(6f (T¢XeTe) M Tepag, )+
+ (MiTg(ngng)JrTgueﬁ)(”} (1.119)

Bringing together the expression for B

B(6,%.£l") =Eyio) [ 10a p(B1€, ) + logp(W|E, ay. by) + logp(€l)| — Eyiay [log (6, €)
== %(log(det*<T5D(¢5)T5)))(” - %(log(det*(TgEng)))(1)+
B %{(eg(TﬁD(d’f)Tﬁ)mf)(” ~ (07 (TeZeTe) 0 |+ (1.120)

+ (60 (TeSeTe) Tepag, )

(k) =Eq[log p()] — Eq[log ¢(x)]

:log B(CL* b*) - 10gB<CLm bm) + (az - am)(log ’i)(l) + (b.: - bn)(log[l - H])(l)

R) 7R

(1.121)
C(w) =E,[log p(w)] — E,[log g(w)]
=log B(a},b) — log B(ay, b,)+
+ (a}, — a,,)(logw)M + (b7 — by,) (log(1 — w))M (1.122)
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N

C(o) =Ey[log p(0)] — Eq[log q(0)]

=log B(a},b}) — log B(a,, b,) + (a}, — a,)(log Q)(l) + (bz —b,)(log[l — g])(l)

)70 o

(1.123)

D(w) =Eq[log p(w)] — Eg[log g(w)]
=E, {aw log by, — log T'(ay) + (@ + 1) logw ™ — bwwl} +
—E, [az, logb%, —log'(aX) — (a + 1)logw ™" + b*wwl]
—a,(log b)Y — a?, log b, — log I'(ay,) + log I'(a%,)+

+ (aw — ay,)(logw™") W + (b, — (b,)) (w ) (1.124)

w

D*(w,) =Ey[log p(wa)] — Eqllog ¢(wa)]

=E, {aa log by — log T(ag) + (aq + 1) logw, ' — bawgl} +
- E, {a;‘; log b, —logT'(a%) — (af + 1) logw,* + wagl]

—aq(logbe)M — a’ log b’ — logT'(aq) + log I'(a’ )+

+ (aa — az)(log wy, ") + (0, — (ba) V) (w, )Y (1.125)
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~

D(v) =Eq[log p(v)] — Eq[log q(v)]
=E, [av log b, —logT'(a,) + (a, + 1) logv™" — bvv_l} +
—E, [a; log b — logT'(a}) — (a* + 1) logv™! + biv_l}

—a,(logb,)" — a}logb; — log I'(a,) + log I'(a})+

+ (av = a})(logv™)W + (0 = (b)) (0™ (1.126)

F(o®|r,v) =E,[log p(c®|7,v)] — E[log q(0?)]
= [r(log )™ —1ogT(7) + (7 + 1)(log eV — () D (e72)V] +
— [7*(logv*) —log T'(7*) + (7* + 1)(log o)V + v*(c= )]
—logT'(7*) — log (1) + (7 — 7*)(log e=2)® 4 7(log )V +

— r*(log ) + (6D (v — (1)D) (1.127)

G (v) =Eq[log p(v)] — E4[log ¢(v)]
=a, logb, — a} logh; +logT'(a}) — logT'(a,)+

+ (a, — a3)(log )V + (b, — b3)(v)W. (1.128)

35



H{(by) =Eq[log p(bw)] — Eqlog g(bu)]

=E, [ab log by, — log I'(ap) + (ap — 1) log by, — bbbw} +
E, {az log by —logI'(a;) + (aj — 1) log b, — bew}

—aylog by — a; log by —logT'(ay) + log (a}) + (log by) Y (ay — a})+

+ (bu) M (b5 — by) (1.129)

H*(bo) =Eq[log p(ba)] — Eqllog q(ba)]
=E, {abﬁa log bp.o — log I'(ap.a) + (apa — 1) log b, — babb,a] +
E, {a;a logb;, —log'(a ) + (a4, — 1) log be — bebva}

=00 108 by,o — a3, J0g b}, —log I'(apq) + log I'(a; ) + (log ba)(l)(ab’a — Qp o)t

+ (b)) (B o — b)) (1.130)

A~

H(bv> ZEqUOgP(bu)] - ]Eq[log Q<bv)]

=E, {abv log by, — log I'(ap,) + (ap, — 1) log b, — bbvbv] +
Eq |:aZ’U log bZ’U - lOgF(CLZU> + (a;;v - 1) IOg b’U - vabU:|

=ay, log by, — ay, log by, — log I'(ay,) + log I'(ay,) + (log bv)(l)(abv —ap,)+

+ (b)) (0, — b) (1.131)
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2 RJMCMC moves and model proposals

This section explains the RIMCMC moves in detail. In the RIMCMC the proposal for
Y;1€; = 1 is from the ¢ approximating density of the auxiliary parameter €2;, where the
free parameters are obtained from the pseudo updates. As ¢(0], €) is available in closed
form, we are able to sample directly from it. Since the proposals do not depend on
their current values, this leads to a reverse move which is a random function and thus a

Jacobian which is equal to 1.

The RIMCMC involves the following steps:

e Select a birth-death or swap move with probability ¢, 1 — ¢.
e Propose a new model &' with probability j(&,&’) .
e Generate u from our proposal density g(ul-) ~ ¢(0'|[¢", &) [, m(¢jlai,, b, &)

e Set (025,,7#,), Y, u') = h(B y), e, u) where h is a specified invertible mapping func-

tion.

e Accept the proposed move to model & with probability

ap = min ¢ 1,

[Q(elb’a ¢, 'l/)/)Q("vblu gb’)}jm(ﬁl, 5)9’(u’]-) ‘ ah(e(&w)’ ’l/fg, u)
[a(6ly. £ 9)a(®,€1y)| jn (€. €)g(ul) | XOewr o)

where the target is in the square parenthesis.

The acceptance probability for the RIMCMC between-model move, as the Jacobian is

equal to 1, simplifies to

(2.1)

ay = min{l G(E P y)jm (€, E)m(]8) }

"q(& Ply)im(&. )T (Y']€)
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where j,,(&,&’) is the proposal probability for the latent variable selection parameter &

(which depends on the move type and the data) and

1 1 .
log q(, &ly,.) §ug(€’w)Tf(TgEg(gwT§)+T§u9(§’w) + 5 log<det (TgEg(w)Tg)>+

~ 5 ToBldet" (FeD($)TO) + Y (log ) + 37 (1 - &) (log(1 ~ 1)) V¢

J J

— (ay +1) Z §jlog(1h;) — by Z &byt + (ay log(by) — log(I(ay)) ij- (2.2)

As described in the main paper, a univariate approximation is used to calculate j(&,&’)

in the birth-death or swap move of the RIMCMC.

2.1 Birth-death and swap moves

To guide the RIMCMC over a large binary space, we use a univariate approximation
p(&; = 1]19) of the joint approximating density ¢(1), &) relative to the jth element. The

probability of a new model j,,(£,&’) is a function of this approximation and the move

type.

Each time a variable is selected for (or removed from) the model, the remaining approx-
imate probabilities proposal for all elements outside of the model must be renormalised.
The normalised probabilities for a variable h to be selected for the model, the birth move
is

Pr(&n = 1]9)
> jem Di(& = 1]9)’

where any p(¢; = 1|9) below a small threshold g, (set at 1 x 107°) is replaced by ¢, to

br(9) =

(2.3)

avoid zero probabilities. The normalised probabilities to remove a variable h from the
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model M, the death move is

1 _ﬁh(gh = 1|’l9) “+ €4
Y iem(I = pi(& = 1]9) +€q)

dn () = (2.4)

as we select the variables to remove with probability inversely proportional to the approx-
imate probability of inclusion. ¢, guarantees that the probabilities are comparable when
they are close to the limit of their domain. The difference between the groups is relative

to the size of 4.

If 7 is the current iteration, define > j(fj)m = (d¢)!! the size of the current model in the

MCMUC, the proposal is generated in the following way:

Sample (birth-death) and swap with probability ¢ and 1—¢ respectively if 2 < (dg)m < d:

e (Birth-Death) Sample uniformly birth or death:

— (Birth): If (d¢)l! = 0 add 2 variables else add 1.

i cin) . Im(E&HE) _ 9(0-5)d(9)
(de) # 0 (Birth) : TP = 3053 (25)
0 — o (Bipe) . 2858 _ $(0.5)

— (Death): If d¢ = 2 remove 2 variables else remove 1.

(de) — 2 (Death) - Jm (€', €) _ $(0-5) (b (9)bw) () + by (9)bw (9))

Jm(&,€') ¢(0.5)

Ju(€.€) _ 6(0.5)0(9)

(4] ea :
(de)"™ ¢ {0,2} (Death) (€ €) ~ $(0.5)d(0)

When we add two elements h and [ the order is not important. As the probability of
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selecting each element is not the same, we have to add the probabilities so that

by (9)by (V) + by ()b (9) (2.9)

is the probability of choosing element A first and element [ second plus the probability of

choosing element [ first and element h second (the order is in the bracket).

e (Swap):

— Sample a variable included in the model A and swap with one outside I.

(Swap) :

jm(€',€) (1 — 0)di(9)bn(9) (2.10)

2.2 Within-model moves

Within-model samples are included so that both @ and 8 are sampled sufficiently. This
enables the calculation of ¢ expectations within the ELBO and the free parameter up-
dates for q(0?). Its is particularly important when estimating ||u||®®) as the calculation has
to be split into its component parts, because the latent variables which perform variable
selection need to be incorporated for the expectations. If 8]€, 1) has not been sampled suf-
ficiently to estimate [, [0§TZ§T Z:0;|, then the cross product terms may not be sufficiently

large enough to prevent the dot product from having a negative value.

The within-model move is performed after a successful between-model move and for a
random subset of the total number of iterations. Conditional on &, propose 9; for each j

element in the model

m(Y;l& = 1) = IG(Yy]ay,, ba,) (2.11)
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and then propose the vector 6 directly from the target distribution

T(0¢|&, 1) = SMV Ny (0¢| oy o )

The acceptance probability simplifies to

- {1 q<¢'|y,£>w<ws>}
" (el E)r(4]€)

where log q(|€,y) is proportional to (2.2)).

3 Proofs

Here are some simple proofs of the results used in the derivations.

3.1 Proof: Simplification of the constraint matrix

We can simplify the calculations. TT? = TT = T. If we define the matrix

1—1/d —1/d ... —1/d
. ~1/d 1-1/d

~1/d

d ... —1/d 1-1/d
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Then for the diagonal component of T'T we either have entries corresponding to the dot

product of i o _
1-1/d 1-1/d
—1/d —1/d d—1
. = (1-1/d) + =5~ =1-1/d (3.1)
—1/d —1/d

where 1 — 1/d is in the same position in the vector. The off-diagonal entries correspond
to dot product of vectors where the position of the 1 — 1/d terms are not matched which

always gives us

(1—1/d) x (=2/d) + (d—2)/d* = —1/d O (3.2)

Using the matrix determinant lemma where A is an invertible square matrix and u,v

are column vectors

det(A +uv") = (1 +v" A7 "u) det(A) (3.3)

we can prove that the determinant of this matrix is zero. Express T as

T = (L — (1/d)1axa)
—1/Vd
=1, + : 1/vVd ... 1/V/d
—1/Vd

Thus

~1/Vd
det(T) =1+ |1/v/d ... —1/Vd : (3.4)
1/Vd

—1-1=00 (3.5)
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3.2 Proof: Eigenvalues of T comprise of d — 1 1’s and one 0.

To find the eigenvalues of T need to solve
det(T — M) =0
for . Using the lemma in Equation (3.3) and T — A\l = A + uv” where

—1/V/d 1/v/d
A = diag(1 — \) U= : v = :

—1/V/d 1/v/d

we have

det(T — AI) = (1 + v"diag((1 — A)"")u)(1 — N)*

=(1-(1=2)"Ha-N

= A1 =N
Therefore the eigenvalues for T are

M dgai=1  M=00
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3.3 Proof: T=T"

Using the SVD T can be expressed as UAV. As T is symmetric UAV = UAU. The
pseudo inverse is

At

T+:UA+UT: ul ud U’l ud
Adty

ul o e ud ul o e ud

=T0

This approach can also be used to solve the pseudo determinant det*(0T) (where 6 is
a scalar) which is a product of the non-zero eigenvalues. The eigenvalues of the scaled

matrix can be found solving det(6T — AI) = 0.

det(0T — AI) = (1 +v7 A~ ) det(A) (3.10)
where
—+/0/d 6/d
A = diag(d — \) U= : v = : (3.11)
—/0/d 6/d
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Simplifying gives

det(0T — AI) = (1 4+ 07 A" w) det(A) (3.12)

==\ — N (3.13)

The eigenvalues, found by setting this expression to zero are

)\1,)\2,...,)\0{,1 :9 )\d:O |:| (314)

Thus the expression

det*(2rwT) = (2mw)*?, (3.15)
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4 Tables

Tables 9 to 16 contain the squared bias diagnostic for the additive-log-ratio simulation

experiment for each signal-to-noise ratio (SNR).

Table 9: Table of bias for the additive-log-ratio model with SNR of 0.5 and d of 45.

Method p ‘ Squared Bias
Lasso 0 | 0.868 £ 0.406
Lin 0 | 0.821 &+ 0.39
Bates 0 | 0.842 £ 0.547
VB 0 | 0.780 £ 0.409
Lasso 0.2 | 1.160 & 0.164
Lin 0.2 | 1.167 £ 0.444
Bates 0.2 | 1.047 4+ 0.612
VB 0.2 ] 1.022 £ 0.751
Lasso 0.4 | 1.873 & 0.587
Lin 0.4 | 2.096 £+ 0.825
Bates 0.4 ] 1.739 £ 0.975
VB 0.4 | 2.146 £ 1.486

Table 10: Table of bias for the additive-log-ratio model with SNR of 0.5 and d of 200.

Method p \ Squared Bias
Lasso 0 | 1.386 £ 0.466
Lin 0 | 1.579 + 0.465
Bates 0 | 1.201 £ 0.807
VB 0 | 1.461 £ 0.511
Lasso 0.2 | 2.010 + 0.719
Lin 0.2 | 2477 £ 0.790
Bates 0.2 | 1.764 £ 1.425
VB 0.2 | 2.070 £+ 0.624
Lasso 0.4 | 3.041 4+ 0.979
Lin 0.4 | 4.008 £+ 1.359
Bates 0.4 | 2.798 £ 2.226
VB 0.4 | 4.354 £ 2.960
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Table 11: Table of bias for the additive-log-ratio model with SNR of 0.83 and d of 45.

Method p ‘ Squared Bias
Lasso 0 | 0313 £0.136
Lin 0 ]0.297 £ 0.123
Bates 0 |0.183 £ 0.179
VB 0 | 0.281 £ 0.161
Lasso 0.2 | 0.409 4+ 0.164
Lin 0.2 | 0.390 £ 0.161
Bates 0.2 ] 0.313 £+ 0.259
VB 0.2 ]0.233 £ 0.119
Lasso 0.4 | 0.702 &+ 0.111
Lin 0.4 | 0.757 4+ 0.342
Bates 0.4 | 0.581 £ 0.396
VB 0.4 | 0.397 £ 0.182

Table 12: Table of bias for the additive-log-ratio model with SNR of 0.83 and d of 200.

Method p \ Squared Bias
Lasso 0 | 0.617 £ 0.209
Lin 0 |0.734 £ 0.257
Bates 0 ]0.361 £ 0.307
VB 0 | 0.531 £ 0.047
Lasso 0.2 | 0.808 = 0.306
Lin 0.2 1 0.973 £ 0.336
Bates 0.2 | 0.361 £ 0.346
VB 0.2 | 0.687 £ 0.240
Lasso 0.4 | 1.55 &+ 0.459
Lin 0.4 11972 &£ 0.518
Bates 0.4 | 0.700 4+ 0.518
VB 0.4 | 1.017 £ 0.569
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Table 13: Table of bias for the additive-log-ratio model with SNR of 1.67 and d of 45.

Method p ‘ Squared Bias
Lasso 0 | 0.118 £ 0.061
Lin 0 |0.122 £ 0.045
Bates 0 | 0.041 £ 0.043
VB 0 | 0.081 £ 0.044
Lasso 0.2 | 0.079 4+ 0.041
Lin 0.2 ] 0.075 £ 0.036
Bates 0.2 | 0.035 + 0.037
VB 0.2 | 0.101 £ 0.048
Lasso 0.4 | 0.165 = 0.077
Lin 0.4 ] 0.176 £+ 0.066
Bates 0.4 | 0.043 + 0.046
VB 0.4 | 0.086 £ 0.044

Table 14: Table of bias for the additive-log-ratio model with SNR of 1.67 and d of 200.

Method p \ Squared Bias
Lasso 0 | 0.141 £ 0.061
Lin 0 |0.131 £ 0.016
Bates 0 |0.059 £ 0.016
VB 0 |0.174 £ 0.014
Lasso 0.2 | 0.187 £ 0.006
Lin 0.2 | 0.218 £ 0.005
Bates 0.2 | 0.100 £ 0.001
VB 0.2 | 0.188 £ 0.003
Lasso 0.4 | 0.257 4+ 0.010
Lin 0.4 | 0.287 4+ 0.010
Bates 0.4 | 0.134 4+ 0.065
VB 0.4 | 0.204 £ 0.001
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Table 15: Table of bias for the additive-log-ratio model with SNR of 2.5 and d of 45.

Method p ‘ Squared Bias
Lasso 0 | 0.051 £ 0.022
Lin 0 ]0.052 £ 0.020
Bates 0 | 0.020 £ 0.022
VB 0 |0.077 £ 0.029
Lasso 0.2 | 0.039 £ 0.185
Lin 0.2 | 0.037 £ 0.017
Bates 0.2 ] 0.019 £+ 0.020
VB 0.2 | 0.097 £+ 0.027
Lasso 0.4 | 0.107 4+ 0.032
Lin 0.4 ] 0.176 £+ 0.066
Bates 0.4 | 0.043 + 0.041
VB 0.4 | 0.118 4 0.049

Table 16: Table of bias for the additive-log-ratio model with SNR of 2.5 and d of 200.

Method p \ Squared Bias
Lasso 0 0.062 + 0.061
Lin 0 |0.059 + 0.021
Bates 0 0.044+ 0.054
VB 0 |0.061 & 0.001
Lasso 0.2 | 0.086 £ 0.028
Lin 0.2 | 0.099 £+ 0.014
Bates 0.2 | 0.014 £ 0.001
VB 0.02 | 0.131 £ 0.002
Lasso 0.4 | 0.121 + 0.042
Lin 0.4 | 0.134 £ 0.043
Bates 0.4 | 0.026 £+ 0.024
VB 0.4 | 0.175 £ 0.002
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5 Figures

Figure[S2]is the full DAG for the CAVI-MC model.Figures[S3|to[S5are the ROC curves for
the CAVI-MC in the simulation study at signal-to-noise ratio of 0.83 and 1.67, for d = 45
and d = 200. The frequentist compositional approaches (lasso, symmetric alr, two-stage
log-ratio lasso and selbal) are each represented by a dot. The ROC curve illustrates the
true positive and false positive rate when thresholding E,[£|y] > u at decreasing values

of u. The CAVI-MC purple dot identifies thresholding for feature selection at u = 0.5.

Figures [S6) and [S7] are the plots of the ELBO for each CAVI-MC model applied to the

data from the “Know your Heart” cross-sectional study of cardiovascular disease.

Figure S2: The full DAG of the CAVI-MC model. A square block indicates an element
of the model which is fixed; either data via the design matrix or the response, or a
hyperparameter of the hyperprior. A circle indicates a random element in the model. A
red outline at the lowest level of the DAG highlights a parameter or design matrix omitted
in the simulation study. Vectors are in bold.

20



SNR = 1.67, rho = 0, =100, d = 45 SNR = 1.67, rho = 0.2, n=100, d = 45 SNR = 1.67, rho = 0.5, n=100, d = 45
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Figure S3: Plot of the ROC curves for the CAVI-MC for a SNR of 1.67 for each value of
p for d = 45.
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Figure S4: Plot of the ROC curves for the CAVI-MC for a SNR of 0.83 for each value of
p for d = 200.
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Figure S5: Plot of the ROC curves for the CAVI-MC for a SNR of 1.67 for each value of
p for d = 200.
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Figure S6: Plot of the ELBO against iterations for the CAVI-MC applied to the “Know
Your Heart” data set with the microbiome grouped at the genus level. 30 iterations are
performed, with 30,000 between state space moves by the RIMCMC after 4 iterations.
The approximate straight line after only 7 iterations implies that the model has reached
convergence. Despite the MCMC component removing the monotonic properties of the
ELBO, the fluctuations are relatively small.
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Figure S7: Plot of the ELBO against iterations for the CAVI-MC applied to the “Know
Your Heart” data set with the microbiome grouped at the phylum level. 30 iterations are
performed, with 30,000 between state space moves by the RIMCMC after 4 iterations.
The approximate straight line after only 5 iterations implies that the model has reached
convergence. Despite the MCMC component removing the monotonic properties of the
ELBO, the fluctuations are relatively small.
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