Supplementary Information: A Deep Learning Framework for Automated Detec-
tion and Quantitative Assessment of Liver Trauma

Supplementary Method

U-net Architecture used to generate liver parenchyma and trauma segmentation masks.
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Supplementary Figure 1. Illustration of the baseline U-net architecture used for segmentation. This figure is borrowed from
[41].

Liver segmentation U-net specifications. The U-net model for liver segmentation is trained for 3000 epochs, and each epoch

is learned on 10 patients. An Adam optimizer with a learning rate of 2 x 10~# is used to minimize the binary cross-entropy loss.

Liver disruption segmentation U-net specifications. The U-net model for liver disruption segmentation is trained for 4000

epochs, and each epoch is learned on 10 patients. An Adam optimizer with a learning rate of 5 x 107 is used to minimize the

binary cross-entropy loss.



