
Table 1. Data and associated models available in KiMoSys repository. 

Data 
EntryID 

Organism Type of data Original Publication Title Reference Reference of 
associated 
model(s) 

30 Escherichia coli time-series data of 
metabolites 

Dynamic modeling of the central carbon metabolism of Escherichia coli. [1] [1] 

35 Escherichia coli flux 
measurements 

Multiple high-throughput analyses monitor the response of E. coli 
perturbations. 

[2] - 

37 Lactococcus lactis time-series data of 
metabolites 

Is the glycolytic flux in Lactococcus lactis primarily controlled by the 
redox charge? Kinetics of NAD(+) and NADH pools determined in vivo 
by 13C NMR. 

[3] [4,5] 

38 Escherichia coli time-series data of 
metabolites 

Modeling and simulation of the main metabolism in Escherichia coli and 
its several single-gene knockout mutants with experimental verification 

[6] [6] 

41 Escherichia coli metabolites at 
steady-state 

Multiple high-throughput analyses monitor the response of E. coli 
perturbations. 

[2] - 

42 Clostridium 
acetobutylicum 

time-series data of 
metabolites 

A systems biology approach to investigate the effect of pH-induced gene 
regulation on solvent production by Clostridium acetobutylicum in 
continuous culture. 

[7] [7] 

44 Escherichia coli enzyme/protein 
concentrations 

Multiple high-throughput analyses monitor the response of E. coli 
perturbations 

[2] - 

51 Escherichia coli time-series data of 
metabolites 

Dynamic simulation of an in vitro multi-enzyme system. [8] - 

52 Escherichia coli metabolites at 
steady-state 

Metabolic profiling of Escherichia coli cultivation: evaluation of 
extraction and metabolite analysis procedures. 

[9] - 

54 Escherichia coli metabolites at 
steady-state 

Quantification of intracellular metabolites in Escherichia coli K12 using 
liquid chromatographic-electrospray ionization tandem mass 
spectrometric technique. 

[10] - 

55 Pichia pastoris metabolites at 
steady-state 

Glucose-methanol co-utilization in Pichia pastoris studied by 
metabolomics and instationary 13C flux analysis. 

[11] - 

57 Pichia pastoris flux 
measurements 

Glucose-methanol co-utilization in Pichia pastoris studied by 
metabolomics and instationary 13C flux analysis. 

[11] - 

58 Homo sapiens metabolites at 
steady-state 

Dynamics and control of the central carbon metabolism in Hepatoma 
cells. 

[12] - 
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59 Rattus time-series data of 
metabolites 

The selective control of glycolysis, gluconeogenesis and glycogenesis by 
temporal insulin patterns. 

[13] - 

61 and 62 Saccharomyces 
cerevisiae 

time-series data of 
metabolites 

Temporal system-level organization of the switch from glycolytic to 
gluconeogenic operation in yeast. 

[14] - 

63 Escherichia coli time-series data of 
metabolites 

Metabolomics-driven quantitative analysis of ammonia assimilation in 
E. coli. 

[15] [15] 

64 Escherichia coli flux 
measurements 

Impact of global transcriptional regulation by arcA, arcB, cra, crp, cya, 
fnr, and mlc on glucose catabolism in Escherichia coli. 

[16] - 

65 Escherichia coli flux 
measurements 

Nonlinear dependency of intracellular fluxes on growth rate in 
miniaturized continuous cultures of Escherichia coli. 

[17] - 

66 Shewanella 
oneidensis 

flux 
measurements 

Invariability of central metabolic flux distributions in Shewanella 
oneidensis MR-1 under environmental or genetic perturbation 

[18] - 

67 and 68 Escherichia coli flux 
measurements 

An integrated computational and experimental study for overproducing 
fatty acids in Escherichia coli. 

[19] - 

69 and 70 Saccharomyces 
cerevisiae 

time-series data of 
metabolites 

Characterization of glucose transport mutants of Saccharomyces 
cerevisiae during a nutritional upshift reveals a correlation between 
metabolite levels and glycolytic flux. 

[20] [20] 

71 Penicillium 
chrysogenum 

time-series data of 
metabolites 

Generating short-term kinetic responses of primary metabolism of 
Penicillium chrysogenum through glucose perturbation in the bioscope 
mini reactor. 

[21] - 

72 Aspergillus niger flux 
measurements 

Integration of in vivo and in silico metabolic fluxes for improvement of 
recombinant protein production. 

[22] - 

73 Aspergillus niger flux 
measurements 

Overexpression of isocitrate lyase-glyoxylate bypass influence on 
metabolism in Aspergillus niger. 

[23] - 

74 Escherichia coli metabolites at 
steady-state 

Catching prompt metabolite dynamics in Escherichia coli with the 
BioScope at oxygen rich conditions. 

[24] - 

75 Escherichia coli time-series data of 
metabolites 

Changes in substrate availability in Escherichia coli lead to rapid 
metabolite, flux and growth rate response. 

[25] - 

76 Streptomyces 
coelicolor 

time-series data of 
metabolites 

Intracellular metabolite pool changes in response to nutrient depletion 
induced metabolic switching in Streptomyces coelicolor. 

[26] - 
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77 Shewanella 
oneidensis 

time-series data of 
metabolites 

Integrating flux balance analysis into kinetic models to decipher the 
dynamic metabolism of Shewanella oneidensis. 

[27] [27] 

78 Escherichia coli time-series data of 
metabolites 

Metabolic flux analysis in a nonstationary system: fed-batch 
fermentations of a high yielding strain of E. coli producing 1,3-
propanediol. 

[28] - 

79 Escherichia coli metabolites at 
steady-state 

Metabolic regulation analysis of wild-type and arcA mutant Escherichia 
coli under nitrate conditions using different levels of omics data. 

[29] - 

80 Escherichia coli flux 
measurements 

Metabolic regulation analysis of wild-type and arcA mutant Escherichia 
coli under nitrate conditions using different levels of omics data. 

[29] - 

81 Mouse enzyme/protein 
concentrations 

Division of labor by dual feedback regulators controls JAK2/STAT5 
signaling over broad ligand range. 

[30] [30] 

82 Homo sapiens enzyme/protein 
concentrations 

Network quantification of EGFR signaling unveils potential for targeted 
combination therapy. 

[31] - 

Data EntryID: internal accession identifier. 
Data EntryID without associated models is indicated by “-”. 
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