Data EntryID	Organism	Type of data	Original Publication Title	Reference	Reference of associated model(s)
30	Escherichia coli	time-series data of metabolites	Dynamic modeling of the central carbon metabolism of <i>Escherichia coli</i> .	[1]	[1]
35	Escherichia coli	flux measurements	Multiple high-throughput analyses monitor the response of <i>E. coli</i> perturbations.	[2]	-
37	Lactococcus lactis	time-series data of metabolites	Is the glycolytic flux in <i>Lactococcus lactis</i> primarily controlled by the redox charge? Kinetics of NAD(+) and NADH pools determined <i>in vivo</i> by ¹³ C NMR.	[3]	[4,5]
38	Escherichia coli	time-series data of metabolites	Modeling and simulation of the main metabolism in <i>Escherichia coli</i> and its several single-gene knockout mutants with experimental verification	[6]	[6]
41	Escherichia coli	metabolites at steady-state	Multiple high-throughput analyses monitor the response of <i>E. coli</i> perturbations.	[2]	-
42	Clostridium acetobutylicum	time-series data of metabolites	A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by <i>Clostridium acetobutylicum</i> in continuous culture.	[7]	[7]
44	Escherichia coli	enzyme/protein concentrations	Multiple high-throughput analyses monitor the response of <i>E. coli</i> perturbations	[2]	-
51	Escherichia coli	time-series data of metabolites	Dynamic simulation of an <i>in vitro</i> multi-enzyme system.	[8]	-
52	Escherichia coli	metabolites at steady-state	Metabolic profiling of <i>Escherichia coli</i> cultivation: evaluation of extraction and metabolite analysis procedures.	[9]	-
54	Escherichia coli	metabolites at steady-state	Quantification of intracellular metabolites in <i>Escherichia coli</i> K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric technique.	[10]	-
55	Pichia pastoris	metabolites at steady-state	Glucose-methanol co-utilization in <i>Pichia pastoris</i> studied by metabolomics and instationary ¹³ C flux analysis.	[11]	-
57	Pichia pastoris	flux measurements	Glucose-methanol co-utilization in <i>Pichia pastoris</i> studied by metabolomics and instationary ¹³ C flux analysis.	[11]	-
58	Homo sapiens	metabolites at steady-state	Dynamics and control of the central carbon metabolism in Hepatoma cells.	[12]	-

Table 1. Data and associated models available in *Ki*MoSys repository.

(continued from previous page)

Data EntryID	Organism	Type of data	Publication Title	Reference	Reference of associated model(s)
59	Rattus	time-series data of metabolites	The selective control of glycolysis, gluconeogenesis and glycogenesis by temporal insulin patterns.	[13]	-
61 and 62	Saccharomyces cerevisiae	time-series data of metabolites	Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast.	[14]	-
63	Escherichia coli	time-series data of metabolites	Metabolomics-driven quantitative analysis of ammonia assimilation in <i>E. coli</i> .	[15]	[15]
64	Escherichia coli	flux measurements	Impact of global transcriptional regulation by arcA, arcB, cra, crp, cya, fnr, and mlc on glucose catabolism in <i>Escherichia coli</i> .	[16]	-
65	Escherichia coli	flux measurements	Nonlinear dependency of intracellular fluxes on growth rate in miniaturized continuous cultures of <i>Escherichia coli</i> .	[17]	-
66	Shewanella oneidensis	flux measurements	Invariability of central metabolic flux distributions in <i>Shewanella</i> <i>oneidensis</i> MR-1 under environmental or genetic perturbation	[18]	-
67 and 68	Escherichia coli	flux measurements	An integrated computational and experimental study for overproducing fatty acids in <i>Escherichia coli</i> .	[19]	-
69 and 70	Saccharomyces cerevisiae	time-series data of metabolites	Characterization of glucose transport mutants of <i>Saccharomyces</i> <i>cerevisiae</i> during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux.	[20]	[20]
71	Penicillium chrysogenum	time-series data of metabolites	Generating short-term kinetic responses of primary metabolism of <i>Penicillium chrysogenum</i> through glucose perturbation in the bioscope mini reactor.	[21]	-
72	Aspergillus niger	flux measurements	Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production.	[22]	-
73	Aspergillus niger	flux measurements	Overexpression of isocitrate lyase-glyoxylate bypass influence on metabolism in <i>Aspergillus niger</i> .	[23]	-
74	Escherichia coli	metabolites at steady-state	Catching prompt metabolite dynamics in <i>Escherichia coli</i> with the BioScope at oxygen rich conditions.	[24]	-
75	Escherichia coli	time-series data of metabolites	Changes in substrate availability in <i>Escherichia coli</i> lead to rapid metabolite, flux and growth rate response.	[25]	-
76	Streptomyces coelicolor	time-series data of metabolites	Intracellular metabolite pool changes in response to nutrient depletion induced metabolic switching in <i>Streptomyces coelicolor</i> .	[26]	-

(continued from previous page)

Data EntryID	Organism	Type of data	Publication Title	Reference	Reference of associated model(s)
77	Shewanella oneidensis	time-series data of metabolites	Integrating flux balance analysis into kinetic models to decipher the dynamic metabolism of <i>Shewanella oneidensis</i> .	[27]	[27]
78	Escherichia coli	time-series data of metabolites	Metabolic flux analysis in a nonstationary system: fed-batch fermentations of a high yielding strain of <i>E. coli</i> producing 1,3-propanediol.	[28]	-
79	Escherichia coli	metabolites at steady-state	Metabolic regulation analysis of wild-type and arcA mutant <i>Escherichia coli</i> under nitrate conditions using different levels of omics data.	[29]	-
80	Escherichia coli	flux measurements	Metabolic regulation analysis of wild-type and arcA mutant <i>Escherichia coli</i> under nitrate conditions using different levels of omics data.	[29]	-
81	Mouse	enzyme/protein concentrations	Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range.	[30]	[30]
82	Homo sapiens	enzyme/protein concentrations	Network quantification of EGFR signaling unveils potential for targeted combination therapy.	[31]	-

Data EntryID: internal accession identifier.

Data EntryID without associated models is indicated by "-".

Reference List

- 1. Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M: Dynamic modeling of the central carbon metabolism of *Escherichia coli*. *Biotechnology and Bioengineering* 2002, **79**: 53-73.
- 2. Ishii N, et.al.: Multiple high-throughput analyses monitor the response of *E. coli* to perturbations. *Science* 2007, **316**: 593-597.
- 3. Neves AR, Ventura R, Mansour N, Shearman C, Gasson MJ, Maycock C *et al.*: Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? Kinetics of NAD(+) and NADH pools determined in vivo by C-13 NMR. *Journal of Biological Chemistry* 2002, 277: 28088-28098.

- 4. Levering J, Musters MWJM, Bekker M, Bellomo D, Fiedler T, de Vos WM *et al.*: Role of phoshate in the central metabolism of two lactic acid bacteria a comparative systems biology approach. *FEBS J* 2012, **279**: 1274-1290.
- 5. Vinga S, Neves AR, Santos H, Brandt BW, Kooijman SALM: Subcellular metabolic organization in the context of dynamic energy budget and biochemical systems theories. *Philosophical Transactions of the Royal Society B-Biological Sciences* 2010, 365: 3429-3442.
- 6. Kadir TAA, Mannan AA, Kierzek AM, McFadden J, Shimizu K: Modeling and simulation of the main metabolism in *Escherichia coli* and its several single-gene knockout mutants with experimental verification. *Microbial Cell Factories* 2010, **9**: 88.
- 7. Haus S, Jabbari S, Millat T, Janssen H, Fischer RJ, Bahl H *et al.*: A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture. *Bmc Systems Biology* 2011, 5.
- 8. Ishii N, Suga Y, Hagiya A, Watanabe H, Mori H, Yoshino M *et al.*: **Dynamic simulation of an** *in vitro* **multi-enzyme system.** *FEBS* 2007, **581:** 413-420.
- 9. Hiller J, Franco-Lara E, Weuster-Botz D: Metabolic profiling of Escherichia coli cultivations: evaluation of extraction and metabolite analysis procedures. *Biotechnology Letters* 2007, 29: 1169-1178.
- 10. Buchholz A, Takors R, Wandrey C: Quantification of intracellular metabolites in *E. coli* K12 using liquid chromatographicelectrospray ionization tandem mass spectrometric techniques. *Analytical Biochemistry* 2001, 295: 129-137.
- 11. Jorda J, Suarez C, Carnicer M, ten Pierick A, Heijnen JJ, van Gulik W *et al.*: Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary C-13 flux analysis. *Bmc Systems Biology* 2013, 7.
- 12. Maier K, Hofmann U, Reuss M, Mauch K: Dynamics and control of the central carbon metabolism in hepatoma cells. *BMC Systmes Biology* 2010, 4: 54-82.
- 13. Noguchi R, Kubota H, Yugi K, Toyoshima Y, Komori Y, Soga T *et al.*: The selective control of glycolysis, gluconeogenesis and glycogenesis by temporal insulin patterns. *Molecular Systems Biology* 2013, 9.
- 14. Zampar GG, Kummel A, Ewald J, Jol S, Niebel B, Picotti P *et al.*: **Temporal system-level organization of the switch from glycolytic to** gluconeogenic operation in yeast. *Molecular Systems Biology* 2013, **9**.

- 15. Yuan J, et al.: Metabolomics-driven quantitative analysis of ammonia assimilation in E. coli. Molecular Systems Biology 2009, 5.
- 16. Perrenoud A, Sauer U: Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in *Escherichia coli*. *Journal of Bacteriology* 2005, **187**: 3171-3179.
- 17. Nanchen A, Schicker A, Sauer U: Nonlinear dependency of intracellular fluxes on growth rate in miniaturized continuous cultures of Escherichia coli. *Applied and Environmental Microbiology* 2006, 72: 1164-1172.
- 18. Tang YJ, Martin HG, Deutschbauer A, Huang R, Llora X, Arkin A *et al.*: Invariability of centrl metabolic flux distribution in Shewanella oneidensis MR-1 under environmental or genetic perturbations. *Biotechnol Prog* 2009, 25: 1254-1259.
- 19. Ranganathan S, Tee TW, Chowdhury A, Zomorrodi AR, Yoon JM, Fu YF *et al.*: An integrated computational and experimental study for overproducing fatty acids in Escherichia coli. *Metabolic Engineering* 2012, 14: 687-704.
- 20. Bosch D, Johansson M, Ferndahl C, Franzen CJ, Larsson C, Gustafsson L: Characterization of glucose transport mutants of Saccharomyces cerevisiae during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux. *Fems Yeast Research* 2008, **8**: 10-25.
- 21. Nasution U, van Gulik WM, Proell A, van Winden WA, Heijnen JJ: Generating short-term kinetic responses of primary metabolism of Penicillium chrysogenum through glucose perturbation in the bioscope mini reactor. *Metabolic Engineering* 2006, **8:** 395-405.
- 22. Driouch H, Melzer G, Wittmann C: Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production. *Metabolic Engineering* 2012, 14: 47-58.
- 23. Meijer S, Otero J, Olivares R, Andersen MR, Olsson L, Nielsen J: **Overexpression of isocitrate lyase-glyoxylate bypass influence on metabolism in Aspergillus niger.** *Metabolic Engineering* 2009, **11:** 107-116.
- 24. De Mey M, Taymaz-Nikerel H, Baart G, Waegeman H, Maertens J, Heijnen JJ *et al.*: Catching prompt metabolite dynamics in Escherichia coli with the BioScope at oxygen rich conditions. *Metabolic Engineering* 2010, 12: 477-487.
- 25. Taymaz-Nikerel H, De Mey M, Baart G, Maertens J, Heijnen JJ, van Gulik W: Changes in substrate availability in Escherichia coli lead to rapid metabolite, flux and growth rate responses. *Metabolic Engineering* 2013, 16: 115-129.

- 26. Wentzel A, Sletta H, Consortium S, Ellingsen TE, Bruheim P: Intracellular metabolite pool changes in response to nutrient depletion induced metabolic switching in *Streptomyces coelicolor*. *Metabolites* 2012, **2**: 178-194.
- 27. Feng X, Chen Y, Tang YJ: Integrating flux balance analysis into kinetic models to decipher the dynamic metabolism of Shewanella oneidensis MR-1. *PLOS Comput Biol* 2012, 8: e1002376.
- 28. Antoniewicz MR, Kraynie DF, Laffend LA, Gonzalez-Lergier J, Kelleher JK, Stephanopoulos G: Metabolic flux analysis in a nonstationary system: Fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. *Metabolic Engineering* 2007, 9: 277-292.
- 29. Toya Y, Nakahigashi K, Tomita M, Shimizu K: Metabolic regulation analysis of wild-type and arcA mutant Escherichia coli under nitrate conditions using different levels of omics data. *Molecular Biosystems* 2012, 8: 2593-2604.
- 30. Bachmann J, Raue A, Schilling M, Bohm ME, Kreutz C, Kaschek D *et al.*: Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range. *Molecular Systems Biology* 2011, 7.
- 31. Klinger B, Sieber A, Fritsche-Guenther R, Witzel F, Berry L, Schumacher D *et al.*: Network quantification of EGFR signaling unveils potential for targeted combination therapy. *Molecular Systems Biology* 2013, **9**.