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1 Additional Computational Methods

1.1 A mathematical model for phytochrome undergoing two ther-
mal reversion processes

In the main text, we have shown a number of examples highlighting the utility of
our methodology. Notably, cases whereby a population of photoreceptors contains
two sub-populations undergoing different thermal reversion rates. One could en-
visage that this is due to multiple reactions within a monomeric photoreceptor or
that different conformers of photoreceptor dimers undergo different thermal rever-
sion reactions as is the case for full-length phyB from Arabidopsis [1]. Since the case
of photoreceptor dimerisation has been treated mathematically elsewhere (see [1]
and Section 1.2), we present a model whereby a monomeric photoreceptor under-
goes multiple thermal reversion reactions.

The model reads

ṖI = k2PA + β1PA + δCI − (k1 + γH)PI

ṖA = k1PI + δCA − (k2 + β1 + γH)PA

ĊI = k2CA + γHPI + β2CA − (k1 + δ)CI

ĊA = k1CI + γHPA − (k2 + δ + β2)CA

Ḣ = δ(CI + CA)− γH(PI + PA), (1)

where k1 and k2 are the light induced reactions that are proportional to the photo-
conversion cross-sections (ki = ∑λ σλ

i zλ
λw

as described in [2–4] and zλw is the photon
distribution from the light source as described in the main text), β1 and β2 are the
two thermal reversion rates, γ is the rate of complex association and δ is the rate
of dissociation. Note that synthesis and degradation rates have been ignored, since
these processes do not occur within our photoreceptor samples that are purified
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and measured in solution. Here P is assumed to be ‘free’ photoreceptor molecules,
whereas C could take one of two interpretations. First, C is some form of com-
plexed photoreceptor with some unknown interaction partner, H. For example, in
our system phyB-N is thought to exist as a monomer. Therefore, H must either
be very small or is intrinsically part of the light reaction mechanisms of phyB-N,
which could be the case for light-sensing chromophores [5,6]. In our model, C could
represent a phyB-chromophore complex that alters the dynamics between confor-
mational states. On the other hand, P and C could be distinct sub-populations of
photoreceptor proteins whereby the protein folding machinery produces distinct
isomers. For example, dimerization within the protein structure of phyB is known
to occur through the GAF domain [7,8]. Thus, P could be one form of phytochrome
whereby the GAF domains are unbound, but C represents a sub-population where
GAF domains are bound, altering conformational switches. The aim of our work
in this section is to solve this system to provide a general form of the equation that
describes PA decay in the presence of light and thermal reactions.

The total amount of phytochrome in the system is P0 = PI + PA + CI + CA and
the total amount of H, H0 = H + CI + CA, is conserved. Therefore, by setting
Ẋ = ṖI + ṖA and Ẏ = ĊI + ĊA one can find that

Xss = P0 −Yss,
Hss = H0 −Yss,

Yss =
1
2

[
β

γ
+ H0 + P0 −

√(
H0 + P0 +

β

γ

)2

− 4H0P0

]
,

where 0 ≤ Yss ≤ P0. Using these results we can then re-write our system in terms
of PA and Z = PA + CA

ṖA = k1(Xss − PA) + δ(Z− PA)− (k2 + β1 + γHss)W
Ż = k1(P0 − Z)− (β1 − β2)PA − (k2 + β2)Z.

We solve the inhomogeneous equation

u̇ = Au + b,

u = (PA, Z)T,

for uij = vije
ψjt. The resulting eigenvalues and eigenvectors are
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ρ± = −(k1 + k2)−
1
2

[
γHss + δ + β1 + β2 ±

√
(γHss + δ + β2 − β1)2 − 4δ(β2 − β1)

]
(2)

v =

(
γHss+δ+β2−β1+

√
(γHss+δ+β2−β1)2−4δ(β2−β1)

2(β2−β1)

γHss+δ+β2−β1−
√

(γHss+δ+β2−β1)2−4δ(β2−β1)

2(β2−β1)

1 1

)
.

Using the initial condition

u(0) =
(

v12Z(0)− v22PA(0)
v12v21 − v11v22

,
v11Z(0)− v21PA(0)

v12v21 − v11v22

)
,

the general solution is

u(t) =

(
u1(0)v11eρ+t − u2(0)v12eρ−t + v11(v12b2−v22b1)

ρ+(v11v22−v12v21)
(1− eρ+t) + v12(v21b1−v11b2)

ρ−(v11v22−v12v21)
(1− eρ−t)

u1(0)v21eρ+t − u2(0)v22eρ−t + v21(v12b2−v22b1)
ρ+(v11v22−v12v21)

(1− eρ+t) + v22(v21b1−v11b2)
ρ−(v11v22−v12v21)

(1− eρ−t)

)
.

For Z(t) = PA(t) + CA(t), we find

Z(t) = Aeρ+t + Beρ−t + C
(

1− eρ+t
)
+ D

(
1− eρ−t

)
. (3)

The solution Z(t) is dependent on ρ± that, in turn, depends on a number of sys-
tem parameters, including thermal reversion rates and interaction rates, that can
be difficult to elucidate experimentally. Thus, if we assume that two forms of PA
naturally exist (as has been postulated experimentally [7, 8]), we can set δ = γ = 0
in equation (2) such that ρ+ = −(k1 + k2 + β1) and ρ− = −(k1 + k2 + β2). This is
important, since we can estimate the values of βk from our thermal reversion opti-
misation algorithm allowing us to use our approach to analyse these systems.

All that is left, then, is to calculate the value of the constants A, B, C, and D. Impor-
tantly, we wish to know how the percentage of active photoreceptor changes with
time. Thus, we can rescale (3) using x̂ = x/P0 for Z and the exponential constants.
Therefore, we get

Ẑ(0) = Â + B̂ =
2

∑
k=1

αkck
λ1

= cλ1 ,

lim
t→∞

Ẑ(t) = Ĉ + D̂ =
2

∑
k=1

αkck
λ2

= cλ2 , (4)

with
2

∑
k=1

αk = 1,
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where cλw = cA(σ, Φ, α, β, ΩP, {(t→ ∞, zλ
λw
)}) (as explained in the main text) and,

similarly, ck
λw

= cA
k (σ, Φ, α, β, ΩP, {(t → ∞, zλ

λw
)}) is the steady state fraction of PA

subpopulation k. From our thermal reversion optimisation routine, as well as ob-
taining the multiple thermal reversion rates, we also obtain the percentage of the
active photoreceptor population undergoing that particular thermal reversion reac-
tion, α1 and α2 = 1− α1.

Thus, we can satisfy (4) by

Â = α1c1
λ1

B̂ = (1− α1)c2
λ1

Ĉ = α1c1
λ2

D̂ = (1− α1)c2
λ2

.

Finally, by setting α = α1 and ki = ∑λ σλ
i zλ

λw
for a given light treatment λw, we

obtain

cA(σ, Φ, α, β, {(t→ ∞, zλ
λ1
)}, {(t, zλ

λ2
)}) =

αc1
λ1

e{−t[∑λ(σ
λ
A+σλ

I )z
λ
λ2
+β1]} + (1− α)c2

λ1
e{−t[∑λ(σ

λ
A+σλ

I )z
λ
λ2
+β2]}

+ αc1
λ2
(1− e{−t[∑λ(σ

λ
A+σλ

I )z
λ
λ2
+β1]}) + (1− α)c2

λ2
(1− e{−t[∑λ(σ

λ
A+σλ

I )z
λ
λ2
+β2]}) (5)

or

cA(σ, Φ, α, β, {(t→ ∞, zλ
λ2
)}, {(t, zλ

λ1
)}) =

αc1
λ2

e{−t[∑λ(σ
λ
A+σλ

I )z
λ
λ1
+β1]} + (1− α)c2

λ2
e{−t[∑λ(σ

λ
A+σλ

I )z
λ
λ1
+β2]}

+ αc1
λ1
(1− e{−t[∑λ(σ

λ
A+σλ

I )z
λ
λ1
+β1]}) + (1− α)c2

λ1
(1− e{−t[∑λ(σ

λ
A+σλ

I )z
λ
λ1
+β2]}). (6)

Thus, if α = 1, then B = D = 0 and our system will only describe a single pho-
toreceptor form with thermal reversion rate β1. In Figures 3, 4 & 6 of the main text
we show the results of our approach given different numbers of thermal reaction
equations following (5) or (7).

1.2 Forms of steady-state percentages of active photoreceptor, cλw

In this section we shall present some of the known forms for the steady state per-
centage of active photoreceptor in a population given illumination wavelength λw.
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As noted in [2], in the absence of thermal reversion, synthesis and degradation,
phytochrome dynamics are described by

dPI

dt
= k2PA − k1PI ,

dPA

dt
= k1PI − k2PA.

At steady-state, one finds that

cλw =
PA

PA + PI
=

∑λ σλ
I zλ

λw

∑λ(σ
λ
A + σλ

I )z
λ
λw

,

where ki = ∑λ σλ
i zλ

λw
as before. When the photoreceptor undergoes a single thermal

reversion reaction the system reads

dPI

dt
= (k2 + β)PA − k1PI ,

dPA

dt
= k1PI − (k2 + β)PA,

and

cλw =
∑λ σλ

I zλ
λw

∑λ(σ
λ
A + σλ

I )z
λ
λw

+ β
,

where β is the thermal reversion rate.

In our study we discuss two further cases that will influence the distribution of ac-
tive photoreceptors within a population, namely: the existence of two sub-populations
of monomeric photoreceptor, and; the dimerisation of photoreceptors. Using the
model above in equation (3), and setting t = 0 or t → ∞, yields for the case of
multiple photoreceptor sub-populations

cλw = αc1
λw

+ (1− α)c2
λw

, (7)

ck
λw

=
∑λ σλ

I zλ
λw

∑λ(σ
λ
A + σλ

I )z
λ
λw

+ βk
,

where βk represents multiple thermal reversion rates. The form of ck
λw

can be calcu-
lated from our model (equation (1)) at steady state when δ = γ = 0.
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To obtain the steady state percentage of active photoreceptor for the case of photore-
ceptor dimers, we use the model of [1] in the absence of synthesis and degradation
reactions. The system reads

dPI I

dt
= (k2 + β1)PAI − 2k1PI I ,

dPAI

dt
= 2(k2 + β2)PAA + 2k1PI I − (k1 + k2 + β1)PAI ,

dPAA

dt
= k1PAI − 2(k2 + β2)PAA,

where PI I is the PI − PI homodimer, PAI is the PA − PI heterodimer, and PAA is the
PA − PA homodimer. From these equations we obtain

cλw = c1
λw

+ 2c2
λw

, (8)

c1
λw

=
2 ∑λ(σ

λ
I zλ

λw
)[∑λ(σ

λ
Azλ

λw
) + β2]

∑λ(σ
λ
I zλ

λw
)2 + [∑λ(σ

λ
Azλ

λw
) + β2][2 ∑λ(σ

λ
I zλ

λw
) + ∑λ(σ

λ
Azλ

λw
) + β1]

,

c2
λw

=
∑λ(σ

λ
I zλ

λw
)

2[∑λ(σ
λ
Azλ

λw
) + β2]

c1
λw

,

where c1
λw

is the steady-state percentage of PA-PI heterodimers and c2
λw

is the steady-
state percentage of PA-PA homodimers. Here, the multiplication by nc = 2 of c2

λw
is required as the homodimer complex contains two light-absorbing chromophores
within it’s structure and ∑2

k=1 ck(σ, Φ, α, β, ΩP, ΩE) = nc from equation (1) of the
main text.

Depending on the case under investigation or what is known about the photorecep-
tor from previous studies will determine which form of cλw needs to be used within
the algorithm. A further example can be found in Section 1.5.1.

1.3 Relating c’s to X’s in Verméglio method

In the main text, we discuss the construction of search spaces for a photoreceptor’s
photoconversion cross-sections due to unknown parameters, such as the percentage
of (in)active photoreceptor, quantum yields and thermal reversion rates. However,
if some of these are known (for example there is no thermal reversion and absorp-
tion spectra show that 100% of the photoreceptor is in a particular confirmation)
then the values of X1 and X2 can be calculated directly. Here, in the case of a pho-
toreceptor with two light regulated species, we show how the X’s are related to the
steady-state fraction of active photoreceptor after saturating light conditons (cλw).
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From the definition of absorption spectra and how the photoconversion cross-sections
are related to multiple spectra, we have, for any number of available chromophores
nc

As(λ|ΩP, {(t→ ∞, zλ
λA
)}) = 2.303lctot[(nc − cλA)ε

λ
I + cλA ελ

A],

As(λ|ΩP, {(t→ ∞, zλ
λI
)}) = 2.303lctot[(nc − cλI )ε

λ
I + cλI ε

λ
I ], (9)

where

ncε̂λ
I = 2.303lctotncελ

I

= Ae(λ|ΩP, {(t→ ∞, zλ
λA
)}) + X1(Ae(λ|ΩP, {(t→ ∞, zλ

λI
)})

− Ae(λ|ΩP, {(t→ ∞, zλ
λA
)})),

ncε̂λ
A = 2.303lctotncελ

A

= Ae(λ|ΩP, {(t→ ∞, zλ
λA
)}) + X2(Ae(λ|ΩP, {(t→ ∞, zλ

λI
)})

− Ae(λ|ΩP, {(t→ ∞, zλ
λA
)})). (10)

By assuming that experimental spectra share the same relationship to their extinc-
tion coefficients as simulated spectra (i.e. that our model is correct) and substituting
(9) into (10), one finds that

ncε̂λ
I = ε̂λ

I [nc − cλA + X1(cλA − cλI )] + ε̂λ
A[cλA − X1(cλA − cλI )],

ncε̂λ
A = ε̂λ

I [nc − cλA + X2(cλA − cλI )] + ε̂λ
A[cλA − X2(cλA − cλI )], (11)

which leads to

cλA − X1(cλA − cλI ) = 0,
cλA − X2(cλA − cλI ) = nc, (12)

and so

X1 =
cλA

cλA − cλI

,

X2 =
cλA − nc

cλA − cλI

. (13)

Furthermore, these values satisfy the constraints

ncX1 + cλA(X2 − X1) = 0,
ncX1 + cλI (X2 − X1) = nc.
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1.4 Application to a simpler photoreceptor system

As well as the phytochromes, further photoreceptors are studied in plant and op-
togenetic systems. For example, blue light- and UV-B-responsive photoreceptors
have been used in a range of optogenetic tools (see the review in [9]). Importantly,
compared to phytochromes, these systems only respond to one region of the light
spectrum and can only be de-activated by periods of darkness and thermal relax-
ation. Consequently, the mathematics can be simplified. Here, we will provide the
equations and how to find the optimal solution.

First, since these photoreceptors have only one light-induced state, the equation for
absorption can be written as

As(λ|{(t→ ∞, zλ
λw1

)},{(t, zλ
λw2

)}) =

2.303lctotcI(σ, Φ, α, β, {(t→ ∞, zλ
λw1

)}, {(t, zλ
λw2

)})
σλ

I
ΦI

, (14)

where σλ
I and ΦI are the photoconversion cross-sections and quantum yield of the

inactive photoreceptor to reach the active confirmation. Note that here cI = nc− cA

with nc = 1 as the photoreceptor exists as a monomer.

Since, after prolonged darkness, the percentage of active photoreceptor is zero and
there is no light reaction-induced absorption, we can only obtain the cross section
after illumination of activating light conditions. Thus, cλI = 0 and

cA(σ, Φ, α, β, {(t→ ∞, zλ
λI
)}, {(t, zλ

λA
)}) = c1

λA
(1− e−t(∑λ σλ

I zλ
λA

+β1)) (15)

in the assumed case where a single population of active photoreceptor exist. Fur-
thermore, terms describing the fraction of active photoreceptor after saturating light
conditions (t→ ∞) are simplified as well. For example,

cλA =
∑λ σλ

I zλ
λA

∑λ σλ
I zλ

λA
+ β

.

Finally, we note that the Verméglio method is simplified also, since

ε̂λ
I = 2.303lctotε

λ
I = Ae(λ|ΩP, {(t→ ∞, zλ

λA
)})+

X(Ae(λ|{(t→ ∞, zλ
λI
)}, {(0, zλ

λA
)})− Ae(λ|ΩP, {(t→ ∞, zλ

λA
)})), (16)

which upon substitution into (14) with Ae(λ|{(t→ ∞, zλ
λI
)}, {(0, zλ

λA
)}) = 0 results

in
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As(λ|ΩP, {(t→ ∞, zλ
λA
)}) = (1− cλA)(1− X)Ae(λ|ΩP, {(t→ ∞, zλ

λA
)}),

and

(1− cλA)(1− X) = 1,

X =
cλA

cλA − 1
.

As with the case of phytochromes, a search space for ε̂λ
I can be obtained by varying

ΦI and calculating all possible values of X2. Using this search space, the optimal
ΦI and set of σλ

I can be obtained by minimizing the differences between simulated
data and measured absorption spectra.

1.5 Generalising method to photocycles containing N species

Whilst in the previous section we have simplified the analysis of the main paper for
a photoreceptor with a single state, we can also generalise our method to N-step
photocycles. Such complex photoreactions have already been shown to govern the
dynamics of phytochromes [10, 11]. Here, we shall first present the conditions that
need to be satisfied to determine the search spaces for ε̂λ

i and values for Rmax
i (the

upper bound for the quantum yield ratios) for i = 1, ..., N before illustrating these
results for a 3-step cycle that incorporates the phytochrome species Lumi-R [10–12].
Note that here we assume there is no dimerisation between photoreceptors such
that nc = ∑N

k=1 ck(σ, Φ, α, β, ΩP, ΩE) = 1.

From equation (1) of the main text, we see that absorption spectra can be described
as a linear combination of extinction coefficients such that

As(λ|ΩP, ΩE) =
N

∑
k=1

ck(σ, Φ, α, β, ΩP, ΩE)ε̂
λ
k = ct · ε̂λ, (17)

where ε̂λ
k = 2.303lctotε

λ
k . Furthermore, by again assuming that our model of ab-

sorption is correct such that measured spectra share the same relationship with ex-
tinction coefficients as simulated spectra, we can rearrange equation (4) of the main
text to read

ε̂λ
I = (1− X1)Ae(λ|ΩP, {(t→ ∞, zλ

λA
)}) + X1Ae(λ|ΩP, {(t→ ∞, zλ

λI
)}),

ε̂λ
A = (1− X2)Ae(λ|ΩP, {(t→ ∞, zλ

λA
)}) + X2Ae(λ|ΩP, {(t→ ∞, zλ

λI
)}),

ε̂λ =

(
ε̂λ

I
ε̂λ

A

)
=

(
1− X1 X1
1− X2 X2

)(
Ae(λ|ΩP, {(t→ ∞, zλ

λA
)})

Ae(λ|ΩP, {(t→ ∞, zλ
λI
)})

)
= κA. (18)
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Thus, from equations (17) and (18) we obtain an expression for any steady-state
absorption spectra after illumination with light condition zλ

λk

As(λ|ΩP, {(t→ ∞, zλ
λk
)}) = c∞ · (κA)k, (19)

where (κA)k is the k-th row of κA. Solving this system for zλ
λA

and zλ
λI

, and using
the relation that cA

∞ + cI
∞ = 1, provides us with the functions of equation (6) in the

main text to obtain values of X1, X2 and Rmax.

Given this reformulation of the problem, one can now generalize the system to a
reaction cycle containing N species. In this instance we write

c∞ = (c1
∞, c2

∞, ..., cN
∞),

A =


Ae(λ|ΩP, {(t→ ∞, zλ

λN
)})

Ae(λ|ΩP, {(t→ ∞, zλ
λN−1

)})
...

Ae(λ|ΩP, {(t→ ∞, zλ
λ1
)})

 ,

κ =


1− X1 γ1

1X1 γ2
1X1 · · · (1−∑N−2

i=1 γi
1)X1

1− X2 γ1
2X2 γ2

2X1 · · · (1−∑N−2
i=1 γi

2)X2
...

...
... . . . ...

1− XN γ1
NXN γ2

NX1 · · · (1−∑N−2
i=1 γi

N)XN

 , (20)

where zλj are the N light conditions required to obtain the N steady state absorp-

tion spectra for each species and γ
j
i are scaling factors such that ∑j κkj = 1.

From equation (20) we thus have, for any steady-state absorption spectra,

Ae(λ|ΩP, {(t→ ∞, zλ
λi
)}) =

N

∑
j=1

cj
∞

[
(1− Xj)A1 +

N−2

∑
i=1

γ
j
i XjAi+1 + ANXj

(
1−

N−2

∑
i=1

γi
j

)]
,

= A1

N

∑
j=1

cj
∞(1− Xj) +

N

∑
j=1

cj
∞Xj

N−2

∑
i=1

γ
j
iAi+1 + AN

N

∑
j=1

cj
∞Xj

(
1−

N−2

∑
i=1

γi
j

)
,

= Ae(λ|ΩP, {(t→ ∞, zλ
λN

)}) + . . .

+ (Ae(λ|ΩP, {(t→ ∞, zλ
λ1
)})− Ae(λ|ΩP, {(t→ ∞, zλ

λN
)}))

N

∑
j=1

cj
∞Xj

+
N−2

∑
i=1

(Ae(λ|ΩP, {(t→ ∞, zλ
λN−i

)})− Ae(λ|ΩP, {(t→ ∞, zλ
λ1
)}))

N

∑
j=1

cj
∞γi

jXj.

(21)
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From this, we now obtain sets of simultaneous equations that satisfy this relation-
ship and can be solved to provide us with values of Xi and Rmax

i = Φi/Φ1, the
ratio of quantum yields for each species relative to the inactive state. For example,
if Ae(λ|ΩP, {(t→ ∞, zλ

λi
)}) = Ae(λ|ΩP, {(t→ ∞, zλ

λN
)}) then

N

∑
j=1

cj
∞Xj = 0,

N

∑
j=1

cj
∞Xjγ

i
j = 0, for i ∈ [2,N-1]. (22)

In the case of two species, and using c1
∞ + c2

∞ = 1 we obtain equivalent relations to
those of equation (6) in the main text.

1.5.1 Example: the three-species cycle of phytochromes

As an illustration of the N species extension outlined above we can now obtain the
relationships for a three species phytochrome system. In this system, inactive PI is
photoconverted into the Lumi-R (LI) state under red light that goes on to form PA.
As with previously, PA can then revert back to PI using far-red light or thermally in
darkness [10–12]. The ODE model of this system is then

dPI

dt
= (k2 + β1)PA + k3LI − k1PI ,

dLI

dt
= k1PI − (k3 + β2)LI ,

dPA

dt
= β2LI − (k2 + β1)PA, (23)

where ki are light regulated reactions and β j are thermal reactions.

Consequently, one can obtain analytical expression for the steady states of the three
components

P̂I =
(k2 + β1)(k3 + β2)

(k1 + k3 + β2)(k2 + β1) + k1β2
,

L̂I =
k1(k2 + β1)

(k1 + k3 + β2)(k2 + β1) + k1β2
,

P̂A =
k1β2

(k1 + k3 + β2)(k2 + β1) + k1β2
. (24)
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Then, given that ki = ∑λ σλ
i zλ

λw
= Φi ∑λ ελ

i zλ
λw

= ΦISw
i as in equation (8) of the

main text, where σλ
i are the photoconversion cross-sections, Φi are the quantum

yields and ελ
i are the extinction coefficients of each species i ∈ {I, L, A}, we can

rewrite these expressions as

P̂I = cI
∞(σ, Φ, β, zλw) = cI

λw

=
(ΦASw

A + β1)(ΦLSw
L + β2)

(ΦISw
F + ΦLSw

L + β2)(ΦASw
A + β1) + ΦISw

I β2
,

L̂I = cL
∞(σ, Φ, β, zλw) = cL

λw

=
ΦISw

I (ΦASw
A + β1)

(ΦISw
I + ΦLSw

L + β2)(ΦASw
A + β1) + ΦISw

I β2
,

P̂A = cA
∞(σ, Φ, β, zλw) = cA

λw

=
ΦISw

I β2

(ΦISw
I + ΦLSw

L + β2)(ΦASw
A + β1) + ΦISw

I β2
. (25)

Using the conditions in equation (22) we then have

cI
λA

X1 + cL
λA

X2 + cA
λA

X3 = 0,

cI
λA

γ1
1X1 + cL

λA
γ1

2X2 + cA
λA

γ1
3X3 = 0, (26)

which, upon substitution of equation (25) gives

(
ΦASA

A + β1

)(
ΦLSA

L + β2

)
X1 + ΦISA

I

(
ΦASA

A + β1

)
X2

+ β2ΦASA
AX3 = 0,(

ΦASA
A + β1

)(
ΦLSA

L + β2

)
γ1

1X1 + ΦISI
A

(
ΦASA

A + β1

)
γ1

2X2

+ β2ΦASA
Aγ1

3X3 = 0. (27)

Then substituting the quantum yield ratios RA = ΦA/ΦI and RL = ΦL/ΦI and
solving the equations one obtains

RA =
γ1

2β1X2 + γ1
3β2X3 − γ1

1(β1X2 + β2X3)

ΦASA
AX2(γ1

1 − γ1
2)

,

RL =
γ1

3(β2X1 + ΦASA
AX2)− γ1

1β2X1 − γ1
2ΦASA

AX2

ΦASA
L X1(γ

1
1 − γ1

3)
. (28)
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These simultaneous equations can now be solved numerically within the frame-
work of our optimisation procedure to find the optimal quantum yields and photo-
conversion cross-sections for multiple phytochrome species. However, one should
note that to analytically obtain these expressions becomes increasingly challeng-
ing as the number of species in the reaction cycle increases [13]. Thus, one may
wish to consider other methods of numerically obtaining the percentages of sub-
species (possibly through numerical integration of the ODEs given specific param-
eter values) followed by obtaining numerical solutions of the simultaneous con-
straint equations (equation (22)).

1.6 Calculation of phyB-N photoconversion cross-sections using
Butler’s method

In order to show the differences between our method and those previously used to
estimate the photoconversion cross-sections of full-length phytochrome, we have
calculated the quantum yields and photoconversion cross-sections using Butler’s
method. Essentially, using this method we are assuming that cλI = 0 (there is no PA
after saturating exposure to λI), which means that X1 = 1 from equation (11). The
full derivation of the method can be found in [14] but we shall summarise it here.

The first step is to plot L against ln
[
100Eλw

t
]
, where Eλw

t is described in equation (2)
of the main text given illumination of light with wavelength λw during the experi-
ment. Here,

L = ∑
λ

∣∣∣∣∣zλl0∆t(1− e−Āλl/l0)

ĀλVs

∣∣∣∣∣
where zλ is our photon distribution, l0 is the cuvette width, l is the corrected path-
length, ∆t is the time of illumination, Vs is the volume of the sample and Āλ is the
intensity normalised absorption of a blank sample (see Supplementary Table 2 for
these parameter values) [14, 15].

Upon calculating these functions, the aim is to determine for which value of L al-
lows 100Eλw

t = 36.8 (referred to as L36.8, for an example see the result for our data
in Supplementary Figure 6C) [14, 16]. The term L36.8 refers to the amount of expo-
sure required for absorption to decay to e−1 (∼ 0.368) of the initial value under the
assumption that illumination at λw leads to a single photoproduct (i.e. PA) [16]. By
taking 1

L36.8
, we get the values σ657

I = 43.9 m2/mol and σ735
A = 10.5 m2/mol using

our data calculated at the peaks of photon absorption (656 nm LEDs peak at 657
nm, 740 nm LEDs peak at 735 nm, see Supplementary Figure 2). These are in broad
agreement with the scale of values for the photoconversion cross-sections at these
wavelengths that we obtained from our algorithm (Supplementary Table 4), espe-

14



cially when compared with the ‘Mancinelli’ spectra where both our algorithm and
Butler’s method predict much smaller photoconversion cross-sections for phyB-N
(see Figure 6 of the main text).

The next step is to perform the following derivations to obtain the quantum yields
and a scaling factor between the absorption spectra and photoconversion cross-
sections.

• ΦI
ΦA

=
σ

λA
I Ae(λI |ΩP,{(t→∞,zλ

λA
)})

σ
λI
A Ae(λA|ΩP,{(t→∞,zλ

λI
)})

, where Ae(λA|ΩP, {(t → ∞, zλ
λI
)}) is the ab-

sorbance of our sample measured at wavelength λA after saturating inactivat-
ing light zλ

λI
(and the same for activating conditions).

• XλA
eq = 1−

∣∣∣∣∣Ae(λI |{(t→∞,zλ
λI
)},{(0,zλ

λA
)})

Ae(λA|ΩP,{(t→∞,zλ
λI
)})

∣∣∣∣∣
∣∣∣∣∣1 + ΦI

ΦA

∣∣∣∣∣
−1

. We obtain a value of XλA
eq =

0.7457 that leads to X2 ∼ −0.3410.

• ε̂λ
A =

Ae(λ|ΩP,{(t→∞,zλ
λA

)})−(1−X
λA
eq )Ae(λ|ΩP,{(t→∞,zλ

λI
)})

X
λA
eq

- below we shall relate

this to (16) and show that they are equivalent.

• αλA =
Ae(λI |ΩP,{(t→∞,zλ

λA
)})αλI

Ae(λA|ΩP,{(t→∞,zλ
λI
)})X

λA
eq

, where αλI = ελA
I = Ae(λA|ΩP, {(t→ ∞, zλ

λI
)})

is the photoconversion cross-section of the PI photoreceptor sub-population.

• ΦA = σλI
A /αλA . By calculating αλA one is able to obtain the quantum yield ΦA

and then from step 1 calculate ΦI .

Following this procedure, we calculated that ΦI = 0.006 and ΦA = 0.008 (Supple-
mentary Figure 6B), or roughly one fifth of the the values calculated by our optimi-
sation algorithm (Figure 6 of the main text).

All that remains is to calculate the wavelength-dependent photoconversion cross-
sections of σλ

A using step 2. This is related to the Verméglio method since
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ε̂λ
A =

Ae(λ|ΩP, {(t→ ∞, zλ
λA
)})

XλA
eq

−
1− XλA

eq

XλA
eq

Ae(λ|ΩP, {(t→ ∞, zλ
λI
)}),

= Ae(λ|ΩP, {(t→ ∞, zλ
λA
)})−

1− XλA
eq

XλA
eq

(Ae(λ|ΩP, {(t→ ∞, zλ
λI
)})

− Ae(λ|ΩP, {(t→ ∞, zλ
λA
)})),

≡ Ae(λ|ΩP, {(t→ ∞, zλ
λA
)}) + X2(Ae(λ|ΩP, {(t→ ∞, zλ

λI
)})

− Ae(λ|ΩP, {(t→ ∞, zλ
λA
)})).

The resulting spectra can be seen in Supplementary Figure 6A. What is obvious
from this figure is that the wavelength-dependency of σλ

A using Butler’s method is
similar to that obtained from our algorithm (compare the solid and dashed lines of
Supplementary Figure 6A), however the relative amplitudes and absolute values at
the peak of the photoconversion cross-sections obtained from Butler’s method are
smaller than those obtained by our optimisation algorithm. Using the calculated
set of photoconversion cross-sections and quantum yields, we simulated difference
spectra and compared the output to our data and the simulated spectra obtained
from our optimal values (Supplementary Figure 6D). From this figure it is clear
to see that Butler’s model has not calculated values that provide a close match to
the time-dependent spectra obtained experimentally and that our optimal values
predict.

1.7 Absorption spectra optimisation algorithm

Here, we provide pseudocode for our optimisation algorithm that aims to minimise
the difference between simulated and measured absorption spectra for given sets
of photoconversion cross-sections.

1. Define the upper and lower bound of the estimates. We have used:

ΦA ∈
(
0.001, 1

)
R ∈

(
0.001, Rmax)

(or Φi and Ri, i ∈ [2, N] in the N species case)

2. Start optimization routine to minimize the difference between simulated and
experimental absorption spectra. We used the ’Interior-point’ algorithm of the
f mincon optimization function in MATLAB.

3. Define the initial conditions. To do this we used the rng and rand functions
within MATLAB to generate random values between the upper and lower
bounds for each parameter.

16



a. set ΦA = RΦI (or Φi = RiΦ1 in the N species case).

b. calculate the values of X1 and X2 (or Xi) for given quantum yields (see
note below).

c. interpolate search space of photoconversion cross-sections for these val-
ues of X’s.

d. calculate the cost score

Ω =
(
(D(t, λ)− S(t, λ))/νλ

t
)
·
(
(D(t, λ)− S(t, λ))/νλ

t
)
,

as defined by equation (9) of the main text.

e. If Ω is less than the previous estimate, keep it as the current best score
and try the next parameter estimates.

f. Once Ω reaches pre-defined termination criteria, stop the optimization
and return the minimal score. In our work we have set the termination criteria
to be:

i. Maximum number of iterations (′MaxIter′) = 10000.

ii. Maximum number of function evaluations (′MaxFunEvals′) = 10000.

iii. Optimization tolerances (′TolFun′, ′TolCon′, ′TolX′) = 0.001.

4. Perform steps 3-4 the defined number of times. In our case 100 times.

5. Keep results with the best Ω.

6. If the algorithm is boot-strapped further, then re-start points 4-7.

From the resulting optimal parameter sets the mean σλ-spectra can be obtained by
calculating X1 and X2 for the optimal Φ’s and interpolating the search space of pho-
toconversion cross-sections.

Note: As stated in the main text, the functions of X1 and X2 are implicit. This means
that they need to solved numerically. In this work we have used the MATLAB nu-
merical solver vpasolve. However, in some unforeseen cases, the numerical solver
fails to converge to an accurate solution of X1 and X2 for a given set of Φ. At these
points, we obtain numerical solutions in the local vicinity of the original Φ values
(perturbing the values by 0.0001 in each direction of the Φ-space) and then interpo-
late these values to obtain a solution of X1 and X2 at the original values of Φ. This,
in effect, produces a continuous space of potential X1 and X2 values. Due to the
small size of the perturbations, we believe that this process does not greatly impact
our results.
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1.8 Thermal reversion optimisation algorithm

The algorithm to calculate thermal reversion parameters works as follows:

1. Use equation (3) of the main text to set AD
t = ∑n

k=1 αke−βktD . Define the num-
ber of n exponential functions that should be fit.

2. Define the upper and lower bound of our parameter estimates. We have used:

αk ∈
(
0.0001, 1

)
such that ∑k αk = 1.

βk ∈
(
0.0001, 0.01

)
.

For cases where a single thermal reversion rate is required, α can be fixed
to 1 or β values can be fixed to zero.

3. Perform the optimisation routine 1000 times:

a. define initial conditions for the parameter search as random points be-
tween the upper and lower bounds;

b. use the ’Interior-point’ option for f mincon in MATLAB to minimise

Ω =
(
(ED

t −AD
t )/ζt

)
·
(
(ED

t −AD
t )/ζt

)
where ED

t is described by equation (2) of the main text and ζt is the standard
deviation of the data (similar to νλ

t above).

c. once Ω reaches pre-defined termination criteria, stop the optimization
and return the minimal score. In our work we have set the termination criteria
to be:

i. maximum number of iterations (′MaxIter′) = 10000.

ii. maximum number of function evaluations (′MaxFunEvals′) = 10000.

iii. optimization tolerances (′TolFun′, ′TolCon′, ′TolX′) = 0.001.

2 Experimental Methods

2.1 Protein purification

The phyB(1-651)-AviTag-His6 encoding plasmid pMH17 was engineered by PCR
amplification of phytochrome B (phyB, Genbank accession No. NM 127435) from
the plasmid pAL149 [17] using oligonucleotides oMH1 (5’-TTCCGAATTCATTAAA
GAGGAGAAATTAACTATGGTTTCCGGAGTCGGGGGTAG-3’) and oMH38 (5’-T
GACGCGGCCGCTTAATGGTGATGGTGATGATGTTCGTGCCATTCGATTTTCT
GAGCTTCGAAGATGTCGTTCAGACCGCTACCAGAACCTGCACCTAACTCAT
CAATCCCCTG-3’) followed by subsequent cloning into plasmid p83 [18] using the
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restriction enzymes NotI and EcoRI.

For expression of phyB(1-651)-AviTag-His6, the plasmid pMH17 and the plasmid
p171 [18,19] coding for the enzymes Ho and PcyA for synthesis of phycocyanobilin
were cotransformed into E. coli BL21 StarTM (DE3) (Invitrogen, Carlsbad, CA, cat.
no. C601003) and were selected in LB medium with 100 µgml−1 ampicillin and
40 µgml−1 kanamycin. The bacteria were grown at 30◦C to an OD600 of 0.8 after
which 50 µM biotin was added and expression was induced with 1 mM IPTG and
0.4% (w/v) arabinose. After expression at 18◦C for 18h in darkness, the cells were
harvested by centrifugation at 6,500 × g for 10 min, resuspended in lysis buffer (50
mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, pH 8.0) and disrupted using a
French Press (APV 2000, APV Manufacturing, Bydgoszcz, Poland) at 1,000 bar. The
lysate was clarified by centrifugation at 30,000 × g for 30 min and loaded onto a
Ni-NTA agarose column (Qiagen, Hilden, Germany, cat. no. 30210). After washing
with 20 column volumes of wash buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM
imidazole, pH 8.0), the purified protein was eluted in 3 column volumes of elution
buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM imidazole, pH 8.0).

2.2 Protein analysis protocol

Final preparations of phyB-N containing the N-terminal 650 amino acids were stored
in 50 mM sodium phosphate buffer containing 300 mM NaCl, pH 7.0. The concen-
tration of phyB was determined using BCA assay and purity was analysed accord-
ing to SDS-PAGE. Absorption measurements were performed using Agilent/Hewlett-
Packard 8453 Diode-Array UV-Vis Spectrophotometer (Agilent Technologies, CA,
USA).

2.3 Absorption spectra measurements of photoswitching

Photoswitching experiments were conducted by diluting phyB-N in a buffer (50
mM sodium phosphate buffer containing 300 mM NaCl, pH 7.0) to final concen-
tration 0.34 mg/ml as determined from BCA analysis. This concentration is below
an optical density of 0.2 in order to avoid inner filter effects and ensuring homoge-
neous illumination of the sample [20]. Absorption and illumination measurements
were performed in 500 µl Hellma Quartz (Hellma GmbH & Co. KG, Müllheim, Ger-
many) black absorption cuvettes that are 1cm thick. Illumination was performed
either using 656 nm or 740 nm light emitting diodes (LEDs) at 20 cm distance yield-
ing 11 µmol/m2s flux rates, respectively. The photon distribution of the LEDs was
determined using a Jobin Yvon-Spex Fluorolog 3.22 (Horiba Scientific, NJ, USA) in
combination with micromax fibre optics. The head of the fibre was placed 1.5 m
in front of the LED and spectra were recorded. Recording of red to far-red experi-
ments were performed by placing the cuvet with phyB-N under 656 nm LEDs for 5
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min followed by 740 nm illumination for different time periods. Absorption spectra
were recorded after 10, 20, 30, 40, 50, 60, 80, 100, 120, 160, 200 s of 740 nm illumi-
nation. The far-red to red experiment was conducted similarly, starting with 8 min
of 740 nm light followed by 5, 10, 15, 20, 25, 30, 40, 50, 60, 120 and 180 s periods of
656 nm illumination. Measurements were conducted at room temperature (∼22◦C)
and recorded in biological duplicate.

2.4 Thermal reversion experiments

After 5 min illumination of 656 nm light at 22◦C, a cuvet containing phyB-N was
placed in complete darkness within the spectrophotometer. Absorption spectra
were obtained on a binary logarithmic scale starting at 42 seconds until a final
measurement after 172,032 s (∼48 h). Measurements were conducted at 22◦C in
duplicate.
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C. Fleck, and A. Hiltbrunner. Photoconversion and nuclear trafficking cycles
determine phytochrome A’s response profile to far-red light. Cell, 146:813–825,
2011.
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Supplementary Tables

Supplementary Table 1: Parameter values used for test case simulations.

Parameter Unit Value

l cm 1

ctot mol/l 0.2/70000

kR→D
d1 s−1 0.005

kR→D
d2 s−1 0.0005

λR→FR
A nm 665

λR→G
A nm 660

λR1→R2
A nm 660

λFR→R
I nm 740

λG→R
I nm 550

λR2→R1
I nm 680

NR→FR
λA

µmol/m2s 15

NR→G
λA

µmol/m2s 10

NR1→R2
λA

µmol/m2s 10

NFR→R
λI

µmol/m2s 10

NG→R
λI

µmol/m2s 5

NR2→R1
λI

µmol/m2s 10

tλI s 0:0.15:0.75

tλA s 0:0.05:0.25

ctot = molecular concentration
(mg/ml) / molecular weight (Da)
λL1→L2

x = wavelength of light used for
experiment from state L1 to L2
tλx = time period for illumination of

wavelength λX in s
Nλ is the light intensity in µmol/m2s
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Supplementary Table 2: Parameters required for calculation of L in Butler’s method
using simulated data.

Parameter Unit Value

l cm 1.06

l0 cm 1

Āλ - 0.001

VR→G mL 0.74

VR→FR mL 0.78

VR1→R2 mL 0.76

tλI s [0:0.15:0.75, 1, 2, 5]

tλA s [0:0.05:0.25, 0.5, 1, 2]

V is the estimated sample volume for
each simulated experiment chosen such
that output of Butler’s model matches in-
put parameters
tλx = time period for illumination of

wavelength λX
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Supplementary Table 3: Parameters required for calculation of L in Butler’s method
from real data.

Parameter Unit Value

l cm 1.06

l0 cm 1

¯AλA - 0.00017

ĀλI - 0.00014

Vs mL 0.3

Values of Āλ calculated ac-
cording to [15].
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Supplementary Table 4: Optimal photoconversion cross-sections for phyB-N.

Wavelength (nm) σI (m2/mol) σA (m2/mol)

500 4.953 0.468

510 5.798 0.352

520 6.957 0.468

530 9.076 0.697

540 11.99 1.035

550 15.79 1.599

560 20.80 2.335

570 28.47 3.458

580 39.81 5.138

590 53.20 7.043

600 63.90 9.135

610 72.42 11.63

620 86.92 14.94

630 113.8 20.60

640 145.2 26.73

650 165.2 32.01

660 146.0 34.86

670 86.21 36.19

680 32.66 39.37

690 8.840 44.99

700 1.627 50.98

710 -0.52 54.19

720 -1.13 50.36

730 -0.97 37.86

740 -0.57 22.18

750 -0.20 10.05

760 -0.03 3.243

770 0 0

Values in italics are negative and, hence, biologi-
cally infeasible. These can be set to 0 without al-
tering simulations of absorption spectra due to the
relatively much larger σA values.
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Supplementary Figures
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Supplementary Figure 1: Thermal reversion of phyB-N is independent of
recorded PA wavelength. Traces of thermal reversion as described by equation
(2) of the main text over a 40 nm window around the peak wavelength of PA.
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Supplementary Figure 2: Distribution of photons emitted by our LED light
sources. Photon count measurements of the photons emitted by our (A) 656 nm
and (B) 740 nm LED light sources (black lines). These are approximately the same
as a Gaussian distribution with mean (A) 656 nm, (B) 740 nm and variance of 10
nm.
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Supplementary Figure 3: Dynamics of full-length phytochromes as predicted by
the ‘Mancinelli’ spectra. (A) photoconversion cross-sections for full-length phy-
tochromes taken from [2]. Black line = σI ; red line = σA. (B) The change of PA per-
centage as obtained from equations (5) and (7) of Additional File 1 after red (black
line) and far-red (red line) light conditions.

29



Supplementary Figure 4: Confirmation of phyB presence in our samples. Protein
eluted from Ni-NTA purification was seperated by SDS-PAGE (10%), washed with
dH2O for 5 min and subjected to staining with 1 mM zinc acetate for 15 min to vi-
sualize the protein bound linear tetrapyrrole (right) followed by coomassie staining
for total protein visualization (left). Zinc stain images were aquired by fluorescence
upon UV light excitation. M = marker; C = coomassie stain; Z = zinc stain.
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Supplementary Figure 5: Output of optimisation algorithm for a red/far-red pho-
toreceptor undergoing two thermal reversion steps through complex formation.
(A, C, E) Optimal photoconversion cross-sections using the correct form of ck

t (equa-
tion (8); solid lines denoted ‘Dimer’) and incorrect form (equation (7); dashed lines
denoted ‘Molecule’) compared to the input values (circles). Black lines/circles = σI ;
red lines/circles = σA. (B, D, F) Comparison of ΦI and ΦA obtained using optimi-
sation algorithm for correct form (‘Dimer’) and incorrect (‘Molecule’) form of ck

t to
‘Input’ values. (A, B) [α, β1, β2] = [0.7, 1, 0.1]; (C, D) [α, β1, β2] = [0.7, 0.1, 0.01]; (E,
F) [α, β1, β2] = [0.7, 0.01, 0.001].
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Supplementary Figure 6: photoconversion cross-sections for phyB-N obtained
using the previously published Butler’s model. (A) Comparison of photoconver-
sion cross-sections obtained using Butler’s model (dashed lines) compared to what
our algorithm predicts for phyB-N (solid lines). (B) Values for the quantum yields
of phyB-N obtained from our algorithm and derived from Butler’s model. (C) De-
cay of absorption as a function of fluence. The value of 1/L36.8 provides the values
of σλ

k . (D) Simulated spectra using Butler’s model (dashed red line) compared to
simulations using optimal values obtained from our algorithm (solid red line) and
the obtained phyB-N data (black line).
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