
Tovey et al.

33

SOFTWARE

Supplementary information for

MDSuite: comprehensive

post-processing tool for particle

simulations
Samuel Tovey1, Fabian Zills1, Francisco Torres-Herrador2,3,4, Christoph

Lohrmann1, Marco Brückner1 and Christian Holm1

1 Molecule Mapping

Molecule mapping is a crucial component to many simulation studies and the imple-

mentation of it in MDSuite offers a range of potential applications. In this section

the process of molecule mapping is discussed in more detail as well as the isomor-

phism checks used to further ensure that the correct molecules have been detected.

1.1 Molecule interface and detection

The molecele mapping in MDSuite is dictated by the information the user provides

the molecule graph module. This is interfaced through the mdsuite.Molecule class

which contains information about the structure of the molecue, as well some system

information such as how many should be in each configuration. An example of this

class is shown below:

1 import mdsuite as mds

2

3 water = mds.Molecule(

4 name="water",

5 smiles="[H]O[H]",

6 amount =200,

7 cutoff =1.6,

8 mol_pbc=True

9 )

Listing 1: An example of an MDSuite molecule for water.



Tovey et al. Page 2 of 5

Alternatively, for custom molecules where SMILES strings cannot be built, users

can use a dictionary reference such as:

1 import mdsuite as mds

2

3 my_polymer = mds.Molecule(

4 name="custom",

5 species_dict="{"Group_1": 3, "Group_2": 2}",

6 amount =10,

7 cutoff =16,

8 )

Listing 2: An example of an MDSuite molecule for a custom molecule group.

At this stage in MDSuite, there is no difference between the use of SMILES and the

direct use of a species dictionary. In the future, with the addition of even stricter

isomorphism test, there will be some distinction in how exact the molecule mapping

can be performed without a reference graph.

The actual mapping of the molecules takes place in the following steps:

1 Build distance tensor between all particles of the species contained in one

molecule.

2 Apply mask built from cutoff value to construct adjacency matrix for all

particles.

3 Perform graph decomposition on full adjacency matrix to collect matrices of

individual molecules.

By the end of this stage, what is returned is a list of the different molecule on which

certain isomorphism test can be performed to further ensure their validity.

1.2 Isomorphism tests

In order to try and validate that the chosen molecules are correct, MDSuite performs

small isomorphism tests and raises an error if they fail. The tests performed are

listed below along with why they are chosen and what a user can do in the event

that they fail.

1 Molecule amount test: In this test, MDSuite simply checks whether the

total number of molecules matches that of the reference information. This

is the first and most simple test performed. Typically, a failure here is as a



Tovey et al. Page 3 of 5

result of an incorrect cutoff. If the cutoff is too large, not enough molecules

are found, if it is too small, too many molecules will be found.

2 Group equality test: The second, and at this stage final, test performed

by MDSuite is that of Group equality. When MDSuite constructs molecules

it does so by building reference data structure with information about which

particle species are in each molecule as well as how many. For example, for

a water molecule it would state that there should exists one oxygen and two

hydrogen particles in each molecule. This test checks to see whether this is

true for all of the computed molecules. If this test fails, particles are either not

being found, or are so close at this point in the simulation that the module

cannot separate them. Resolving this failure is usually achieved by adjusting

the cutoff value provided, or by using an alternative reference configuration

in which the molecules are more separated.

2 Algorithms

Throughout the main article reference has been made to several algorithms em-

ployed by MDSuite for several calculations. In this section, we expand on why some

of these approaches are used as well as where they can be found in the code.

2.1 Savitsky Golav Filter

In several types of analysis it is necessary to determine the minimum of a curve

within a specified range. To perform such an analysis, it is important the curve

being studied is smoothed, or at least, has a smoothed variant that can be used as

a reference point for the true data. This point is addressed in MDSuite by using a

Savitzky-Golay, or SavGol filter[1], to produce a smoothed copy of a function before

a peak-finding code is applied. The filter works by expanding each data point out

in a set of low-degree polynomial functions as

Yi =

m−1
2∑

1−m
2

Mjyi+j , (1)

where Mj are convolution coefficients taken from an order n polynomial. In MD-

Suite, these parameters can be set by the user for the repsective application. The

main benefit of SavGol filter compared to alternatives, such a moving average file,

is that the location of the maxima and minima remains unaltered. In MDSuite,



Tovey et al. Page 4 of 5

the Scipy implementation of the SavGol filter is called within a separately defined

method to apply the filter operation.[2].

2.2 Golden Section Search

Another algorithm implemented in associate with minimum detection is the Golden-

Sector search algorithm developed by Kiefer in 1952[3]. The algorithm works as

most extremum search methods do, by selecting points iteratively and reducing

the search range until the value is found. In order to optimise the rate at which

the algorithm works, successive intervals are chosen such that the new test range

satisfies the golden ration. By providing a suitable range, the Golden-Sector search

algorithm converges onto a function minimum with excellent accuracy. In order to

ascertain an error value, the MDSuite implementation returns a range within which

the minimum exists.

2.3 Min-Finding

The Golden-Section search algorithms is not enough on its own to ascertain the

minimum value of a function as it requires and defined range over which to look

for an extremum. Rather, in MDSuite, we combine the filtering capacity of the

SavGol filter with the min-finding capabilities of the Golden-Section search. First,

the SavGol filter is applied to the raw signal in order to generate a smoothed copy

of the function. On this copy, the typical scipy peak-finding algorithm is applied

which simply uses neighbour comparisons to detect the maximums of the function.

These peaks are then parsed to the Golden-Section search algorithm as an initial

range within which the minimum exists.

3 Memory Management

Memory management is a fundamental concept at the heart of MDSuite. The abil-

ity to perform memory safe analysis enables MDSuite calculators to examine the

largest systems on almost any available device. Beyond providing a foundation for

the analysis of large data-sets, memory safety also provides the means for push-

ing expensive calculations onto performance devices such as GPUs or, theoretically,

TPUs.

MDSuite achieves memory safety by computing the scale functions of our calcu-

lators. This is to say, each calculator and transformation has with it an associated



Tovey et al. Page 5 of 5

scaling function which describes how the function scales with respect to additional

particles or time-steps. At the beginning of each calculation, the theoretical memory

consumption of a computation is derived and a batch size computed accordingly. If

there exists no batch size capable of running the analysis, MDSuite will then move

to so-called atom-wise or particle-wise batching. In this case, rather than trying

to load in as many configurations as possible with all of the particles, this mem-

ory requirements are computed using a subset of the available particles. Therefore,

the minimum memory requirement of any device is a single particles worth of the

desired data range in the case of a dynamics calculation.

Author details

1Institute for Computational Physics, Universität Stuttgart, Stuttgart, Germany. 2Aeronautics and Aerospace

department, von Karman Institute for Fluid Dynamics, Rhode-St-Genese, Belgium. 3Thermo and Fluid dynamics

(FLOW), Vrije Universiteit Brussel, Brussels, Belgium. 4Laboratory for Chemical Technology (LCT), Ghent

University, Ghent, Belgium.

References

1. Savitzky, A., Golay, M.J.E.: Smoothing and Differentiation of Data by Simplified Least Squares Procedures.

Analytical Chemistry 36(8), 1627–1639 (1964). doi:10.1021/ac60214a047. eprint:

https://doi.org/10.1021/ac60214a047

2. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson,

P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson,

A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, I., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde,

D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H.,

Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific

Computing in Python. Nature Methods 17, 261–272 (2020). doi:10.1038/s41592-019-0686-2

3. Kiefer, J., Wolfowitz, J.: Stochastic Estimation of the Maximum of a Regression Function. Annals of

Mathematical Statistics 23(3), 462–466 (1952). doi:10.1214/aoms/1177729392

http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1214/aoms/1177729392

	Molecule Mapping
	Molecule interface and detection
	Isomorphism tests

	Algorithms
	Savitsky Golav Filter
	Golden Section Search
	Min-Finding

	Memory Management



