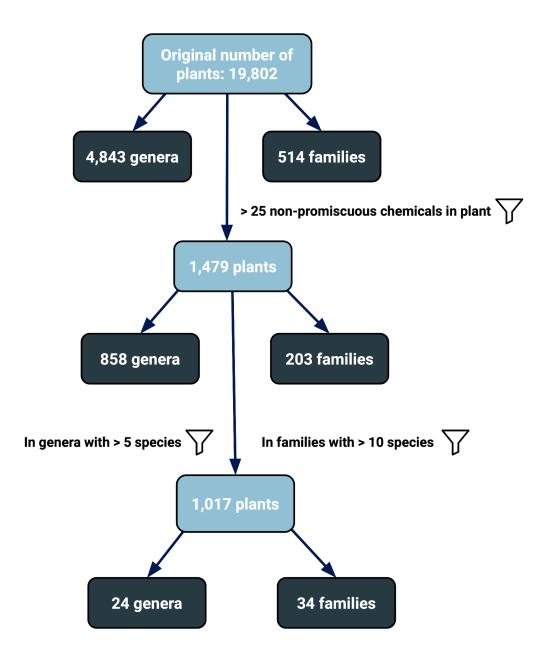
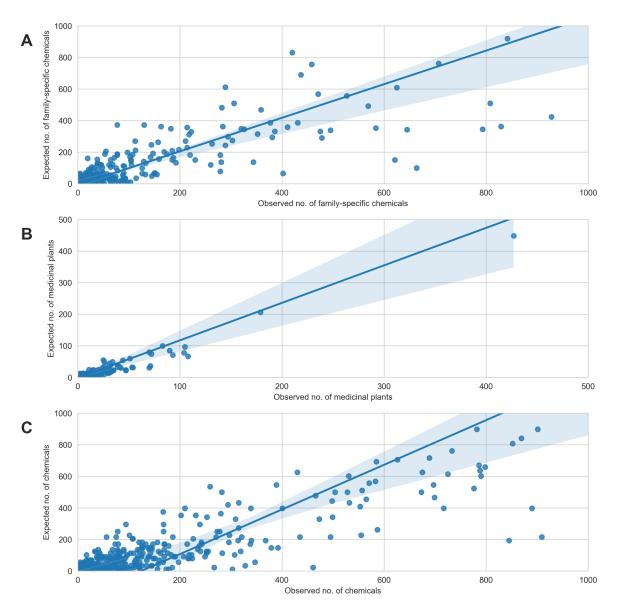
Additional File

Additional file Tables

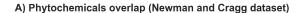
Code (Newman)	Definition (Newman dataset)	Category	Number of rows in original file	Curated and mapped unique structures
N	unaltered natural product, 1997	NP	71	62
NB	botanical drug (defined mixture), 2012	NP	14	3
ND	natural product derivative, 1997	NP	356	333
S	synthetic drug, 1997	Synthetic	463	452
S*	synthetic drug (NP pharmacophore), 1997	Synthetic	65	61
/NM	mimic of natural product, 2003	Synthetic	207 (S*/NM) + 217 (S/NM)	205 (S*/NM) + 217 (S/NM)

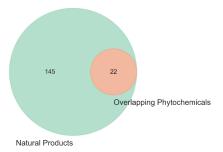

Additional file 1: Table S1. Comparison of the original Newman dataset and the dataset used in this work after normalization and filtering.

NCBITaxonomy ID	Name	Medicinal plant? (use in traditional medicine)
ncbitaxon:46220	Taxus brevifolia	Yes
ncbitaxon:48119	Glehnia littoralis	Yes
ncbitaxon:405945	Leonurus sibiricus	Yes
ncbitaxon:431156	Croton stellatopilosus	Yes
ncbitaxon:555479	Nigella sativa	Yes
ncbitaxon:4682	Allium sativum	Yes
ncbitaxon:108594	Campsis grandiflora	Yes
ncbitaxon:296036	Phyllanthus emblica	Yes
ncbitaxon:147273	Taxus wallichiana	Yes
ncbitaxon:4058	Catharanthus roseus	Yes
ncbitaxon:191701	Cephalotaxus hainanensis	Yes
ncbitaxon:99806	Taxus cuspidata	Yes
ncbitaxon:66169	Cephalotaxus fortunei	Yes

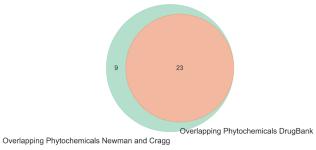

ncbitaxon:65561	Hypericum perforatum	Yes
ncbitaxon:25629	Taxus baccata	Yes
ncbitaxon:109792	Citrus natsudaidai	Yes
ncbitaxon:376254	Ranunculus ternatus	Yes
ncbitaxon:2711	Citrus sinensis	Yes
ncbitaxon:43166	Citrus aurantium	Yes
ncbitaxon:154990	Euphorbia helioscopia	Yes
ncbitaxon:58029	Cephalotaxus harringtonia	Yes
ncbitaxon:3483	Cannabis sativa	Yes
ncbitaxon:330167	Dioscorea villosa	Yes
ncbitaxon:93608	Sinopodophyllum hexandrum	Yes
ncbitaxon:4227	Flaveria trinervia	Yes
ncbitaxon:4182	Sesamum indicum	Yes
ncbitaxon:329759	Solanum aculeastrum	Yes
ncbitaxon:35933	Podophyllum peltatum	Yes
ncbitaxon:29780	Mangifera indica	Yes
ncbitaxon:246360	Commiphora wightii	Yes
ncbitaxon:126910	Withania somnifera	Yes
ncbitaxon:4072	Capsicum annuum	Yes
ncbitaxon:137221	Rheum palmatum	Yes
ncbitaxon:37690	Citrus trifoliata	Yes
ncbitaxon:3993	Euphorbia esula	Yes
ncbitaxon:39354	Salvia abrotanoides	Yes
ncbitaxon:224740	Juniperus sabina	Yes
ncbitaxon:212925	Euphorbia lathyris	Yes
ncbitaxon:107238	Croton sublyratus	Yes
ncbitaxon:2067815	Commiphora mukul	Yes
ncbitaxon:88032	Taxus canadensis	Yes
ncbitaxon:85957	Taxus x media	No
ncbitaxon:2708766	Cola ballayi	No
ncbitaxon:69918	Micranthemum umbrosum	No
ncbitaxon:89484	Cephalotaxus sinensis	No
ncbitaxon:417013	Livistoneae incertae sedis	No
ncbitaxon:1721085	Pentzia eenii	No

Additional fil 1: Table S2. List of plants containing phytochemicals that are now approved-drugs. The last column indicates whether the plant is considered a medicinal plant (e.g., has been traditionally used to treat indications).

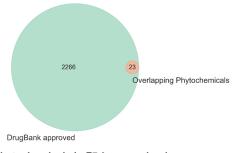

Additional file Figures

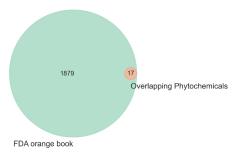


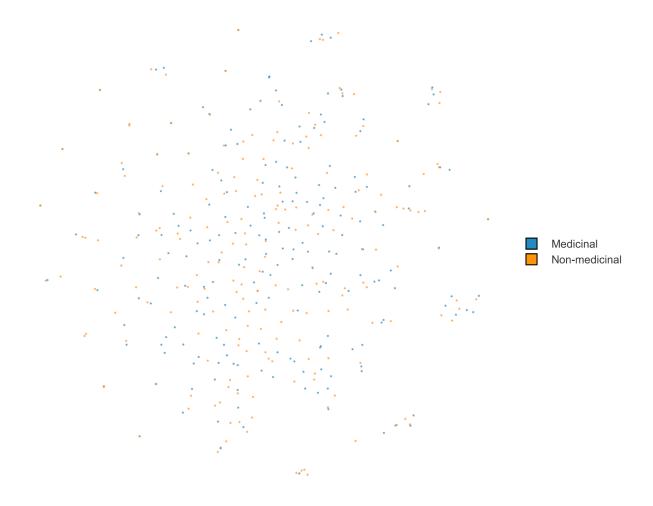
Additional file 1: Figure S1. Number of species (plants) and their corresponding genera and families after each filtering step for the showcase of the chemotaxonomy.

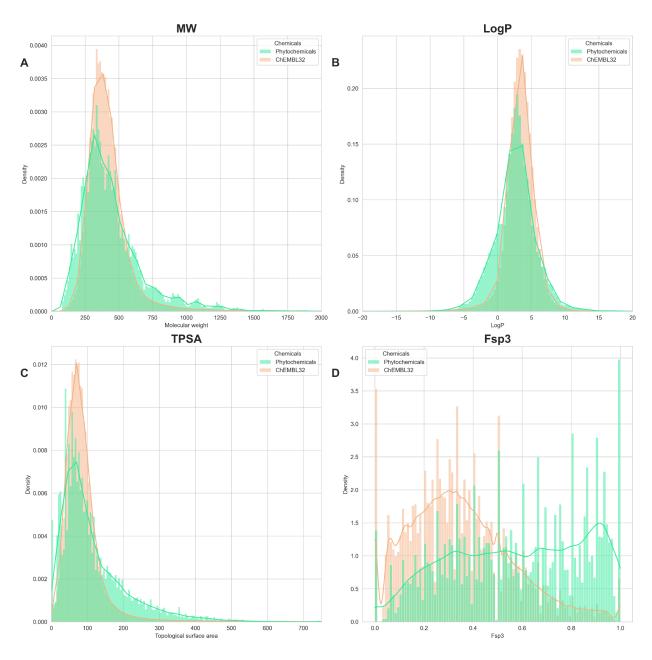


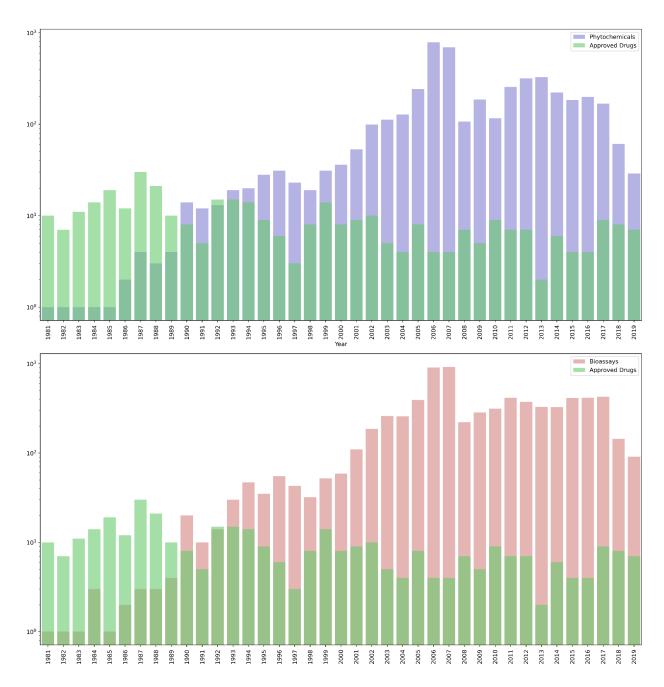
Additional file 1: Figure S2. A) Correlation between the observed chemicals specific to the family against the expected chemicals specific to the same family, corrected by the total number of species in the family. B) Correlation between the observed number of medicinal plants found in the family against the expected number of medicinal plants belonging to the same family, corrected by the total number of species in the family. C) Correlation between the observed number of chemicals found in the family against the expected number of chemicals belonging to the same family, corrected by the total number of species in the family. The y-axis range is set to 1,000, although a few families have over 2,000 chemicals.

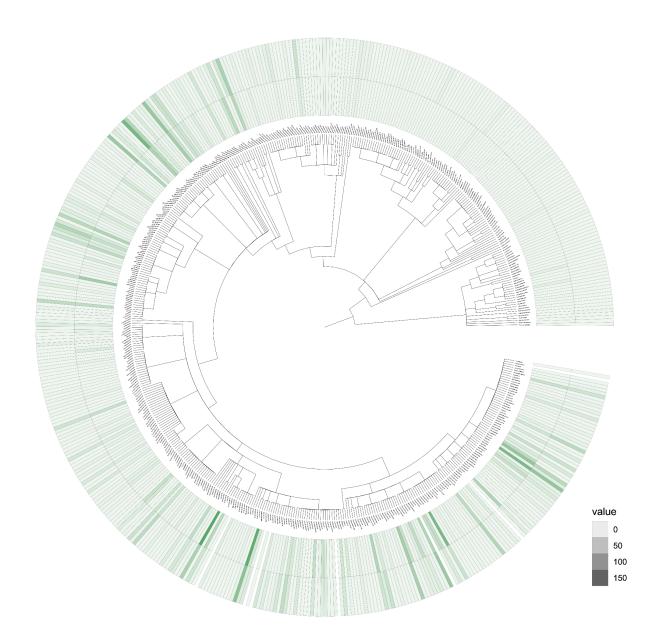


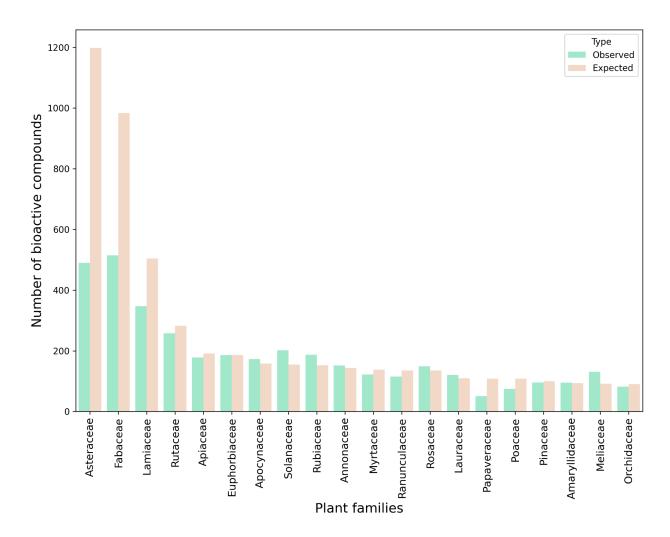

B) Phytochemicals overlap between Wishart (DrugBank) and Newman and Cragg datasets


C) Phytochemicals in Wishart dataset (DrugBank)

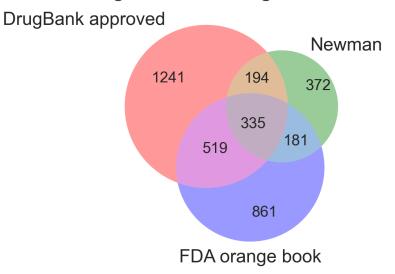

D) Phytochemicals in FDA orange book


Additional file 1: Figure S3. A) Proportion of plant-specific compounds present in the NP approved-drugs curated by Newman and Cragg (2020). **B)** Overlap of the matching phytochemicals of the two datasets: Newman and Cragg (2020) and Wishart *et al.* (2018). **C)** Number of plant-specific compounds present in the dataset curated by Wishart *et al.* (2018). **D)** Number of plant-specific compounds present in the FDA orange book.


Additional file 1: Figure S4. t-SNE of the relative abundance of the chemical classes from NP-classifier.


Additional file 1: Figure S5. Distribution of four chemical properties between ChEMBL compounds (version 32) and all phytochemicals in medicinal and non-medicinal plants used in our work. A) Distribution of the molecular weights (MW), B) Distribution of the LogP. C) Distribution of the topological polar surface area (TPSA) D) Distribution of the fraction of sp3 hybridized carbon atoms (Fsp3).

Additional file 1: Figure S6. Comparison of the log distributions of NP approved drugs versus phytochemicals and their corresponding bioassays over time. The plots highlight a decline in NP approved drugs around the late 1980s. At the same time, the plots indicate an increase in the number of phytochemicals being tested for bioactivity, especially in the last 15 years.



Additional file 1: Figure S7. Distribution of the number of bioactive compounds in medicinal (inner circle) and non-medicinal (outer circle) plants across plant families. Due to a few families having a disproportionately large number of bioactive compounds compared to the rest, we set their values to white any family with more than 150 bioactive compounds in both medicinal and non-medicinal plants to able to spot easier the differences between the two groups for the rest with a smaller range in the color palette (intensity).

Additional file 1: Figure S8. Distribution of the number of observed and expected bioactive compounds across the plant families with the highest expected values. The expected number of bioactive compounds is calculated by multiplying the average number of bioactive compounds per plant by the number of species in a family. The plot shows that a very low percentage of bioactive compounds have been identified in plant families such as Asreraceae and Fabaceae, unlike Pinaceae where the number of bioactive compounds identified is relatively similar to the number expected for this plant family.

Overlap between DrugBank, FDA orange book, and Newman datasets

Additional file 1: Figure S9. Overlap between the DrugBank, FDA orange book and Newman and Cragg datasets.