Table of Contents:

1. General experimental methods	S2
2. Synthesis of racemic 2e	S2
3 . Synthesis of enantioenriched isoindolo[1,2- <i>a</i>]isoquinolines 2a-d	S3
4. HPLC chromatograms of racemic and selected enantioenriched 2a-e .	S5
5. Copies of ¹ H and ¹³ C NMR spectra	S8
6. General reaction equations for the reference reactions in the database	S13
7. Molecule codes	S17

1. General experimental methods.

Melting points were determined in unsealed capillary tubes. IR spectra were obtained in film over NaCl pellets. NMR spectra were recorded at 20-25 °C, at 300 MHz for ¹H and 75.5 MHz for ¹³C in CDCl₃ solutions, unless otherwise stated. Assignments of individual ¹³C and ¹H resonances are supported by DEPT experiments and 2D correlation experiments (COSY, HSQCed or HMBC). Mass spectra were recorded under under chemical ionization (CI) at 230 eV. Exact mass was obtained using a TOF detector. TLC was carried out with 0.2 mm thick silica gel plates. Visualization was accomplished by UV light. Flash column chromatography was performed on silica gel (230-400 mesh) or on alumina (70-230 mesh). Chiral stationary phase HPLC was performed using a Chiralcel OD column (0.46 cm × 25 cm). Optical rotation was measured at 20 °C with a sodium lamp at 589 nm and a path length of 1 dm. All solvents used in reactions were anhydrous and purified according to standard procedures. All air- or moisture-sensitive reactions were performed under argon; the glassware was dried (130 °C) and purged with argon. Racemic samples of **2a-d** were prepared according the procedure previously described.¹ A racemic sample of **2e** was prepared by the same procedure (see below). Phosphoramides **4a-d** were prepared according to literature procedures.² Phosphoric acid **5e** was used from commercial source (Aldrich, 98%).

2. Synthesis of racemic 2,3-dimethoxy-12b-(1*H*-pyrrol-2-yl)-5,12bdihydroisoindolo[1,2-*a*]isoquinolin-8(6*H*)-one (2e).

TiCl₄ (0.14 mL, 1.4 mmol) was added dropwise to a solution of 12b-hydroxyisoindoloisoquinolone 1^3 (160 mg, 0.52 mmol) and pyrrole 3e (0.03 mL, 0.52 mmol) in dry CH₂Cl₂ (10 mL) at -78 °C. After 2 h stirring, NH₄Cl (saturated aqueous solution, 2 mL) was added, and the reaction mixture was allowed to warm up to room temperature. The organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3× 15 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated *in vacuo*. The

¹ Aranzamendi, E.; Sotomayor, N.; Lete, E. Bronsted acid catalyzed enantioselective alpha-

amidoalkylation in the synthesis of isoindoloisoquinolines. J. Org. Chem. 2012, 77, 2986-91.

² Nakashima, D.; Yamamoto, H. Design of chiral *N*-triflyl phosphoramide as a strong chiral Bronsted acid and its application to asymmetric Diels-Alder reaction. *J. Am. Chem. Soc.* **2006**, *128*, 9626-7.

³Collado, M. I.; Manteca, I.; Sotomayor, N.; Villa, M. J.; Lete, E. Metalation *vs* Nucleophilic Addition in the Reactions of *N*-Phenethylimides with Organolithium Reagents. Ready Access to Isoquinoline Derivatives *viaN*-Acyliminium Ions and Parham-Type Cyclizations. J. Org. Chem. **1997**, 62, 2080-92.

crude mixture was purified by column chromatography (silica gel, hexane/ethyl acetate, 6:4) to obtain isoindoloisoquinoline **2e** (138 mg, 76%).

3. Synthesis of enantioenriched isoindolo[1,2-a]isoquinolines 2a-d.

(R)-12b-(1H-indol-3-yl)-2,3-dimethoxy-5,6-dihydroisoindolo[1,2-a]isoquinolin-

8(12bH)-one (2a) (Table 8, entry 1). According to the Typical Procedure, **1** (62 mg, 0.20 mmol) was treated with indole **3a** (24 mg, 0.20 mmol) and **4a** (29.2 mg, 0.04 mmol, 20 mol %) in dry THF (5 mL) for 24h at rt, to afford isoindolo[1,2-*a*]isoquinoline **2a** (71 mg, 90 %), whose spectroscopic data are coincidental to those reported.¹ The enantiomeric excess was determined by HPLC to be 93% [Chiralcel OD, 15 % hexane : 2-propanol, 1 mL/min, t_r (*S*)= 26.32 min (3.48 %), t_r (*R*)= 30.23 min (96.52 %)]. ¹H NMR (300 MHz, CDCl₃): δ 2.72-2.77 (m, 1H), 3.14-3.22 (m, 2H), 3.85 (s, 3H), 3.88 (s, 3H), 4.37-4.41 (m, 1H), 6.40 (d, *J* = 8.1 Hz, 1H), 6.67 (s, 1H), 6.75 (d, *J* = 2.6 Hz, 1H), 6.79 (t, *J* = 7.6 Hz, 1H), 7.08 (t, *J* = 7.3 Hz, 1H), 7.25 (s, 1H), 7.31 (d, *J* = 8.2 Hz, 1H), 7.51-7.54 (m, 2H), 7.64-7.67 (m, 1H), 7.97-8.01 (m, 1H), 8.31 (broad s, 1H) ppm; ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 29.7, 34.9, 55.9, 56.2, 66.1, 110.9, 111.2, 111.8, 117.7, 119.8, 120.0, 122.4, 123.9, 124.0, 124.9, 126.5, 127.3, 128.6, 129.5, 131.88, 132.0, 136.9, 147.0, 148.5, 149.8, 167.2 ppm.

(R)-2,3-dimethoxy-12b-(5-nitro-1H-indol-3-yl)-5,6-dihydroisoindolo[1,2-

a]isoquinolin-8(12b*H*)-one (2b) (Table 8, entry 5). According to the Typical Procedure, 1 (62 mg, 0.20 mmol) was treated with indole 3b (32 mg, 0.20 mmol) and 4a (29.2 mg, 0.04 mmol, 20 mol %) in dry THF (5 mL) for 24h at rt to afford isoindolo[1,2*a*]isoquinoline 2b (83 mg, 94%), whose spectroscopic data are coincidental to those reported.¹ The enantiomeric excess was determined by HPLC to be 11% [Chiralcel OD, 15 % hexane : 2-propanol, 1 mL/min, t_r (*S*)= 44.46 min (44.37 %), t_r (*R*)= 57.18 min (55.63 %)]. ¹H NMR (300 MHz, CDCl₃): δ 2.76-2.78 (m, 1H), 3.13-3.22 (m, 2H), 3.85 (s, 3H), 3.89 (s, 3H), 4.43-4.46 (m, 1H), 6.59 (s, 1H), 6.93 (d, *J* = 2.0 Hz, 1H), 7.22 (s, 1H), 7.25 (d, *J* = 2.0 Hz, 1H), 7.35 (d, *J* = 9 Hz, 1H), 7.56-7.65 (m, 2H), 7.71-7.72 (m, 1H), 8.01 (d, *J* = 9.0 Hz, 1H,), 8.10-8.04 (m, 1H), 8.9 (broad s, 1H) ppm; ¹³C{¹H} NMR (75.5 MHz, DMSO-*d*₆): δ 28.6, 34.9, 55.9, 56.4, 65.6, 111.7, 112.7, 113.0, 115.8, 117.2, 118.9, 123.5, 124.1, 125.3, 127.1, 128.8, 129.5, 131.4, 131.7, 133.1, 140.7, 140.8, 147.5, 148.8, 150.0, 166.5 ppm.

(R)-12b-(5-bromo-1H-indol-3-yl)-2,3-dimethoxy-5,6-dihydroisoindolo[1,2-

a]isoquinolin-8(12b*H*)-one (2c) (Table 8, entry 6). According to the Typical Procedure, 1 (62 mg, 0.2 mmol) was treated with indole 3c (39 mg, 0.2 mmol) and 4a (29.2 mg, 0.04 mmol, 20 mol %) in dry THF (5 mL) for 24h at rt to afford isoindolo[1,2-*a*]isoquinoline 2b (94 mg, quant.%), whose spectroscopic data are coincidental to those reported.¹ The enantiomeric excess was determined by HPLC to be 67% [Chiralcel OD, 15 % hexane : 2-propanol, 1 mL/min, t_r (*S*)= 24.80 min (18.42 %), t_r (*R*)= 32.92 min (83.58 %)]. ¹H NMR (300 MHz, CDCl₃): δ 2.70-2.90 (m, 1H), 3.09-3.24 (m, 2H), 3.84 (s, 3H), 3.87 (s, 3H), 4.34-4.43 (m, 1H), 6.45 (s, 1H), 6.66 (s, 1H), 6.77 (d, *J* = 2.5 Hz, 1H), 7.14-7.22 (m, 3H), 7.54-7.57 (m, 2H), 7.62-7.65 (m, 1H), 7.98-8.01 (m, 1H), 8.49 (broad s, 1H) ppm; ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 28.6, 34.9, 55.97, 56.2, 65.8, 111.6, 111.8, 112.8, 113.4, 117.5, 122.3, 123.9, 124.0, 125.4, 126.5, 127.3, 127.7, 128.9, 129.2, 131,8, 132.1, 135.7, 147.1, 148.6, 149.4, 167.3 ppm.

(R)-2,3-dimethoxy-12b-(5-methoxy-1H-indol-3-yl)-5,6-dihydroisoindolo[1,2-

a]isoquinolin-8(12b*H*)-one (2d) (Table 8, entry 7). According to the Typical Procedure, 1 (62 mg, 0.2 mmol) was treated with indole 3d (29 mg, 0.2 mmol) and 4a (29.2 mg, 0.04 mmol, 20 mol %) in dry THF (5 mL) for 24h at rt to afford isoindolo[1,2-*a*]isoquinoline 2b (85 mg, quant.%), whose spectroscopic data are coincidental to those reported.¹ The enantiomeric excess was determined by HPLC to be 52% [Chiralcel OD, 15 % hexane : 2-propanol, 1 mL/min, t_r (*S*)= 25.34 min (23.82 %), t_r (*R*)= 34.11 min (76.18 %)]. ¹H NMR (300 MHz, CDCl₃): δ 2.73-2.82 (m, 1H), 3.09-3.28 (m, 2H), 3.41 (s, 3H), 3.84 (s, 3H), 3.87 (s, 3H), 4.38-4.44 (m, 1H), 5.71-5.72 (m, 1H), 6.57 (s, 1H), 6.71-6.74 (m, 2H), 7.18 (d, *J* = 8.8 Hz, 1H), 7.26 (s, 1H), 7.50-7.59 (m, 2H), 7.69-7.71 (m, 1H), 7.98-8.01 (m, 1H), 8.32 (broad s, 1H) ppm; ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 28.9, 35.8, 55.2, 55.9, 56.2, 66.3, 101.1, 110.9, 111.7, 112.1, 112.7, 117.0, 123.7, 124.3, 125.3, 127.2, 127.3, 128.6, 129.5, 131.9, 132.0, 132.2, 147.1, 148.5, 149.9, 153.8, 167.1 ppm.

4. HPLC chromatograms of racemic and selected enantioenriched 2a-e

5. Copies of ¹H and ¹³C NMR of 2a-e

S8

6. General reaction equations for the reference reactions in the database

In the following schemes the general equations for the reactions included in the database are shown including the bibliographic reference. FileSI02.xls contains the full experimental detail for each reaction (substrate, nucleophile, catalyst, reaction conditions, yield, and ee). Molecule codes are depicted in the next section.

38 reactions in the database, up to 96%ee

Scheme S1. General reaction from: Guo, Q. X.; Peng, Y. G.; Zhang, J. W.; Song, L.; Feng, Z.; Gong, L. Z. *Org. Lett.* **2009**, 11, 4620;

38 reactions in the database, up to 95%ee

Scheme S2. General reaction from: Xie, Y.; Zhao, Y.; Qian, B.; Yang, L.; Xia, C.; Huang, H. *Angew. Chem. Int. Ed.* **2011**, *50*, 5682;

Substrate S03aa

Nucleophiles Nua

33 reactions in the database, up to 83%ee

Scheme S3. General reaction from: Yu, X.; Lu, A.; Wang, Y.; Wu, G.; Song, H.; Zhou, Z.; Tang, C. Eur. J. Org. Chem. 2011, 892;

52 reactions in the database, up to -95%ee

Scheme S4. General reaction from: Yu, X.; Lu, A.; Wang, Y.; Wu, G.; Song, H.; Zhou, Z.; Tang, C. Eur. J. Org. Chem. 2011, 3060;

Substrates S04

Nucleophiles Nuf

31 reactions in the database, up to -96%ee

Scheme S5. General reaction from: Guo, C.; Song, J.; Huang, J. Z.; Chen, P. H.; Luo, S. W.; Gong, L. Z. Angew. Chem. Int. Ed. 2012, 51, 1046.

55 reactions in the database, up to 80%ee

Scheme S6. General reaction from: Aranzamendi, E.; Sotomayor, N.; Lete, E. *J. Org. Chem.* 2012, *77*, 2986.

Products P01

19 reactions in the database, up to 56%ee

Scheme S7. General reaction from: E. Aranzamendi, Doctoral Thesis, 2014, UPV/EHU (unpublished results), and Aranzamendi, E.; Arrasate, S. Sotomayor, N.; González-Díaz, H.; Lete, E. *ChemistryOpen.* **2016**, *557*, 540.

29 reactions in the database, up to 99%ee

Scheme S8. General reaction from: Courant, T.; Kumarn, S.; He, L.; Retailleau, P.; Masson, G. *Adv. Synth. Catal.* **2013**, *355*, 836;

Scheme S9. General reaction from: Yin, Q.; Wang, S. -G.; You, S. -L. *Org. Lett.* **2013**, *15*, 2688.

7. Molecule codes

SUBSTRATES

S01

S01ca $R^1 = R^3 = R^1 = OCH_3$

H₃CO H₃CO HO S01ab

S01af $X = NCH_3$, $R^1 = R^2 = CH_3$ **S01ag** $X = NCH_3$, $R^1 = H$, $R^2 = Bn$ **S01ah** X = S, $R^1 = R^2 = H$ **S01ai** X = O, $R^1 = R^2 = H$ **S01aj** $X = NCH_3$, $R^1 = CH_3$, $R^2 = Bn$ **S01ak** X = S, $R^1 = H$, $R^2 = Bn$ **S01al** X = S, $R^1 = CH_3$, $R^2 = H$ **S01am** X = S, $R^1 = Ph$, $R^2 = CH_3$ S02

S02aa R ¹ = H, R ² = Ph	S02bb R ¹ =
S02ac R ¹ = H, R ² = 4-BrC ₆ H ₄	S02be R ¹ =
S02ad R^1 = H, R^2 = 4-IC ₆ H ₄	S02bf R ¹ =
S02ae R ¹ = H, R ² = Bn	S02bg R ¹ =
S02aa R ¹ = H, R ² = Ph	S02bh R ¹ =
S02ac R ¹ = H, R ² = 4-BrC ₆ H ₄	
S02ad R^1 = H, R^2 = 4-IC ₆ H ₄	

S02bb $R^1 = CH_3$, $R^2 = 4-CH_3C_6H_4$ **S02be** $R^1 = CH_3$, $R^2 = Bn$ **S02bf** $R^1 = CH_3$, $R^2 = 2-CH_3OC_6H_4CH_2$ **S02bg** $R^1 = CH_3$, $R^2 = 4-CH_3OC_6H_4CH_2$ **S02bh** $R^1 = CH_3$, $R^2 = allyl$ **S02ce** $R^1 = Et$, $R^2 = Bn$ **S02de** $R^1 = propyl$, $R^2 = Bn$ **S02ee** $R^1 = nBu$, $R^2 = Bn$ **S02fe** $R^1 = pentyl$, $R^2 = Bn$ **S02ge** $R^1 = Bn$, $R^2 = Bn$

S02he

R ¹	S03aa	$R^1 = H, R^2 = H, R^3 = H$	S03ea	$R^1 = H, R^2 = allyl, R^3 = H$
HONNO	S03ab	$R^1 = H, R^2 = H, R^3 = Br$	S03fa	$R^1 = H, R^2 = Ph, R^3 = H$
R ² S03	S03ba	$R^1 = H, R^2 = CH_3, R^3 = H$	S03ac	$R^1 = CH_3, R^2 = R^3 = H$
	S03ca	$R^1 = H, R^2 = Et, R^3 = H$	S03ad	$R^1 = Ph, R^2 = R^3 = H$
	S03da	$R^1 = H, R^2 = Bu, R^3 = H$	S03da	$R^1 = H, R^2 = Bu, R^3 = H$
R°				

S04

S04aa	$R^1 = R^2 = R^3 = R^4 = H$	S04ha	$R^1 = R^2 = R^3 = F, R^4 = H$	
S04ac	R^1 = tertbutylacetyl, $R^2 = R^3 = R^4 = H$			\square
S04ca	$R^1 = R^2 = R^3 = H, R^4 = Br$	S04ad	$R^1 = H, R^2 = F, R^3 = R^4 = H$	H ₃ C
S04da	$R^1 = R^2 = R^3 = H, R^4 = OCH_3$	S04ae	$R^1 = H, R^2 = CH_3, R^3 = R^4 = H$	
S04ea	$R^1 = R^2 = R^3 = H, R^4 = CI$	S04fe	$R^1 = H, R^2 = R^3 = CH_3, R^4 = H$	
S04fa	$R^1 = R^2 = H, R^3 = CH_3, R^4 = H$	S04fd	$R^1 = H, R^2 = F, R^3 = CH_3, R^4 = H$	
S04ga	$R^1 = R^2 = R^3 = H, R^4 = F$	S04hd	$R^1 = H, R^2 = F, R^3 = H, R^4 = F$	NH
				S04ba

 R^3 R^2 R^2

505aa	$R^1 = R^2 = R^3 = H$	S05ai	R^1
S05ab	$R^1 = R^2 = H, R^3 = CH_3$	S05aj	R¹
S05ac	$R^1 = R^2 = H, R^3 = CI$	S05ak	R^1
S05ad	$R^1 = R^2 = H, R^3 = Br$	S05be	R1
605ae	$R^1 = R^2 = H, R^3 = CN$	S05ce	R¹
505af	$R^1 = R^2 = H, R^3 = CF_3$	S05de	R1
S05ag	$R^1 = H, R^2 = F, R^3 = H$		
305ah	$R^1 = H, R^2 = NO_2, R^3 = H$		

5ai $R^1 = H, R^2 = CN, R^3 = H$ 5aj $R^1 = H, R^2 = R^3 = F$ 5ak $R^1 = H, R^2 = CI, R^3 = F$ 5be $R^1 = CI, R^2 = H, R^3 = CN$ 5ce $R^1 = Br, R^2 = H, R^3 = CN$ 5de $R^1 = CH_3, R^2 = H, R^3 = CN$

S06

 R^3

S05

S07-S09

NUCLEOPHILES

Nua01	R = H	Nua08	R = 5-NO ₂	Nua15	R = 2,3-CH ₃	Nua22	R = 7-0Bn
Nua02	$R = 6-OCH_3$	Nua09	R = 6-F	Nua16	R =2-Et-3-CH₃	Nua23	R = 6-0Bn
Nua03	R = 5-0CH ₃	Nua10	R = 5-F	Nua17	R = 2-CH ₃ -5-pent	Nua24	R = 5-0Bn
Nua04	R = 5-Br	Nua11	R =7-CH₃	Nua18	R = 2-BrEt	Nua25	R = 4-0Bn
Nua05	R = 6-Cl	Nua12	$R = 5-CH_3$	Nua19	R = 2,3-CH ₃ -5-Cl		
Nua06	R = 6-Cl	Nua13	R = 3-CH ₃	Nua20	R = 2-Ph		
Nua07	R = 5-Cl	Nua14	R= 2-CH₃	Nua21	$R = 2 - (2' - CH_3)C_6H_4$		

Nua26 R = Bn **Nua33** R = CH₃

Nua28 R = H Nua29 R = 6-CH₃ Mua30 R = 6-Cl

Nud01

Nua31

Nua32

Nub01

Nua27

 $_{3}C^{\prime} N^{\prime} CH_{3}$

Nuc01 R = *t*Bu **Nuc02** R = Et

Nue01

Nuf01	$R^1 = Ph, R^2 = H$	Nuf22	$R^1 = 5,6,7,8$ -tetrahydronapht-2-yl $R^2 = H$	Nuf97	$R^1 = 2$ -naphthyl, $R^2 = CH_3$
Nuf110	$R^1 = 4 - CH_3C_6H_4, R^2 = H$	Nuf23	$R^1 = Ph, R^2 = CH_3$	Nuf98	R^1 =5,6,7,8-tetrahydronaphthyl, R^2 = CH ₃
Nuf12	$R^1 = 4$ -OCH ₃ C ₆ H ₄ , $R^2 = H$	Nuf87	$R^1 = 4$ - CH_3 , $R^2 = CH_3$	Nuf101	$R^1 = 3,4$ -CIC ₆ H ₄ , $R^2 = H$
Nuf13	$R^1 = 4\text{-}CH_3CONHC_6H_4, R^2 = H$	Nuf88	$R^1 = 4-OCH_3C_6H_4, R^2 = CH_3$	Nuf102	$R^1 = 4$ -CH ₃ OCOPh, $R^2 = H$
Nuf14	$R^1 = 4$ -Br C_6H_4 , $R^2 = H$	Nuf89	$R^1 = 4\text{-}CH_3CONHC_6H_4, R^2 = CH_3$	Nuf103	$R^1 = 3$ -CNC ₆ H ₄ , $R^2 = H$
Nuf15	$R^1 = 4$ - CIC_6H_4 , $R^2 = H$	Nuf90	$R^1 = 4$ -Br C_6H_4 , $R^2 = CH_3$	Nuf105	$R^1 = pyridine-3-yl, R^2 = H$
Nuf16	$R^1 = 4$ -FC ₆ H ₄ , $R^2 = H$	Nuf91	$R^1 = 4$ -CIC ₆ H ₄ , $R^2 = CH_3$	Nuf106	$R^1 = 3-(1'-(phenylsulfonyl)-1H-pyrrol-3yl, R^2 = H$
Nuf17	$R^1 = 4 - NO_2C_6H_4$, $R^2 = H$	Nuf92	$R^1 = 4-FC_6H_4, R^2 = CH_3$	Nuf104	$R^1 = 2,3$ -dihydrobenzo[b][1,4]dioxin-6-yl $R^2 = H$
Nuf18	$R^1 = 3-OCH_3C_6H_4, R^2 = H$	Nuf93	$R^1 = 4-NO_2C_6H_4$, $R^2 = CH_3$	Nuf107	R ¹ = tiophene-2-yl, R ² = H
Nuf19	$R^1 = 3,4-(CH_3)_2C_6H_3, R^2 = H$	Nuf94	$R^1 = 3$ -OCH ₃ C ₆ H ₄ , $R^2 = CH_3$	Nuf108	R^1 = benzofuran-2-yl, R^2 = H
Nuf20	R ¹ =2,5-(CH ₃) ₂ C ₆ H ₃ , R ² = H	Nuf95	$R^1 = 3,4-(CH_3)_2C_6H_3, R^2 = CH_3$	Nuf109	$R^1 = styryl, R^2 = H$
Nuf21	$R^1 = 2$ -naphthyl, $R^2 = H$	Nuf96	$R^1 = 2,5 - (CH_3)_2 C_6 H_3, R^2 = CH_3$		

 $\underbrace{ \overset{O}{\stackrel{}_{\underset{\substack{ \\ H \\ H \\ Nuf}}}} \overset{R^2}{\underset{R^1}{\overset{}_{\underset{\substack{ \\ H \\ Nuf}}}} }$

Nuf24	$R^1 = 4$ -OCH ₃ C ₆ H ₄ , $R^2 = H$	Nuf29	$R^1 = 3,4$ - $CH_3C_6H_4$, $R^2 = H$	Nuf36	$R^1 = Ph, R^2 = CH_3$
Nuf25	$R^1 = 4\text{-}CH_3CONHC_6H_4, R^2 = H$	Nuf30	$R^1 = 2,5 - (CH_3)_2 C_6 H_3, R^2 = H$	Nuf02	$R^1 = Ph, R^2 = H$
Nuf26	$R^1 = 4$ -Br C_6H_4 , $R^2 = H$	Nuf31	$R^1 = 2$ -naphthyl, $R^2 = H$	Nuf03	$R^1 = 4$ -CIC ₆ H ₄ , $R^2 = H$
Nuf27	$R^1 = 4 - FC_6H_4, R^2 = H$	Nuf32	$R^1 = 3-OCH_3C_6H_4, R^2 = H$	Nuf04	$R^1 = 4-CH_3C_6H_4, R^2 = H$
Nuf28	$R^1 = 4 - NO_2C_6H_4$, $R^2 = H$	Nuf33	R ¹ =5,6,7,8-tetrahydronaphthyl	Nuf05	$R^1 = Ph, R^2 = CH_3$
			$R^2 = H$		

Nuf34	$R^1 = 4 - CH_3C_6H_4$, $R^2 = H$	Nuf40	$R^1 = 4 - FC_6H_4$, $R^2 = H$	Nuf45	$R^1 = 2$ -naphthyl, $R^2 = H$
Nuf35	$R^1 = 4$ -OCH ₃ C ₆ H ₄ , $R^2 = H$	Nuf41	$R^1 = 4 - NO_2C_6H_4, R^2 = H$	Nuf46	
Nuf37	$R^1 = 4$ -CIC ₆ H ₄ , $R^2 = H$	Nuf42	$R^1 = 3$ -OCH ₃ C ₆ H ₄ , $R^2 = H$		
Nuf38	$R^1 = 4\text{-}CH_3CONHC_6H_4, R^2 = H$	Nuf43	$R^1 = 3,4-(CH_3)_2C_6H_3, R^2 = H$	Nuf47	$R^1 = Ph, R^2 = CH_3$
Nuf39	$R^1 = 4$ -Br C_6H_4 , $R^2 = H$	Nuf44	$R^1 = 2,5-(CH_3)_2C_6H_3, R^2 = H$	Nuf06	$R^1 = Ph, R^2 = H$

Nuf48	$R^1 = 4$ -CIC ₆ H ₄ , $R^2 = H$	Nuf54	$R^1 = 4 - FC_6H_4, R^2 = H$	Nuf59	$R^1 = 2$ -naphthyl, $R^2 = H$
Nuf49	$R^1 = 4-CH_3C_6H_4, R^2 = H$	Nuf55	$R^1 = 4-NO_2C_6H_4, R^2 = H$	Nuf60	
Nuf50	$R^1 = 4-OCH_3C_6H_4, R^2 = H$	Nuf56	$R^1 = 3$ -OCH ₃ C ₆ H ₄ , $R^2 = H$		
Nuf51	$R^1 = 4\text{-}CH_3CONHC_6H_4, R^2 = H$	Nuf57	$R^1 = 3,4-(CH_3)_2C_6H_3, R^2 = H$	Nuf61	$R^1 = Ph, R^2 = CH_3$
Nuf52	$R^1 = 4$ -Br C_6H_4 , $R^2 = H$	Nuf58	$R^1 = 2,5-(CH_3)_2C_6H_3, R^2 = H$	Nuf07	$R^1 = Ph, R^2 = H$

Nuf62	$R^1 = 4$ - CIC_6H_4 , $R^2 = H$	Nuf68	$R^1 = 4 - FC_6H_4, R^2 = H$	Nuf73	$R^1 = 2$ -naphthyl, $R^2 = H$
Nuf63	$R^1 = 4$ - $CH_3C_6H_4$, $R^2 = H$	Nuf69	$R^1 = 4-NO_2C_6H_4, R^2 = H$	Nuf74	
Nuf64	$R^1 = 4$ -OCH ₃ C ₆ H ₄ , $R^2 = H$	Nuf70	$R^1 = 3$ -OCH $_3C_6H_4$, $R^2 = H$		
Nuf65	$R^1 = 4\text{-}CH_3CONHC_6H_4, R^2 = H$	Nuf71	$R^1 = 3,4-(CH_3)_2C_6H_3, R^2 = H$	Nuf75	$R^1 = Ph, R^2 = CH_3$
Nuf66	$R^1 = 4$ -BrC ₆ H ₄ , $R^2 = H$	Nuf72	$R^1 = 2,5-(CH_3)_2C_6H_3, R^2 = H$	Nuf08	$R^1 = Ph, R^2 = H$

Nuf76	$R^1 = 4 - OCH_3C_6H_4, R^2 = H$	Nuf81	$R^1 = 3 - OCH_3C_6H_4, R^2 = H$	Nuf86	$R^1 = Ph, R^2 = CH_3$
Nuf77	$R^1 = 4\text{-}CH_3CONHC_6H_4, R^2 = H$	Nuf82	$R^1 = 3,4-(CH_3)_2C_6H_4, R^2=H$	Nuf09	$R^1 = Ph, R^2 = H$
Nuf78	$R^1 = 4$ -Br C_6H_4 , $R^2 = H$	Nuf83	$R^1 = 2,5-(CH_3)_2C_6H_4, R^2 = H$	Nuf10	$R^1 = 4-CH_3C_6H_4, R^2 = H$
Nuf79	$R^1 = 4-FC_6H_4, R^2 = H$	Nuf84	$R^1 = 2$ -naphthyl, $R^2 = H$	Nuf85	
Nuf80	$R^1 = 4 - NO_2 C_6 H_4, R^2 = H$	Nuf11	$R^1 = 4 - CIC_6H_4, R^2 = H$		

CATALYSTS

Phosphoric acids

Faa01

Fba01

R = H

R = H

Faa02	R = 9-anthracyl	Fba09	R = 1-naphthyl	Faa
Fba02	R = 9-anthracyl	Faa10	R = 2,4,6-(<i>i</i> Pr) ₃ C ₆ H ₂	Faa
Faa03	$R = SiCH_3Ph_2$	Fba10	R = 2,4,6-(<i>i</i> Pr) ₃ C ₆ H ₂	Faa
Faa04	R = 9-phenanthryl	Faa11	R = SiPh ₃	Faa
Faa05	R = 2-naphthyl	Fba11	R = SiPh ₃	Faa
Fba05	R = 2-naphthyl	Faa12	$R = 3,5-(CF_3)_2C_6H_3$	Faa
Faa06	R = Ph	Fba12	$R = 3,5-(CF_3)_2C_6H_3$	Faa
Fba06	R = Ph	Fba13	$R = 4$ - CIC_6H_4	Faa
Faa07	$R=4\text{-}NO_2C_6H_4$	Fba14	R = 1,1`-biphenyl	Faa

Faa08

Faa09

$R = 4 - CH_3OC_6H_4$	Fba15	$R = POPh_2$
R = 1-naphthyl	Faa16	$R = 4\text{-}CH_3C_6H_4$
R = 1-naphthyl	Faa17	$R = 3,5-F_2C_6H_3$
$R = 2,4,6-(iPr)_3C_6H_2$	Faa18	$R = 4 - (2', 4', 6' - (CH_3)_3C_6H_2)C_6H_5$
$R = 2,4,6-(iPr)_3C_6H_2$	Faa19	$R = 2,4,6-(CH_3)_3C_6H_2$
R = SiPh ₃	Faa20	$R = 3,5-(CH_3)_2C_6H_3$
R = SiPh ₃	Faa21	$R = 4 - (4' - tBuC_6H_4)C_6H_4$
$R = 3,5-(CF_3)_2C_6H_3$	Faa22	$R = 4-(4'-tBu-2',6'-(CH_3)_2C_6H_3)C_6H_4$
$R = 3,5-(CF_3)_2C_6H_3$	Faa23	$R = CF_3$
$R = 4$ - CIC_6H_4	Faa24	$R = 3,5-(tBu)_2C_6H_3$
R = 1,1`-biphenyl	Faa25	$R = 4-tBuC_6H_5$

Fab01	$R=4\text{-}CIC_{6}H_{4}$	Fab09	$R = 4 \text{-} NO_2 C_6 H_4$	Fab18	$R = 3,5-(CH_3)_2C_6H_3$
Fab02	R = SiPh₃	Fab10	$R = 4\text{-}CH_3OC_6H_4$	Fab19	$R = 4 - (4^{-} t BuC_6 H_4) C_6 H_4$
Fab03	R = Ph	Fab11	R = 1-naphthyl	Fab20	$R = 4-(4^{-}tBu-2^{-},6^{-}(CH_3)_2C_6H_3)C_6H_4$
Fab04	R = 2-naphthyl	Fab12	R = 2,4,6-(<i>i</i> Pr) ₃ C ₆ H ₂	Fab21	$R = CF_3$
Fab05	R = 9-phenanthryl	Fab13	$R = 3,5-(CF_3)_2C_6H_3$	Fab22	R = 3,5-(<i>t</i> Bu) ₂ C ₆ H ₃
Fbb05	R = 9-phenanthryl	Fab14	R = POPh ₂	Fab23	$R = SiCH_3Ph_2$
Fab06	R = H	Fab15	$R = 4\text{-}CH_3C_6H_4$	Fab24	R = 3,5-F ₂ Ph
Fab07	R = 9-anthracyl	Fab16	$R = 4 - (2^{,}4^{,}6^{-}(CH_3)_3C_6H_2)C_6H_4$	Fab25	R = 4- <i>t</i> BuC ₆ H₅
Fab08	R = 1,1`-biphenyl	Fab17	$R = 2,4,6-(CH_3)_3C_6H_2$		

N-Triflylphosphoramides

Fac01	R = Ph	Fac10	$R = 4 - CH_3OC_6H_4$	Fac19	$R = 3,5-(CH_3)_2C_6H_3$
Fac02	R = 9-phenanthryl	Fac11	R = 1-naphthyl	Fac20	$R = 4 - (4' - tBuC_6H_4)C_6H_4$
Fac03	R = 9-anthracyl	Fac12	$R = 2,4,6-(iPr)_3C_6H_2$	Fac21	$R = 4-(4'-tBu-2',6'-(CH_3)_2C_6H_3)C_6H_4$
Fac04	$R = 3,5-CF_3C_6H_3$	Fac13	$R = 4\text{-}CIC_6H_4$	Fac22	$R = CF_3$
Fac05	$R=4\text{-}NO_2C_6H_4$	Fac14	$R = POPh_2$	Fac23	$R = 3,5-(tBu)_2C_6H_3$
Fac06	R = 1,1`-biphenyl	Fac15	$R = 4\text{-}CH_3C_6H_4$	Fac24	$R = SiCH_3Ph_2$
Fac07	R = SiPh₃	Fac16	R = 3,5-F ₂ Ph	Fac25	$R = 4 - t BuC_6 H_5$
Fac08	R = H	Fac17	$R = 4 - (2', 4', 6' - (CH_3)_3C_6H_2)C_6H_4$		
Fac09	R = 2-naphthyl	Fac18	$R = 2,4,6-(CH_3)_3C_6H_2$		

R = SiPh ₃	Fad10	$R = 2,4,6-(iPr)_3C_6H_2$	Fad19	$R = 4 - (4' - tBu - 2', 6' - (CH_3)_2C_6H_3)C_6H_4$
R = 2-naphthyl	Fad11	$R = 4 - CIC_6 H_4$	Fad20	$R = CF_3$
R = 9-phenanthryl	Fad12	$R = POPh_2$	Fad21	$R = 3,5-(tBu)_2C_6H_3$
$R = 3,5-(CF_3)_2C_6H_3$	Fad13	$R = 4 - CH_3C_6H_4$	Fad22	$R = SiCH_3Ph_2$
$R=4\text{-}NO_2C_6H_4$	Fad14	$R = 3,5-FC_6H_4$	Fad23	R = Ph
R = 1,1`-biphenyl	Fad15	$R = 4 - (2', 4', 6' - (CH_3)_3C_6H_2)C_6H_4$	Fad24	R = 9-anthracenyl
R = H	Fad16	$R = 2,4,6-(CH_3)_2C_6H_3$	Fad25	$R = 4 - tBuC_6H_5$
$R = 4-CH_3OC_6H_4$	Fad17	$R = 3,5-(CH_3)_2C_6H_3$		
R = 1-naphthyl	Fad18	$R = 4 - (4' - tBuC_6H_4)C_6H_4$		
	$R = SiPh_3$ R = 2-naphthyl R = 9-phenanthryl $R = 3,5-(CF_3)_2C_6H_3$ $R = 4-NO_2C_6H_4$ R = 1,1`-biphenyl R = H $R = 4-CH_3OC_6H_4$ R = 1-naphthyl	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Miscellaneous

R = SiPh₃ $R = 2,4,6-(iPr)_3C_6H_2$ **Faj19** $R = 4-(4'-tBu-2',6'-(CH_3)_2C_6H_3)C_6H_4$ Faj01 Faj10 Faj02 R = 2-naphthyl Faj11 $R = 4 - CIC_6H_4$ **Faj20** R = CF₃ Faj03 R = 9-phenanthryl Faj12 $R = POPh_2$ **Faj21** R = $3,5-(tBu)_2C_6H_3$ Faj04 $R = 3,5-(CF_3)_2C_6H_3$ Faj13 $R = 4-CH_3C_6H_4$ **Faj22** $R = SiCH_3Ph_2$ R = 3,5-FPh Faj05 $R = 4 - NO_2C_6H_4$ Faj14 Faj23 R = Ph Faj15 Faj24 R = 9- anthracyl Faj06 R = 1,1`-biphenyl $R = 4 - (2', 4', 6' - (CH_3)_3C_6H_2)C_6H_4$ Faj07 R = HFaj16 **Faj25** $R = 4-tBuC_6H_5$ $R = 2,4,6-(CH_3)_2C_6H_3$ Faj08 $R = 4 - CH_3OC_6H_4$ Faj17 $R = 3,5-(CH_3)_2C_6H_3$ $R = 4 - (4' - tBuC_6H_4)C_6H_4$ Faj09 R = 1-naphthyl Faj18

17 -	4-0	130	-6' I4
Fa	(R)	Fb	(S)

Fak01	R = SiPh₃	Fak10	$R = 2,4,6-(iPr)_3C_6H_2$	Fak19	$R = 4 - (4' - tBu - 2', 6' - (CH_3)_2C_6H_3)C_6H_4$
Fak02	R = 2-naphthyl	Fak11	$R = 4 - CIC_6H_4$	Fak20	R = CF ₃
Fak03	R = 9-phenanthryl	Fak12	$R = POPh_2$	Fak21	$R = 3,5-(tBu)_2C_6H_3$
Fak04	$R = 3,5-(CF_3)_2C_6H_3$	Fak13	$R = 4 - CH_3C_6H_4$	Fak22	$R = SiCH_3Ph_2$
Fak05	$R=4\text{-}NO_2C_6H_4$	Fak14	R = 3,5-FPh	Fak23	R = Ph
Fak06	R = 1,1`-biphenyl	Fak15	$R = 4 - (2', 4', 6' - (CH_3)_3C_6H_2)C_6H_4$	Fak24	R = 9- anthracyl
Fak07	R = H	Fak16	$R = 2,4,6-(CH_3)_2C_6H_3$	Fak25	R = 4- <i>t</i> BuC ₆ H₅
Fak08	$R = 4-CH_3OC_6H_4$	Fak17	$R = 3,5-(CH_3)_2C_6H_3$		
Fak09	R = 1-naphthyl	Fak18	$R = 4 - (4' - tBuC_6H_4)C_6H_4$		

S25