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Extract features

In machine learning, extracting features from molecules is a common task.
Molecular features can be categorized into four types: 0D, 1D, 2D, 3D, and
4D. 0D features provide information about the entire molecule, including
properties like atom count, bond count, and molecular weight. 1D features
describe substructures within the molecule, such as molecular fingerprints and
fragment keys. 2D features capture the molecular topology based on the
graph representation, including the number of rings and rotatable bonds. 3D
features capture the geometric descriptors of the molecule's three-dimensional
structure. Lastly, 4D features introduce an additional dimension to capture
interactions between the molecule and an active site or multiple
conformational states, such as molecular dynamics.

As we move from 0D to 4D molecular descriptors, the computational cost of
feature calculation increases. For instance, generating 3D features involves
creating 3D conformers, which can be time-consuming for larger molecules.
It's worth noting that certain features may not be applicable to all molecules;
for example, 3D features cannot be calculated for molecules lacking a 3D
structure.

DeepMol provides a wide set of 1D features, all provided by rdkit. DeepMol
includes one of the most famous circular fingerprints, the Extended
Connectivity Fingerprint (ECFP), atom pair fingerprints that encode the
presence or absence of pairs of atoms in a molecule, as well as the distance
between them. Moreover, DeepMol includes layered fingerprints that find all
possible paths or subgraphs of specified lengths in the molecule based on the
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input parameters and compute layers of structural and functional features per
molecular subgraph. DeepMol also includes an RDKit-specific fingerprint
inspired by public descriptions of the Daylight fingerprint. The fingerprinting
algorithm generates molecular fingerprints by identifying subgraphs within a
specified size range, hashing each subgraph to create a raw bit that is hashed
to fit the fingerprint size. The default scheme for subgraph hashing involves
considering factors such as atom types (based on atomic number and
aromaticity), atom degrees in the path, and bond types. Finally, DeepMol
includes Molecular ACCess System (MACCS) keys that encode the presence
or absence of certain molecular fragments or substructures in a molecule as a
binary bitstring. The fragments used are based on a predefined set of
SMARTS patterns, which represent specific substructures or features of a
molecule.

DeepMol also provides a set of 0D, a few 1D and 2D descriptors in only one
class. Those are enumerated and described in Table S1 and at
https://deepmol.readthedocs.io/en/latest/deepmol_docs/featurization.html#d-1
d-and-2d-descriptors.

As mentioned above, 3D molecular conformations have to be generated or
loaded prior to generating 3D descriptors. For this matter, the conformer
generation process begins by utilizing the Experimental-Torsion basic
Knowledge Distance Geometry (ETKDG) algorithm, which is an extension of
the Knowledge Distance Geometry (KDG) method. ETKDG incorporates
efficiency enhancements and knowledge-based rules to generate a diverse
set of low-energy conformers for small organic molecules. This method
combines random sampling and efficient energy evaluations to strike a
balance between computational efficiency and conformational coverage. It is
widely employed in molecular modelling and drug discovery applications.
Subsequently, the Merck Molecular Force Field (MMFF) and Universal Force
Field (UFF) algorithms are employed. These force fields optimize the
conformers by calculating the potential energy and atomic forces based on the
molecule's geometry. This process guides the conformational search towards
more stable conformations.

Once generated, the methods within DeepMol can be used to extract features
from the conformers. These methods encompass \textit{AutoCorr3D} that
captures spatial autocorrelation patterns in a molecule, while the Radial
Distribution Function (RDF) characterizes the distribution of particles based on
their distances from a reference particle. The plane of best fit determines the
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optimal plane that fits a set of points, and MORSE utilizes molecular
transforms to derive information from atomic coordinates. WHIM descriptors
provide a holistic representation of a molecule's structure, while the Radius of
Gyration measures its spatial extent. The Inertial Shape Factor, Eccentricity,
Asphericity, and Spherocity Index quantify the shape and symmetry of the
molecule. Principal Moments of Inertia describe its rotational behaviour, and
Normalized Principal Moments Ratios provide insight into the relative
magnitudes of the principal moments. These descriptors collectively contribute
to a comprehensive understanding of a molecule's three-dimensional
properties and structural characteristics.



Table S1 - 0D, 1D and 2D descriptors integrated into only one class in Descriptors

Set of descriptors Descriptors Description

EState index
descriptors

MaxAbsEStateIndex
Maximum absolute EState index - The MAEstate specifically represents the highest absolute EState
index value among all the atoms in a molecule. It indicates the atom with the largest charge
magnitude, reflecting its potential reactivity or contribution to chemical properties.

MaxEStateIndex
Maximum EState Index - The MaxEStateIndex specifically represents the highest EState index
value among all the atoms in a molecule. It indicates the atom with the largest charge or electronic
density, reflecting its potential reactivity or significance in the molecule’s properties.

MinAbsEStateIndex Minimum absolute EState index - The MinAbsEStateIndex specifically represents the lowest
absolute EState index value among all the atoms in a molecule.

MinEStateIndex Minimum EState index - The MinEStateIndex represents the lowest EState index value among all
the atoms in a molecule.

QED QED
Quantitative estimation of drug-likeness - a computational algorithm used to quantitatively assess
the drug-likeness of a molecule. It combines various molecular descriptors, including 2D properties,
to generate a single numerical score that represents the overall drug-likeness of the molecule.

Molecular weight
descriptors

MolWt Molecular weight.

HeavyAtomMolWt The average molecular weight of the molecule, ignoring hydrogens.

ExactMolWt The exact molecular weight of the molecule.

Electron descriptors
NumValenceElectrons The number of valence electrons the molecule has.

NumRadicalElectrons The number of radical electrons the molecule has.

Charge descriptors
MaxPartialCharge Maximum partial charge



MinPartialCharge Minimum partial charge

MaxAbsPartialCharge Maximum absolute partial charge

MinAbsPartialCharge Minimum absolute partial charge

Morgan fingerprint
density

FpDensityMorgan1
Quantify the frequency of occurrence of specific substructures within the molecule at a local level,
taking into account their immediate surroundings. Higher values of density indicate a higher density
of unique substructures in the molecule, while lower values indicate fewer unique substructures or a
more uniform distribution of substructures. Densities for Morgan radius 1, 2 and 3.

FpDensityMorgan2

FpDensityMorgan3

BCUT2D descriptors

BCUT2D_MWHI Incorporates atom masses in the Burden matrix - returns the highest eigenvalue.

BCUT2D_MWLOW Incorporates atom masses in the Burden matrix - returns the lowest eigenvalue.

BCUT2D_CHGHI Incorporates atom charges in the Burden matrix - returns the highest eigenvalue.

BCUT2D_CHGLO Incorporates atom charges in the Burden matrix - returns the lowest eigenvalue.

BCUT2D_LOGPHI Incorporates atom logarithms of the partition coefficient (logP) in the Burden matrix - returns the
highest eigenvalue.

BCUT2D_LOGPLOW Incorporates atom logarithms of the partition coefficient (logP) in the Burden matrix - returns the
lowest eigenvalue.

BCUT2D_MRHI Incorporates atom molar refractivity in the Burden matrix - returns the highest eigenvalue.

BCUT2D_MRLOW Incorporates atom molar refractivity in the Burden matrix - returns the lowest eigenvalue.

AvgIpc AvgIpc The average information content of the coefficients of the characteristic polynomial of the adjacency
matrix of a hydrogen-suppressed graph of a molecule.

Ipc Ipc The information content of the coefficients of the characteristic polynomial of the adjacency matrix of



a hydrogen-suppressed graph of a molecule.

BalabanJ BalabanJ Balaban’s J index. It quantifies the molecular topological structure by considering the connectivity of
atoms and bonds in the molecule.

BertzCT BertzCT Bertz complexity index. It measures the topological complexity or branching of a molecule based on
its structural connectivity.

Chi descriptors Chi descriptors
The Chi descriptors represent the count of specific path patterns in the molecule and are calculated
based on the Hall-Kier delta values or on the deviation of an atom’s valence electron count from the
expected count based on its atomic number.

HallKierAlpha HallKierAlpha Hall-Kier alpha value. It describes the flexibility or rigidity of atoms in a molecule.

Kappa descriptors

Kappa1
Kappa shape indices. They describe the shape of a molecule based on the distribution of bond
lengths and angles. These descriptors are derived from the Hall-Kier alpha descriptor and the
number of paths of specific lengths in the molecule.

Kappa2

Kappa3

LabuteASA LabuteASA Labute’s Approximate Surface Area. It estimates the solvent-accessible surface area of a molecule,
which is relevant for its solubility and permeability properties.

PEOE VSA descriptors PEOE VSA descriptors
These descriptors Calculates the PEOE (Partial Equalization of Orbital Electronegativity) VSA
(surface area contributions of atoms or groups of atoms in a molecule) for a molecule by assigning
atom contributions to predefined bins based on their Labute ASA and Gasteiger charge values.

SMR VSA descriptors SMR VSA descriptors Calculates the SMR (Molar Refractivity) VSA for a molecule by assigning atom contributions to
predefined bins based on their Labute ASA and MR values.

SlogP VSA descriptors SlogP VSA descriptors Calculates the SlogP VSA for a molecule by assigning atom contributions to predefined bins based
on their Labute ASA and SlogP values.

EState VSA EState VSA Calculates the EState (E-State) VSA for a molecule by assigning atom contributions to predefined
bins based on their Labute ASA and EState values.

FractionCSP3 FractionCSP3 Fraction of sp3-hybridized carbon atoms in the molecule.



Table S2 - Molecular Fingerprints provided on DeepMol

Molecular Fingerprint Description References

MorganFingerprint Circular fingerprint based on the Morgan algorithm. This fingerprint is generated by
considering the “circular” environment of each atom up to a given radius.

[1]

MACCSkeysFingerprint Uses the 166 public keys implemented as SMARTS. The fragment definitions for the
MACCS 166 keys can be found in this document:
https://github.com/rdkit/rdkit/blob/master/rdkit/Chem/MACCSkeys.py

[2]

RDKFingerprint This fingerprinting identifies all subgraphs in the molecule within a particular range of sizes
and hashes each subgraph based on atom and bond types and degrees. Based on the
Daylight fingerprint.

[3]

LayeredFingerprint Uses the same subgraph enumeration algorithm used in the RDKFingerprint. Sets bits
based on different atom and bond type definitions (pure topology, bond order, atom types,
aromaticity, etc).

-

MolLogP MolLogP Molar logarithm of the partition coefficient (logP). It quantifies the lipophilicity or hydrophobicity of a
molecule, which is important for its distribution and permeability properties.

TPSA TPSA Topological polar surface area. It estimates the surface area of a molecule that is involved in polar
interactions, which is relevant for its solubility and biological activity.

RingCount RingCount Number of rings in the molecule. It indicates the level of molecular complexity and rigidity.

Count of structural
groups Count of structural groups

These descriptors count the number of hydrogen bond acceptor groups, hydrogen bond donor
groups, heteroatoms (non-carbon atoms), etc., present in the molecule. They provide information
about the potential for specific molecular interactions.

Frequency of
functional groups

Frequency of functional
groups

These descriptors represent the count of specific functional groups or substructures in the molecule.
They provide information about the presence of particular chemical moieties.

https://github.com/rdkit/rdkit/blob/master/rdkit/Chem/MACCSkeys.py


AtomPairFingerprint This fingerprint is generated by encoding interactions between all possible atom pairs in a
molecule using a hashing scheme. These interactions are encoded based on atomic
environments and shortest path between the atom pair.

[4]

Table S3 - 3D descriptors provided on DeepMol

3D Descriptor Description References

AutoCorr3D These descriptors are derived from the autocorrelation of various physicochemical properties such as charge,
mass, van der Waals volume, electronegativity, polarizability, ionization potential, and electron affinity
associated with the atoms within a molecule. In total, there are 80 descriptors.

[5]

RadialDistributionFunction These descriptors are based on the radial distribution function, describing the likelihood of finding an atom at a
specific distance from another atom. They provide information about the spatial distribution of atoms and their
environments. In total, there are 210 descriptors.

[5]

PlaneOfBestFit The Plane of Best Fit (PBF) is the geometric plane that minimizes the sum of squared distances between the
atoms of a molecule and the plane itself. This descriptor indicates the average distance of all heavy atoms
from the PBF, offering a quantitative measure of how much the molecule deviates from a 2D shape and
providing insight into its 3D configuration.

[6]

MORSE 224 Molecular Surface Electrostatics derive from the electrostatic potentials present on the molecular surface.
They offer insights into the charge distribution across the molecule's surface and contribute to understanding
its three-dimensional shape. In total, thera are 224 descriptors.

[5]

WHIM Weighted Holistic Invariant Molecular (WHIM) descriptors are based on the principle of invariance, ensuring
that they maintain consistency even after molecule transformations or rotations. They depend on statistical
indexes obtained by projecting atoms along principal axes. WHIM descriptors encapsulate three-dimensional
information regarding molecular size, shape, symmetry, and atom distribution, all in reference to invariant
reference frames. In total, there are 114 descriptors.

[5]

RadiusOfGyration The radius of gyration quantifies how atoms are distributed in a molecular structure cregarding its center of
mass. Put simply, it represents the average distance of a molecule's atoms from their center of mass.

[7]

PrincipalMomentsOfInerti
a

The principal moments of inertia refer to the three rotational inertia values around its principal axes. These
axes are the mutually perpendicular axes through the center of mass of the molecule, and the moments of -



inertia represent the distribution of mass around each axis.

InertialShapeFactor The inertial shape factor is a measure that characterizes how mass is distributed around the principal axes of
rotation. It is derived from the principal moments of inertia.

[5]

Eccentricity The eccentricity refers to the extent to which its principal axes differ in length. It is calculated as the square root
of the ratio of the difference between the squares of the longest and shortest principal moments of inertia to the
square of the sum of all three principal moments of inertia.

[7]

Asphericity The asphericity of a molecule is a measure that quantifies the deviation of its shape from a perfect sphere. [8]

SpherocityIndex The spherosity index is an anisometry descriptor defined as a function of the
eigenvalues of the covariance matrix of the atomic coordinates. It varies from zero for flat molecules, such as
benzene, to unity for totally spherical molecules

[5]

NormalizedPrincipalMome
ntsRatios

Normalized ratios of principal moments of inertia measure the distribution of mass around the principal axes of
rotation for a molecule, providing insights into its overall shape and symmetry. 2 descriptors.

[9]

Table S4 - DeepChem featurizers provided by DeepMol

Featurizer Description References

ConvMolFeat Featurization to implement Duvenaud graph convolutions. It constructs a vector of local descriptors for
each atom in a molecule.

[10]

PagtnMolGraphFeat It creates a molecular graph connecting all atom pairs, considering interactions between every atom pair
in the molecule. The default node representation includes features such as atom type, formal charge,
degree, explicit and implicit valence, and aromaticity, resulting in a feature length of 94. The default
edge representation, with a feature length of 42, considers bond type, conjugation, same ring
membership, ring size, aromaticity, and distance between atom pairs based on the shortest path.

[11]

WeaveFeat Featurization to implement Weave convolutions. In contrast to Duvenaud graph convolutions, Weave
convolutions require a quadratic matrix of interaction descriptors for every atom pair, potentially offering
enhanced descriptive capability but resulting in a larger featurized dataset.

[12]



MolGanFeat This featurizer was originaly designed for MolGAN de-novo molecular generation. It encapsulates two
matrices containing atom and bond type information that can be used in predictive models.

[13]

MolGraphConvFeat This serves as a featurizer for general graph convolution networks applied to molecules, with default
node and edge representations based on the WeaveNet paper. The default node features encompass
atom type, formal charge, hybridization, hydrogen bonding, aromaticity, degree, number of hydrogens,
chirality, and partial charge, while the default edge features include bond type, same ring membership,
conjugation, and stereo configuration. Users have the flexibility to customize their own representations.

[12]

CoulombFeat This featurizer calculates Coulomb matrices for molecules, offering a representation of the electronic
structure. The resulting Coulomb matrix is an N x N matrix, where N represents the number of atoms in
the molecule, with each element indicating the strength of the electrostatic interaction between two
atoms.

[14]

CoulombEigFeat Same as CulombFeat but it also calculates the eigenvalues of Coulomb matrices for molecules. [14]

SmileImageFeat The SmilesImageFeat featurizer transforms a SMILES string into an image. The default image size is 80
x 80, supporting two modes: std, a grayscale representation using atomic numbers for atom positions
and a constant value for bonds, and engd, a 4-channel specification incorporating atom properties like
hybridization, valency, charges, and bond type for enhanced visualization. Atom coordinates are
computed, and lines between atoms indicate bonds, with channels reflecting specified property values.

[15]

SmilesSeqFeat The SmilesSeqFeat featurizer converts a SMILES string into a sequence. SMILES below a specified
maximum length are padded, while longer are excluded. The resulting sequence of character indices,
obtained through a character-to-index mapping, can serve as input for a predictive model.

[15]

DMPNNFeat This serves as a featurizer for the implementation of Directed Message Passing Neural Network
(D-MPNN). The default node features include atomic number, degree, formal charge, chirality, number
of hydrogens, hybridization, aromaticity, and mass, resulting in a feature length of 133. Edge features
encompass bond type, same-ring membership, conjugation, and stereo configuration, with a feature
length of 14.

[12, 16]

MatFeat This functions as a featurizer for the Molecule Attention Transformer, producing a numpy array
containing molecular graph descriptions, including node features, adjacency matrix, and distance matrix.

[17]



Table S5 - Scikit-Learn scalers available in DeepMol

Scaler Description References

StandardScaler Standardize features by removing the mean and scaling to unit variance. [18]

MinMaxScaler Transform features by scaling each one of them to a given range. [19]

RobustScaler Scales features by subtracting the median and adjusting data based on the quantile range. This scaler is
robust to outliers.

[20]

PolynomialFeatures Creates polynomial and interaction features by generating a new feature matrix that includes all
polynomial combinations of the original features up to a specified degree.

[21]

Normalizer Normalizes samples individually to unit norm. [22]

Binarizer Binarizes data (0 or 1) according to a threshold. [23]

KernelCenterer Centrally aligns kernel matrices by subtracting the mean along each feature dimension, ensuring that the
kernel's diagonal elements are centered around zero.

[24]

QuantileTransformer Adjusts features to follow a uniform or normal distribution, spreading out frequent values and mitigating
the impact of outliers.

[25]

PowerTransformer Applies a featurewise power transform to make the data more Gaussian-like. [26]

Table S6 - Scikit-Learn feature selection methods available in DeepMol

Feature Selection Method Description References

LowVarianceFS Removes all features with a variance lower than a threshold. [27]

KbestFS Selects the top k features based on their statistical significance with the target variable. It scores
and retains the features with the highest correlation or dependency with the target.

[28]



PercentilFS The PercentilFS method is a form of univariate feature selection that involves choosing features
through univariate statistical tests. It removes all features except for a user-defined highest-scoring
percentage.

[29]

RFECVFS Selects features based on recursive feature elimination with cross-validation. It systematically
eliminates less relevant features based on an estimator’s performance through cross-validation to
determine the optimal subset of features

[30]

SelectFromModelFS It selects important features based on the coefficients or importance scores derived from a trained
estimator. It allows for automatic feature selection by considering features that meet a specified
threshold of importance.

[31]

Table S7 - Data splitters in DeepMol - all of them can perform train-test, train-validation-test and k-fold splitting.

Data Splitter Description References

RandomSplitter Randomly splits the data. -

SingletaskStratifiedSplitter Splits single-task data on a stratified fashion.

SimilaritySplitter Splits molecules based on fingerprint similarity using Tanimoto similarity over Morgan fingerprints. It
can create both homogeneous and heterogeneous splits. In homogeneous splits, molecules are
evenly distributed across sets, whereas in heterogeneous splits, the goal is to minimize the
similarity between molecules in one set and those in the other sets.

-

ScaffoldSplitter Splits molecules according to the Bemis-Murcko scaffold representation, which represents rings,
linkers, frameworks (combinations of linkers and rings), and atomic properties like atom type,
hybridization, and bond order within a molecular dataset. It can create both homogeneous and
heterogeneous splits. In homogeneous splits, molecules are evenly distributed across sets,
whereas in heterogeneous splits, the goal is to minimize the number of shared scaffolds between
splits.

[32]

ButinaSplitter Splits the molecules based on the butina clustering of a bulk tanimoto fingerprint matrix. It can
create both homogeneous and heterogeneous splits. In homogeneous splits, molecules are evenly
distributed across sets, whereas in heterogeneous splits, molecules from the same clusters are

[33]



kept in the same split.

MultiTaskStratifiedSplitter Splits multi-task data on a stratified fashion. -

Table S8 - Imbalanced learning techniques provided by DeepMol.

Unbalanced Learn Method Description References

Over-sampling techniques

RandomOverSampler Randomly samples, with replacement, molecules in the under-represented class(es). -

SMOTE Synthetic Minority Oversampling Technique, is a statistical method aimed at balancing
imbalanced datasets by creating new instances for the minority class(es). It generates new
examples by combining features from existing minority cases and their nearest neighbors in the
feature space.

[34]

Under-sampling techniques

RandomUnderSampler Randomly under-samples, without replacement, molecules in the over-represented class(es). -

ClusterCentroids Under-samples data by generating centroids through clustering methods (KMeans algorithm by
default). This algorithm keeps N majority samples using the coordinates of the N cluster
centroids as the new majority samples.

-

Combination of over and under-sampling techniques

SMOTEENN Technique that combines over- and under-sampling using SMOTE and Edited Nearest
Neighbours (ENN) respectively. ENN removes examples for which the majority class label
conflicts with the labels of the majority of its three nearest neighbors.

[35]

SMOTETomek Technique that combines over- and under-sampling using SMOTE and Tomek links respectively.
Tomek links identify pairs of instances, one from the majority class and one from the minority
class, that are close to each other but have different class labels. The instances from the

[35]



majority class are then removed.

Table S9 - Scikit-learn, Deepchem and Keras models provided by DeepMol by default.

Model Description References

Scikit-learn [36]

82 models as in scikit-learn (v1.2.0) DeepMol includes all machine learning models available through Scikit-learn for
regression, classification and multioutput.

-

DeepChem [37]

GatModel A Graph Attention Network (GAT)-based model for predicting graph properties. It
involves updating node representations using a GAT variant. The model computes
the graph representation by combining weighted sums and max pooling of node
representations, followed by concatenation, and utilizes a Multi-Layer Perceptron
(MLP) for the final prediction. Works both for classification and regression.

[38]

GCNModel Graph Convolution Networks (GCN)-based model for graph property prediction. It
involves updating node representations using GCN. It then computes each graph's
representation through a weighted sum and max pooling of node representations,
followed by concatenation of the outputs. The final prediction is done using a
Multilayer Perceptron (MLP). Works both for classification and regression.

[39]

AttentiveFPModel Graph Property Prediction Model that involves combining node and edge features to
initialize node representations through a round of message passing. Subsequently,
node representations are updated with multiple rounds of message passing, and for
each graph, its representation is computed by combining the representations of all
nodes using a gated recurrent unit (GRU), followed by making the final prediction
using a linear layer. Works both for classification and regression.

[40]

PagtnModel Graph Property Prediction model that employs a modified Graph Attention Network
(GAT) to update node representations in graphs, utilizing a linear additive attention
mechanism based on concatenating node and edge features. Multiple rounds of
message passing are applied with residual connections between each layer, and the

[41]



final molecular representation is obtained by aggregating node representations. The
final prediction is obtained through a linear layer. Works both for classification and
regression.

MPNNModel Message Passing Neural Networks (MPNN) that considers graph convolutional
operations as a specific form of a broader message passing scheme, wherein
nodes exchange "messages”, leading to updates in their internal states. The
ordering of structures in this model adheres to the principles outlined in [43]. Works
both for classification and regression.

[42, 43]

MEGNetModel MatErials Graph Network uses multiple layers of Graph Networks known as
MEGNetBlocks for predicting properties in molecules and crystals. It integrates
node and edge properties through a Set2Set layer, combining this information with
global features to perform property prediction tasks for materials or molecules.
Works both for classification and regression.

[44]

DMPNNModel Directed Message Passing Neural Network (D-MPNN), consisting of two phases:
message-passing and read-out. In the message-passing phase, the objective is to
generate hidden states for all atoms in the molecule using encoders, followed by the
read-out phase where features are input into a feed-forward neural network to
obtain task-based predictions. Works both for classification and regression.

[45]

CNN 1, 2, or 3 dimensional Convolution Neural Network (CNN) comprising of a variable
number of convolutional layers, followed by a global pooling layer (max pool or
average pool), and a final fully connected layer for output computation. Works both
for classification and regression.

-

MultitaskClassifier A fully connected multitask classification network that offers extensive customization
of the model, including options for adjusting the number and widths of layers,
activation functions, regularization methods, and more.

-

MultitaskIRVClassifier The IRV is a low-parameter neural network that enhances a k-nearest neighbor
classifier by nonlinearly combining the impacts of neighboring chemicals in the
training set. This model is used for multitask classification.

[46]

ProgressiveMultitaskClassifier Progressive networks facilitate multitask learning by assigning a new set of weights
to each task, preventing exponential forgetting and ensuring that prior tasks are not
disregarded. This approach prevents the issue of exponential forgetting, ensuring

[47]



the retention of knowledge from previous tasks in multitask learning. Used for
multitask classification.

ProgressiveMultitaskRegressor The same as ProgressiveMultitaskClassifier but for multitask regression. [47]

RobustMultitaskClassifier This model's fundamental concept involves incorporating bypass layers that directly
connect features to the task output, offering potential flexibility to navigate
multitasking challenges affected by destructive interference. The inclusion of these
bypass layers aims to facilitate adaptability in overcoming obstacles during
multitasking. Used for multitask classification.

[48]

RobustMultitaskRegressor The same as RobustMultitaskClassifier but for multitask regression. [48]

ScScoreModel The SCScore model is a neural network that predicts the synthetic complexity score
(SCScore) for molecules and establishes a correlation with the number of reaction
steps needed to synthesize the target molecule. The model was adapted for
classification tasks.

[49]

ChemCeption The ChemCeption model applies convolutional neural networks (CNNs) to predict
molecular properties by utilizing an image-based representation of the molecule. In
this representation, various atomic and bond properties are encoded as pixels.
Works both for classification and regression.

[50]

DAGModel Directed Acyclic Graph models are used for predicting molecular properties by
representing molecules as a series of directed graphs. In this approach, each atom
in the molecule is transformed into a directed acyclic graph with edges pointing
“inwards” to it. Works both for classification and regression.

[51]

GraphConvModel Graph Convolutional Models, based on Duvenaud's convolutions. The model starts
with per-atom descriptors for each molecule, undergoing a series of convolutional
layers that combine and recombine these descriptors.

[10]

Smiles2Vec The Smiles2Vec model is implemented to generate neural representations of
SMILES strings for subsequent tasks involving molecular properties. Using an
Embedding layer, the model transforms input SMILES strings into vector
representations, potentially incorporating a 1D convolutional layer and RNN cells to
capture temporal dependencies and molecular structure information, facilitating
molecular property prediction. Works both for classification and regression.

[52]



TextCNNModel The model uses multiple 1D convolutional filters on padded strings, followed by
max-over-time pooling, extracting individual features. After concatenating these
features, the model undergoes transformations through hidden layers to make
predictions. Works both for classification and regression.

[53]

WeaveModel WeaveModel style convolutions differ from GraphConvModel style convolutions
primarily in explicitly modeling bond features. This explicit modeling requires
constructing an NxN matrix for bond interactions, potentially leading to scaling
issues but offering the potential for more precise representation of subtle bond
effects. Only for regression tasks.

[12]

DTNNModel Deep Tensor Neural Network (DTNN), is a deep learning architecture designed
specifically for understanding quantum-mechanical properties of molecular systems.
DTNNs are particularly effective in capturing complex relationships within molecular
structures, enabling insights into properties such as stability, atomic energies, and
electronic structure. Only for regression tasks.

[54]

MATModel Model based on the Molecular Attention Transformer. It works by decomposing each
molecule into its Node Features matrix, adjacency matrix, and distance matrix.
Subsequently, a mask tensor is computed for the batch, serving as input for the
MATEmbedding, MATEncoder, and MATGenerator layers. Works for regression
tasks.

[55]

MultitaskRegressor The same as MultitaskClassifier but for regression. -

Tensorflow/Keras

FCNN Fully connected neural network (FCNN) that allows flexible specification of the
model architecture and training parameters. It supports multiple tasks, customizable
hidden layers with activations, regularizers, and dropouts, along with options for
batch normalization. It constructs a model with input, shared hidden layers, and
task-specific output layers, compiling it with specified optimizer, loss functions, and
evaluation metrics. Suitable for both classification and regression.

-

1D CNN 1D convolutional neural network (1D CNN) model suitable for classification and
regression. It allows flexible specification of convolutional layers with options for
filters, kernel sizes, activations, dropouts, and batch normalizations. The model
architecture includes Gaussian noise injection, convolutional layers, dense layers,

-



and task-specific output layers, compiled with specified optimizer, loss functions,
and evaluation metrics.

TabularTransformer Tabular transformer model based on the transformer architecture, including
embedding layers, multi-head attention layers, layer normalization, and dense
layers. The model allows flexible specification of parameters such as attention
layers, dropout rates, and activation functions for last layers, compiled with specified
optimizer, loss functions, and evaluation metrics. Suitable for both classification and
regression.

-

RNN This Recurrent Neural Network (RNN) model that supports flexible specification of
parameters including the number of LSTM and GRU layers, units in each layer,
dropout rates, and activation functions for both dense and last layers. The model is
compiled with specified optimizer, loss functions, and evaluation metrics. Suitable
for both classification and regression.

-

BidirectionalRNN Bidirectional RNN model similar to the RNN model. However, it incorporates
bidirectional LSTM and GRU layers, allowing the model to learn from both past and
future information in the input sequences. It supports flexible specification of
parameters such as the number of LSTM and GRU layers, units in each layer,
dropout rates, and activation functions for both dense and last layers. The model is
compiled with specified optimizer, loss functions, and evaluation metrics. Suitable
for both classification and regression.

-

Table S10 - Feature explainability using Shapley values (SHAP [56]) in DeepMol.

Explainer Description

Permutation Approximates SHAP values by systematically permuting input features.

Exact Computes SHAP values by using optimized exact enumeration techniques. It is particularly suited for models with less than 15
features.

Additive Computes SHAP values for generalized additive models.

Tree Computes SHAP values for ensemble tree models.



GPU Tree GPU accelerated version of TreeExplainer.

Partition Recursively computes SHAP values through a hierarchy of features, accounting for correlations among features by grouping
them together

Linear Computes SHAP values for linear models.

Sampling Computes SHAP values under the assumption of feature independence.

Deep Approximates SHAP values for deep learning models.

Kernel Computes SHAP values by using a weighted linear regression to compute the importance of each feature.

Random Returns random (normally distributed) feature attributions. Only for benchmark comparisons.



Voting pipelines and ensembles

Table S11 - Ensembles and voting pipelines

Dataset Ensemble type Models/Pipelines

Bioav Voting Pipeline ● 5 ChEMBL Standardizer +
DMPNN

Lipo Stacking Ensemble ● Linear Regression
● SVM
● Random Forest
● Gradient Boosting
● Final estimator: MLP

BBB Voting Pipeline ● 3 Custom Standardizer +
DMPNN

● ChEMBL Standardizer +
DMPNN

● ChEMBL Standardizer + GCN

PPBR Stacking Ensemble ● Linear Regression
● SVM
● Random Forest
● Gradient Boosting
● Final estimator: MLP

CYP2C9 Inhibition Voting Pipeline ● Basic Standardizer +
MorganFingerprint + SVC

● Custom Standardizer +
AtomPairFingerprint +
LowVarianceFS +
GradientBoosting

● BasicStandardizer +
MorganFingerprint +
GradientBoosting

● BasicStandardizer +
MorganFingerprint +
RidgeClassifierCV

● AtomPairFingerprint +
LowVarianceFS +
GradientBoosting

CYP2C9 Substrate Bagging Ensemble 150 Logistic Regression

CYP2D6 Inhibition Stacking Ensemble ● LogisticRegression
● SVC
● RandomForest
● GradientBoosting
● Final estimator: MLP



CYP3A4 Inhibition Voting Pipeline ● ChEMBL Standardizer +
ConvMolFeat +
GraphConvModel

● 4 Basic Standardizer +
ConvMolFeat +
GraphConvModel

CYP3A4 Substrate Bagging Ensemble 450 SVMs

CL-Hepa Voting Pipeline ● 3 ChEMBL Standardizer +
DMPNN

● GCN
● ChEMBL Standardizer + GCN

CL-Micro Voting Pipeline 5 ChEMBL Standardizer + TextCNN

Ames Voting Pipeline 5 ChEMBL Standardizer + GCN

LD50 Voting Regressor ● Linear Regression
● SVM
● Random Forest
● Gradient Boosting
● MLP

DILI Voting Pipeline ● Basic Standardizer + Layered
and Morgan FPs + 1D CNN

● 4 Custom Standardizers +
MACCS keys + Select from
model + Gaussian Process
classifier

Example for running DeepMol AutoML

An example of how we can run DeepMol is given below:

from deepmol.loaders import CSVLoader

from deepmol.metrics import Metric

from deepmol.pipeline_optimization import PipelineOptimization

from deepmol.splitters import RandomSplitter

from sklearn.metrics import mean_squared_error

import optuna

# LOAD THE DATA

loader = CSVLoader('dataset_regression_path',

smiles_field='smiles',

labels_fields=['pIC50'],

mode='regression')

dataset_regression = loader.create_dataset(sep=",")



# OPTIMIZE THE PIPELINE

po = PipelineOptimization(direction='minimize', study_name='test_pipeline',

sampler=optuna.samplers.TPESampler(seed=42),

storage='sqlite:///my_experience.db')

metric = Metric(mean_squared_error)

train, test = RandomSplitter().train_test_split(dataset_regression,

seed=123)

po.optimize(train_dataset=train, test_dataset=test, objective_steps='all',

metric=metric, n_trials=10, data=train, save_top_n=2,

trial_timeout=600,

objective = ObjectiveTrainEval)

Figure S1 - Script to run DeepMol AutoML

Runtimes of the different methods in DeepMol

Evaluating the runtimes and memory requirements of each method is
essential for understanding their computational efficiency and practical
applicability. This section provides a comparative analysis of the
computational resources consumed by each approach for datasets of three
different sizes: 1218, 13130, and 108528.

Supplementary Table S11 details the runtime and memory requirements for
standardization methods. Notably, most methods demonstrated efficient
performance, with ChEMBLStandardizer being the exception, taking
approximately 29 minutes to process a dataset of around 100000 examples.

Table S12 - Runtimes and memory required for each method of
standardization for datasets of different sizes

Dataset Method Time (h:m:s.ms) RAM

PGP (1218 molecules)

BasicStandardizer 0:00:00.865 2M

CustomStandardizer 0:00:01.752 1M

ChEMBLStandardizer 0:00:12.611 3M

CYP2D6 (13130 molecules)

BasicStandardizer 0:00:08.404 28M

CustomStandardizer 0:00:17.505 19M

ChEMBLStandardizer 0:02:46.110 28M

DEL (108528 molecules)

BasicStandardizer 0:01:28.957 110M

CustomStandardizer 0:02:54.926 94M

ChEMBLStandardizer 0:29:24.538 104M



Supplementary Table S12 provides a comparative analysis of feature
extraction methods. The most efficient methods required less than one second
and 2 megabytes of RAM, while the most resource-intensive method,
PagtnMolGraphFeat, consumed over 17 hours and 41 gigabytes of memory to
process around 100,000 molecules. Additionally, we evaluated feature
extraction methods that depend on three-dimensional (3D) structures,
alongside the generation of 3D structures themselves. Supplementary Table
S13 outlines the computational demands of 3D structure generation using
DeepMol, which required up to 10 hours for 100,000 molecules but remained
modest in memory usage at a maximum of 11 megabytes. By contrast, 3D
feature extraction methods consumed up to 2 gigabytes of RAM; however,
when precomputed 3D structures were used, these methods took a maximum
of five minutes for a similar dataset size.

Table S13 - Runtimes and memory required for each method of feature
extraction for datasets of different sizes

Dataset Method Time (h:m:s.ms) RAM

PGP (1218 molecules)

RDKitDescriptors 0:00:51.485 6M

MorganFingerprint 0:00:03.798 20M

AtomPairFingerprint 0:00:04.010 20M

LayeredFingerprint 0:00:06.825 20M

RDKFingerprint 0:00:06.759 20M

MACCSkeysFingerprint 0:00:02.394 2M

WeaveFeat 0:00:32.138 144M

ConvMolFeat 0:00:14.349 33M

MolGraphConvFeat 0:00:18.639 11M

SmileImageFeat 0:00:03.424 120M

SmilesSeqFeat 0:00:00.399 8M

MolGanFeat 0:00:03.275 2M

PagtnMolGraphFeat 0:04:07.936 365M

DMPNNFeat 0:00:06.542 44M

MATFeat 0:07:00.602 29M

SmilesOneHotEncoder 0:00:00.529 61M

Mol2Vec 0:00:08.728 95M

CYP2D6 (13130 molecules)

RDKitDescriptors 0:09:38.500 29M

MorganFingerprint 0:00:42.335 212M

AtomPairFingerprint 0:00:44.865 212M

LayeredFingerprint 0:01:09.826 212M



RDKFingerprint 0:01:05.920 212M

MACCSkeysFingerprint 0:00:23.898 23M

WeaveFeat 0:05:09.420 1G

ConvMolFeat 0:02:21.654 313M

MolGraphConvFeat 0:02:39.309 103M

SmileImageFeat 0:00:32.819 1G

SmilesSeqFeat 0:00:03.998 89M

MolGanFeat 0:00:35.317 12M

PagtnMolGraphFeat 0:37:25.671 3G

DMPNNFeat 0:01:06.665 438M

MATFeat 0:22:29.259 273M

SmilesOneHotEncoder 0:00:13.351 4G

Mol2Vec 0:01:30.103 115M

DEL (108528 molecules)

RDKitDescriptors 2:41:04.981 231M

MorganFingerprint 0:12:40.981 1G

AtomPairFingerprint 0:13:19.543 1G

LayeredFingerprint 0:21:49.615 1G

RDKFingerprint 0:20:48.748 1G

MACCSkeysFingerprint 0:06:51.886 188M

WeaveFeat 2:46:00.115 16G

ConvMolFeat 0:49:33.944 3G

MolGraphConvFeat 1:07:03.475 1G

SmileImageFeat 0:10:16.056 10G

SmilesSeqFeat 0:01:24.162 732M

PagtnMolGraphFeat 17:14:47.804 41G

DMPNNFeat 0:27:38.398 4G

MATFeat 0:50:19.135 2G

SmilesOneHotEncoder 0:01:42.103 3G

Mol2Vec 0:18:55.797 305M

Table S14 - Three-dimensional structure generation with deepmol -
runtimes and memory required
Dataset Time (h:m:s.ms) RAM

PGP (1218 molecules)
0:25:07.254 231K

CYP2D6 (13130 molecules)
2:40:45.794 1M



DEL (108528 molecules)
10:19:46.889 11M

Table S15 - Runtimes and memory required for each method of 3D
feature extraction for datasets of different sizes
Dataset Method Time (h:m:s.ms) RAM

PGP (1218 molecules)

All3DDescriptors 0:00:06.744 7M

CoulombFeat 0:00:03.172 50M

CoulombEigFeat 0:00:03.226 5M

CYP2D6 (13130 molecules)

All3DDescriptors 0:01:02.045 91M

CoulombFeat 0:00:50.355 2G

CoulombEigFeat 0:00:37.205 61M

DEL (108528 molecules)

All3DDescriptors 0:12:45.368 624M

CoulombFeat 0:05:34.098 2G

CoulombEigFeat 0:05:43.303 166M

Supplementary Tables S15 and S16 illustrate the runtime and memory
requirements for scalers and feature selection methods. The scalers, adapted
from scikit-learn, exhibited low computational demands, with a maximum
memory usage of 369 megabytes and runtimes capped at 40 seconds.
Feature selection methods generally shared this low computational burden,
except for the Boruta algorithm, which required up to 54 minutes to complete.

Table S16 - Runtimes and memory required for each method of scalers
for datasets of different sizes
Dataset Method Time (h:m:s.ms) RAM

PGP (1218
molecules)

StandardScaler 0:00:00.037 3M

RobustScaler 0:00:00.146 2M

PowerTransformer 0:00:03.749 4M

MinMaxScaler 0:00:00.005 1M

MaxAbsScaler 0:00:00.004 1M

Normalizer 0:00:00.004 1M

Binarizer 0:00:00.007 2M

QuantileTransformer 0:00:00.747 4M

CYP2D6 (13130
molecules)

StandardScaler 0:00:00.107 33M

RobustScaler 0:00:00.351 20M



PowerTransformer 0:00:10.529 44M

MinMaxScaler 0:00:00.044 20M

MaxAbsScaler 0:00:00.045 20M

Normalizer 0:00:00.045 20M

Binarizer 0:00:00.090 25M

QuantileTransformer 0:00:00.607 22M

DEL (108528
molecules)

StandardScaler 0:00:01.068 282M

RobustScaler 0:00:01.396 174M

PowerTransformer 0:00:40.310 369M

MinMaxScaler 0:00:00.583 173M

MaxAbsScaler 0:00:00.560 173M

Normalizer 0:00:00.567 174M

Binarizer 0:00:00.877 217M

QuantileTransformer 0:00:04.092 179M

Table S17 - Runtimes and memory required for each method of feature
selection for datasets of different sizes
Dataset Method Time (h:m:s.ms) RAM

PGP (1218 molecules)

KbestFS 0:00:00.384 43M

LowVarianceFS 0:00:00.402 62M

PercentilFS 0:00:00.401 43M

SelectFromModelFS 0:00:02.794 27M

BorutaAlgorithm 0:22:23.307 122M

CYP2D6 (13130 molecules)

KbestFS 0:00:02.872 497M

LowVarianceFS 0:00:03.721 671M

PercentilFS 0:00:03.890 497M

SelectFromModelFS 0:00:08.396 257M

BorutaAlgorithm 0:28:37.547 684M

DEL (108528 molecules)

KbestFS 0:00:29.619 4G

LowVarianceFS 0:00:37.264 5G

PercentilFS 0:00:37.206 4G

SelectFromModelFS 0:00:51.520 2G

BorutaAlgorithm 0:54:34.579 5G

Supplementary Table S17 presents the performance of dataset splitters in
DeepMol. Basic splitters, such as random and stratified splitters, had minimal



resource requirements (up to 34 megabytes of memory and one second of
runtime). Among chemistry-specific splitters, scaffold splitting was the fastest,
taking only 56 seconds to split a dataset of 100,000 molecules. The similarity
splitter was moderately more demanding, with a maximum runtime of three
hours and comparable memory usage. The Butina splitter was the most
resource-intensive, requiring up to 1 gigabyte for 10,000 molecules and
exceeding 400 gigabytes for larger datasets (100,000 molecules), causing
memory failures and preventing runtime estimation. This suggests caution
when employing this method for extensive datasets.

Table S18 - Runtimes and memory required for each method of splitting
for datasets of different sizes
Dataset Method Time (h:m:s.ms) RAM

PGP (1218 molecules)

RandomSplitter 0:00:00.012 405K

SingletaskStratifiedSplitter 0:00:00.012 405K

SimilaritySplitter 0:00:00.925 417K

ScaffoldSplitter 0:00:00.538 443K

ButinaSplitter 0:00:01.519 7M

CYP2D6 (13130 molecules)

RandomSplitter 0:00:00.136 4M

SingletaskStratifiedSplitter 0:00:00.219 4M

SimilaritySplitter 0:02:42.282 4M

ScaffoldSplitter 0:00:05.550 4M

ButinaSplitter 0:04:40.557 1G

DEL (108528 molecules)

RandomSplitter 0:00:01.481 34M

SingletaskStratifiedSplitter 0:00:01.016 34M

SimilaritySplitter 3:44:00.377 35M

ScaffoldSplitter 0:00:56.907 34M

ButinaSplitter - > 400G

Finally, Supplementary Table S18 highlights the performance of data
balancing techniques. RandomOverSampler and SMOTE were efficient for
smaller datasets (~1,000 molecules), achieving class balance with minimal
time and memory requirements. RandomUnderSampler proved more efficient
for larger datasets. However, for substantial datasets, SMOTE and
RandomOverSampler demanded more time and memory, with SMOTE being
particularly memory-intensive. ClusterCentroids emerged as the most
computationally demanding approach, whereas RandomUnderSampler was



the most memory-efficient. Due to high memory requirements, we were unable
to run SMOTEENN, SMOTETomek, and ClusterCentroids for datasets of
10,000 or 100,000 molecules. These findings underscore the importance of
careful selection of methods based on dataset size and available
computational resources.

Table S19 - Runtimes and memory required for each method of over-
and undersampling for datasets of different sizes

Dataset Method

Class
Distribution
(Start)

Class
Distribution
(End)

Time
(h:m:s.ms) RAM

PGP (1218
molecules)

RandomOverSampler
Positive: 650,
Negative: 568

Positive: 650,
Negative: 650 0:00:00.009 2M

SMOTE
Positive: 650,
Negative: 568

Positive: 650,
Negative: 650 0:00:00.458 2M

ClusterCentroids
Positive: 650,
Negative: 568

Positive: 568,
Negative: 568 0:00:11.943 4M

RandomUnderSampler
Positive: 650,
Negative: 568

Positive: 568,
Negative: 568 0:00:00.002 1M

SMOTEENN
Positive: 650,
Negative: 568

Positive: 511,
Negative: 433 0:00:01.190 2M

SMOTETomek
Positive: 650,
Negative: 568

Positive: 623,
Negative: 623 0:00:01.035 2M

CYP2D6
(13130

molecules)

RandomOverSampler
Positive: 2508,
Negative: 10465

Positive: 10465,
Negative: 10465 0:00:01.987 34M

SMOTE
Positive: 2508,
Negative: 10465

Positive: 10465,
Negative: 10465 0:00:01.060 38M

ClusterCentroids
Positive: 2508,
Negative: 10465

Positive: 2508,
Negative: 2508 0:05:24.005 29M

RandomUnderSampler
Positive: 2508,
Negative: 10465

Positive: 2508,
Negative: 2508 0:00:00.011 4M

SMOTEENN - - - -

SMOTETomek - - - -

DEL
(108528

molecules)

RandomOverSampler
Positive: 5296,
Negative: 103232

Positive: 103232,
Negative: 103232 0:03:37.087 336M

SMOTE
Positive: 5296,
Negative: 103232

Positive: 103232,
Negative: 103232 0:00:05.439 409M

ClusterCentroids - - - -

RandomUnderSampler - - - -



SMOTEENN - - - -

SMOTETomek - - - -
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